
Received: 9 December 2022 Accepted: 10 February 2023

DOI: 10.1002/EXP.20220171

RESEARCH ARTICLE

Spatiotemporal single-cell transcriptomic profiling reveals
inflammatory cell states in a mouse model of diffuse alveolar
damage

Duo Su, Zhouguang Jiao, Sha Li, Liya Yue Cuidan Li

Mengyun Deng Lingfei Hu Lupeng Dai, Bo Gao, Jinglin Wang

Hanchen Zhang Haihua Xiao Fei Chen Huiying Yang Dongsheng Zhou,

1State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
2Reproductive Genetics Center, Bethune International Peace Hospital, Shijiazhuang, China
3State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
4School of Basic Medical Sciences, Anhui Medical University, Hefei, China
5Laboratory of Genome Sciences & Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
6Beijing National Laboratory for Molecular Science, State Key Laboratory of Polymer Physical and Chemistry, Institute of Chemistry, Chinese Academy of Science, Beijing, China

Correspondence
Fei Chen, Laboratory of Genome Sciences &
Information, Beijing Institute of Genomics,
Chinese Academy of Sciences and China National
Center for Bioinformation, Beijing, 100101, China.
Email: chenfei@big.ac.cn

Huiying Yang and Dongsheng Zhou, State Key
Laboratory of Pathogen and Biosecurity, Beijing
Institute of Microbiology and Epidemiology,
Beijing, 100071, China.
Email: yhy80324@163.com; zhouds@bmi.ac.cn,
dongshengzhou1977@gmail.com

Funding information
Emergency Key Program of Guangzhou
Laboratory, Grant/Award Number: EKPG21-01

Abstract
Diffuse alveolar damage (DAD) triggers neutrophilic inflammation in damaged tissues
of the lung, but little is known about the distinct roles of tissue structural cells in modu-
lating the recruitment of neutrophils to damaged areas. Here, by combining single-cell
and spatial transcriptomics, and using quantitative assays, we systematically analyze
inflammatory cell states in a mouse model of DAD-induced neutrophilic inflammation
after aerosolized intratracheal inoculation with ricin toxin. We show that homeostatic
resident fibroblasts switch to a hyper-inflammatory state, and the subsequent occurrence
of a CXCL1-CXCR2 chemokine axis between activated fibroblasts (AFib) as the signal
sender and neutrophils as the signal receiver triggers further neutrophil recruitment.
We also identify an anatomically localized inflamed niche (characterized by a close-knit
spatial intercellular contact between recruited neutrophils and AFib) in peribronchial
regions that facilitate the pulmonary inflammation outbreak. Our findings identify an
intricate interplay between hyper-inflammatory fibroblasts and neutrophils and pro-
vide an overarching profile of dynamically changing inflammatory microenvironments
during DAD progression.
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 INTRODUCTION

Diffuse alveolar damage (DAD) is an acute lung insult caused
by smoke or toxic inhalant that results in pneumonia, a
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cytokine storm, and massive neutrophil infiltration.[1] To
date, therapeutic strategies for this intractable disease are
lacking due to an insufficient understanding of its pathogene-
sis. Therefore, exploration of its key cellular subpopulations
and their activated states in the lung tissue microenviron-
ment is important for discovering new treatment targets of
DAD.
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Basic research in animal models of DAD has provided
insight into immunopathological mechanisms,[2] reveal-
ing the role of neutrophilic infiltration in driving the
inflammatory response and subsequent inflammatory burst
that eventually compromises lung function.[3] Our previ-
ous study revealed some underlying pathogenic molecu-
lar mechanisms (such as leukocyte migration and acti-
vated immunoregulation-associated transcriptional factors)
of ricin-induced DAD through “bulk” RNA sequencing
(RNA-seq) analyses.[4] Despite these observations, the crit-
ical question of what drives the early burst of pulmonary
inflammation remains unanswered. The heterogeneity of the
pulmonary cell atlas and the interaction of different cell types
in the microenvironment are still poorly understood due to a
lack of single-cell resolution technology.
Recent advances in single-cell RNA-seq (scRNA-seq) and

spatial transcriptomics (STomics) provide powerful new tools
for massive parallel delineation of cell states, interactions, and
spatial distribution in vivo. Compared to conventional RNA-
seq, scRNA-seq allows tracking changes in individual cell
populations at the single-cell level in an unbiased manner.[5]
Moreover, integrating scRNA-seq with STomics enables the
profiling of spatially resolved local cellular heterogeneity,
revealing the ecosystem of cellular components and the com-
plexities of molecular interactions in a progressive disease.
Increasingly, proof-of-concept studies have demonstrated the
feasibility and advantage of these approaches in elucidat-
ing the molecular pathogenesis of multiple disease-associated
cells in clinical organ samples.[6]

In this study, we integrate scRNA-seq with STomics to
temporally and spatially characterize the pulmonary cellular
microecosystems in a mouse model of DAD after aerosolized
intratracheal inoculation of ricin toxin. Our research reveals
the dynamic changes of cellular and inflammatory mediators
during DAD progression. Fibroblasts underwent remarkable
remodeling, shifting toward pro-inflammatory phenotypes,
and excess activated fibroblasts (AFib) were spatially enriched
with neutrophils, which facilitated the relocation of neu-
trophils into the parenchyma, thus increasing inflammation.
This work provides insight into the immune-boosting signal-
ing pattern between resident lung fibroblasts and recruited
neutrophils during DAD progression, raising the possibil-
ity of targeting intercellular crosstalk to reduce pulmonary
inflammatory progression.

 METHODS AND RESULTS

. Classification of major lung cell
populations in a mouse model of DAD

To investigate lung cellular responses during DAD progres-
sion, mice were challenged with aerosolized ricin to induce
DAD syndrome, as described in our previous study.[4] We
then performed 10× genomic scRNA-seq on the dissoci-
ated pulmonary cells at 0 (homeostatic control), 8, 24, and
48 h post-ricin challenge, followed by integration analy-

sis using Seurat (Figure 1A). As a result, 36,810 cells were
obtained and a uniform manifold approximation and projec-
tion (UMAP) of the cell landscape was created (Figure 1B),
indicating an overrepresentation of lung cells. Based on highly
expressed classical genotypic markers, these lung cells were
classified into ninemajor populations (Figure 1C): neutrophils
(the predominant cell population); monocyte-lineage cells
(monocyte/macrophage/dendritic cell; Mono/Mac/DC); nat-
ural killer cells (NKC); T cells; B cells; vascular endothelial
cells (VEC); fibroblasts (Fib); cluster_1 epithelial cells (Epi_1);
and cluster_2 epithelial cells (Epi_2).
The changing proportions of these cell subpopulations over

time were assessed (Figure 1D). A global reorganization of
lung immune cell populations began 8 h post-ricin exposure,
including an increase of neutrophil and monocyte-lineage
cells, and a decrease of lymphocyte-lineage cells, includ-
ing T cells and B cells (Figure 1D). This was confirmed by
fluorescence-activated cell sorting (FACS) (Figure S1) and
immunofluorescence imaging (Figure S2A,B). A gradual and
sequential reorganization of neutrophils, VEC, and Epi_2 was
also observed, indicating a continual change in these cells
during DAD progression (Figure 1D).
The obtained cells yielded a total of 2132 differentially

expressed genes (DEGs), which were classified into seven
major clusters based on their gene expression patterns at 8,
24, and 48 h (Figure 1E). Gene ontology (GO) enrichment
analysis indicated these seven clusters had distinct biological
processes (Figure 1F). The DEGs in cluster_1 were distributed
in epithelial cells (Epi_1 and Epi_2), and mainly enriched
in the biological processes of wound healing, epithelial cell
migration, and cell shape regulation. The DEGs in cluster_2,
mainly belonging to VEC, were involved in cell adhesion
and binding. The 260 fibroblast-related DEGs in cluster_6
were significantly enriched in chemotaxis and inflammatory
response. These findings demonstrate the temporal change in
lung structural cells during DAD progression.

. Fibroblasts and neutrophils as the major
producers of pro-inflammatory cytokines and
chemokines during DAD progression

The gene expression profiles of pro-inflammatory
cytokines/chemokines in bronchoalveolar lavage fluids
(BALFs) at 0, 4, 8, 12, 24, 48, and 72 h post-ricin chal-
lenge were examined with multiplex cytokine quantification
assays. A total of 12 major cytokines/chemokines were highly
upregulated in BALFs from 4 to 72 h post-ricin challenge
(Figure 2A), suggesting the occurrence of an inflammatory
cytokine storm during DAD progression. Multiple inflam-
matory features were also observed in parallel histological
examinations (Figure S3A,B). In detail, the abundance of IL-6
and CXCL1 was significantly upregulated at 8 h and sustained
at high levels from 8 through 48 h. GM-CSF and CXCL2
were robustly induced at 12 h and gradually decreased at 24
and 48 h, although they remained much higher than at 0 h.
The two classic proinflammatory mediators Il-1β and TNF-α
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F IGURE  Diverse lung cell populations in a mouse model of diffuse alveolar damage (DAD) revealed by scRNA-seq. (A) Workflow of scRNA-seq
experimental design. (B) Uniform manifold approximation and projection (UMAP) projection of 36,810 single cells obtained from the homeostatic control
lung tissues (0 h) and the DAD lung tissues (8, 24, and 48 h post ricin challenge). (C) Expression patterns of canonical cell markers for identification of cell
populations in UMAP plot. Two clusters, co-expressing epithelial cell marker Epcam, are annotated as Epi_1 and Epi_2, shown in (B). The indicated values are
log-normalized UMI per cell. (D) Density plots showing abundance changes for different cell populations at 8, 24, and 48 h compared to 0 h on UMAP graph.
(E) Heat map showing differentially expressed genes (DEGs) (rows) among different cell populations at 8, 24, and 48 h compared to 0 h. These genes are
classified into seven modules through unsupervised k-means clustering. (F) GO enrichment for DEGs shown in (E).
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F IGURE  Correlation between cytokines/chemokines and cell populations. (A) Abundance of proinflammatory cytokines/chemokines in
bronchoalveolar lavage fluids (BALFs) at different time points post ricin challenge. (B) Normalized intensity of cytokine/chemokine genes shown in uniform
manifold approximation and projection (UMAP). (C) Immunofluorescence staining of CXCL1. Note expression in the lung tissues in PDGFRα+ fibroblast.
Scale bar. *p < 0.05, **p < 0.01, and, ***p < 0.001.

showed a moderate increase from 4 to 48 h, and a significant
increase at 72 h. Overall, ricin-induced DAD expression pat-
terns were characteristic of a cytokine storm, with an excess
release of multiple pro-inflammatory cytokines/chemokines,
and asynchronous changes in released cytokines/chemokines

denoting diverse inflammatory responses in different lung
cell populations during DAD progression.
To further investigate the production sources of these

cytokines/chemokines, we analyzed their gene expression
profiles using UMAP plots (Figure 2B) and discrete cell
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populations (Figure S4A). Fibroblasts and neutrophils were
the main cell populations that had higher expressed levels
of these cytokines/chemokines. After ricin exposure, fibrob-
lasts served as the major source of CXCL1, which acted
as the chemoattract for mobile neutrophils (Figure 2C).
We next assessed the recruitment and trafficking mech-
anisms of immune cells by analyzing the expression of
chemokines and their corresponding receptors based on
scRNA-seq data (Figure S4B). Several potential mediators,
including Cxcl1 (to Cxcr1 and Cxcr2), Cxcl9 (to Cxcr3),
and Cxcl10 (to Cxcr3) exhibited high-levels of gene expres-
sion in fibroblasts and might be involved in neutrophil
recruitment.
In summary, fibroblasts and neutrophils repre-

sent the major source of multiple pro-inflammatory
cytokines/chemokines and play an important role in pro-
moting inflammation and a cytokine storm during DAD
progression.

. Involvement of specific structural cell
subpopulations in inflammatory response
during DAD progression

To further explore the role of fibroblasts in the inflammatory
response, fibroblasts in the first-level of clustering were sub-
jected to a second-level of unsupervised clustering. Fibroblasts
could be further clustered into six subpopulations Fib_1 to
Fib_6 (Figure 3A) and the cell numbers of different subpop-
ulations were notably dynamic (Figure 3B), indicating that
fibroblasts possessed highly heterogeneous subpopulations
that likely had diverse functions during DAD progression.
Fib_1 comprised a major proportion of fibroblasts in home-
ostasis, with a high abundance of homeostatic marker genes
such as Mgp and Dpt, and it thus represented the homeo-
static resident tissue fibroblast subpopulation (Figure 3B and
Figure S5A). The proportion of Fib_2 significantly increased
during the first 24 h post-ricin exposure, followed by a gradual
decrease at 48 h. Fib_2 highly expressed cytokine/chemokine
genes such as Cxcl2 and Csf2 (Figure S5A), indicating an
increased inflammatory response in Fib_2 during DAD pro-
gression, which was also supported by GO enrichment anal-
ysis (Figure 3C). We termed the Fib_2 subpopulation as
activated fibroblast (AFib). Further analysis on time-specific
unintegrated UMAPs revealed increasingly inflammatory
responses due to continuously increased AFib scores from 8
to 24 to 48 h (Figure 3D). Fib_3 showed a significant decrease
during the first 24 h with a clear topographical separation
from Fib_1 and AFib on the UMAP plot. Fib_4 displayed no
obvious change in its ratio of cell populations during DAD
progression. Fib_5 and Fib_6 were excluded in the following
analysis as they represented only minor cell subpopulations
(Figure 3B).

Activity scores of 14 major signaling pathways for fibrob-
last subpopulations were next explored using PROGENy
(Figure S5B). Homeostatic Fib_1 cells were enriched in
the estrogen pathway. AFib cells were enriched in inflam-

matory and intercellular communication signaling path-
ways, such as NKkB, TNFa, EGFR, and PI3K. Fib_3 cells
displayed significant enrichment in hypoxia and TGFa
pathways.
To study the dynamic transition of fibroblast subpopula-

tions, we inferred state trajectories using VECTOR analysis
(Figure 3E). Fib_1, AFib, and Fib_4 all showed a continuous
trajectory starting from homeostatic Fib_1 to inflamma-
tory AFib, and then to Fib_4. Further pseudotime analy-
sis using Monocle indicated two cell state transition paths
(Figure 3F,G). Fib_1 mainly resided at the starting region of
the trajectory paths, while AFib and some of the Fib_4 cells
were located at the far end of one trajectory Path_1. Fib_3
and the rest of the Fib_4 cells were situated at the far end of
trajectory Path_2. AFib cells were predominantly distributed
in ricin-exposed tissues and not in controls (Figure 3H),
indicating their potential role during DAD progression. We
further investigated DEGs associated with transitional states
in Path_1. Significant upregulation of many inflammatory
response-related genes (responsible for cytokine production,
positive regulation of the defense response, and the cytokine-
mediated signaling pathway) occurred in the terminal state
for fibroblasts (Figure 3I), indicating higher proinflamma-
tory activity for these cells (especially AFib) during DAD
progression.
The initially identified epithelial cell populations, Epi_1 and

Epi_2, were further classified into six subpopulations, namely
Epi_1.1 to Epi_1.3 and Epi_2.1 to Epi_2.3, under second-
level unsupervised clustering (Figure S6A). We observed
a significantly increased proportion of Epi_1.1 during the
first 24 h post-ricin exposure (Figure S6B); Epi_1.1 belonged
to aberrant epithelial cells with many significantly upreg-
ulated genes that were involved in stress adaptation (Csf1,
Tnfaip3, and Cxcl2), adhesion (Icam1), and further trigger-
ing of early immune responses (Figure S6C). GO analysis
showed significant enrichment of inflammatory response and
receptor signaling pathways in Epi_1.1 (Figure S6D), suggest-
ing a rapid epithelium-intrinsic inflammatory response of
Epi_1.1, which were then annotated as activated epithelial cells
(AEpi).
The sole VEC population initially identified was re-

clustered into five subpopulations, namely VEC_1 to VEC_5,
under second-level clustering (Figure S6E). VEC_2 was
the predominant subpopulation in homeostatic lungs
(0 h), whereas VEC_1 was predominant at 8 and 24 h
(Figure S6F). GO analysis for the DEGs in VEC_1 showed
significant enrichment for cell adhesion and leukocyte migra-
tion, suggesting a promotor effect on immune reaction
(Figure S6G). We termed VEC_1 as activated endothelial
cell (AEndo). Tracing the gene signature of AEndo in time-
specific unintegrated UMAPs revealed increased signature
scores at 8, 24, and 48 h (Figure S6H).

Collectively, AFib (Fib_2), AEpi (Epi_1.1), and AEndo
(VEC_1), as the subpopulations of lung fibroblast, epithelial
cell, and VEC, respectively, exhibited pro-inflammatory gene
expression profiles and together facilitated the inflammatory
response during DAD progression.
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F IGURE  Analysis of fibroblast subpopulations. (A) Uniform manifold approximation and projection (UMAP) projection of all fibroblast cell
subpopulations colored by Seurat annotated subclusters. (B) Bar plot depicting proportions of fibroblast subpopulations. (C) GO enrichment analysis of
significantly upregulated genes between AFib and Fib_1. (D) AFib gene signature scores across 0, 8, 24, and 48 h. (E) Cell state transition obtained by
VECTOR. (F) Two cell state transition paths inferred by Monocle software. (G) Distribution of fibroblast subpopulations in each branch of the trajectory. (H)
Distribution of different experimental conditions in each branch of the trajectory. (I) Heatmap showing the dynamic changes in gene expression along the
pseudotime (left panel) and the enriched biological processes in each gene module (right panel).

. Complex intercellular communications
during DAD progression

To obtain the cellular interaction profile, CellChat was used
to calculate interaction scores, and a weighted interac-
tion map (Figure 4A) was generated based on the average
expression levels of soluble signaling mediators and their
receptors between two cell populations. Cell–cell interac-
tion analysis revealed that AFib had an increased outgoing
connection score and that neutrophils represented the main
inbound receptor (Figure 4A), suggesting that AFib mediated
neutrophil recruitment during DAD progression. Notably,
neutrophils showed an enhanced interaction with themself,
indicating an autocrine loop for neutrophil recruitment. Fur-
thermore, the increased interaction between neutrophil and
monocyte-lineage cells across 8, 24, and 48 h indicates an
enhanced interplay between these two cell populations. Addi-
tionally, NKC and neutrophils showed obvious signaling
interactions at 0, 8, and 24 h, but this interaction decreased
at 48 h (Figure 4A).

Within the separate crosstalk compartments, we observed
several common and stage-specific ligand-receptor (LR) pairs
(Figure 4B and Figure S7A–C). Consistent with cytokine pro-
duction source analysis, AFib as the major donor showed the
strongest interactionwith neutrophils (themajor signal recep-
tor) and monocyte-lineage cells at 24 and 48 h. These interac-
tive signals were related to chemokine and cytokine signaling
such as CXCL, CSF, andCALCR. In addition, we observed sig-
nificantly differentiated communication in EGF/FGF/PDGF
signaling pathways between AEpi and fibroblasts at 8 h
(Figure S7B). Interactions between AFib and neutrophils were
mainly mediated by the LR pairs Cxcl1-Cxcr2 (Figure 4C,D),
while those between AEpi and fibroblasts were mediated
by the LR pairs Hbegf-Egfr, Pdgfb-Pdgfra, and Fgf1-Fgfr1
(Figure S8).
Taken together, results show intercellular communica-

tion was widespread among fibroblasts, epithelial cells, and
endothelial cells duringDADprogression, facilitating the acti-
vation of complex inflammatory cascades. In particular, AFib
and neutrophils were the major signal sender and receptor,
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F IGURE  Cell–cell interactions. (A) Interaction net count plot among diverse cell populations in diffuse alveolar damage (DAD) lung tissues at 0, 8, 24,
and 48 h. Two cell types with putative crosstalk were connected with line. Line color represents ligand expressed by the individual cell type. Line thickness
represents the number of interactions between the two cell types. Loops represent autocrine patterns. Map quantifies potential communications of cell
populations. (B) Comparison of incoming and outgoing signaling patterns for secreting and receiving cells at 24 h. (C) Contributions of LR pairs to CXCL
signaling pathways from AFib to neutrophil at 24 h. (D) Representative image of multiplex immunofluorescent staining of PDGFRa, CXCL1and MPO. Note
(red dashed circle) that neutrophil-recruited chemokine (CXCL1) and neutrophil marker (MPO, LY6G) are co-localized in the lung tissues.

respectively. These data suggest that AFib promotes DAD
progression by mediating neutrophil recruitment.

. Spatiotemporal architecture of
inflammatory microenvironment during DAD
progression

To assess the spatial organization of cell populations dur-
ing DAD progression, we performed STomics using a 10×
Genomics Visium Spatial Gene Expression Assay for lung

tissue sections at 0, 8, 24, and 48 h post-ricin challenge
(Figure 5A). A total of 10,094 tissue-covered spots were
obtained, each spot containing 3960 unique genes (median)
and 14,107 uniquemolecular identifiers (UMIs,mean). In gen-
eral, the number ofUMIs in theDAD samples (8, 24, and 48 h)
was higher than those in the homeostatic control samples (0 h)
(Figure S9).

STomics data were first classified into different regions
using principal component analysis (PCA) based on variably
expressed genes among all STomics spots. After correcting
for batch differences, unsupervised clustering identified seven
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F IGURE  Overview of STomics analysis. (A) STomics analysis of lung tissue sections at 0, 8, 24, and 48 h. (B) Seven distinct clusters identified in the four
lung tissues. The integrated data were first normalized and subjected to graph-based clustering, and then depicted as an overlay of the spot cluster annotation
across the tissue (left) and embedded in uniform manifold approximation and projection (UMAP) space (right). (C) Heatmap depicting expression values of
the most variable genes among the seven clusters. Marker genes of cell populations were labeled with red color (D) GO enrichment for the genes among
distinct spatial clusters. (E) Pathway activities obtained by VECTOR. (F) Expression profile comparison between STomics clusters and scRNA-seq cell
populations. (G) Heatmap of Pearson’s correlation values evaluating the relationship between different inferred cell populations in STomics. Left to right: 0, 8,
24, and 48 h. See also supplementary Figure S11A,B.



 of 

clusters (Figure 5B). Splitting the UMAP plot showed notable
condition enrichment across four time points (Figure 5B).
Overall, cluster_1 was enriched in the homeostatic control
samples, and cluster_0 and cluster_2 were enriched in the
DAD samples, while cluster_3, cluster_4, and cluster_5 were
observed in all samples. We then explored the laminar dis-
tribution of some canonical marker genes, such as Epcam,
Col1a1, Pecam1, and S100a8 (a classical innate immune cell
marker), identified in scRNA-seq data; the STomics data
further confirmed the fundamental remodeling of lung cell
populations during DADprogression (Figure 5B,C), while the
significant upregulation of neutrophil marker genes indicated
that neutrophils represented themajor recruited immune cells
during DAD progression (Figure S10A–E). We also found it
difficult to distinguish the spatial registration of overlapping
cell populations in some clusters (Figure S10A–D).

GO enrichment analysis was performed to further explore
the functions of different clusters identified in STomics
(Figure 5D). The detected genes in cluster_1 were highly
enriched in the homeostatic control samples and mainly
related to basic physiological functions, such as lung develop-
ment, respiratory tube development, and extracellular matrix
organization. The detected genes in cluster_0 and cluster_2
were mainly enriched in inflammatory processes, including
positive regulation of cytokine production and cytokine-
mediated signaling pathways. The activity score of intercellu-
lar communication, immune modulation, and proinflamma-
tory pathways was also enhanced in cluster_0 and cluster_2
(Figure 5E). Overall, the histopathological regions in cluster_0
and cluster_2 played a vital role in inflammatory response
during DAD progression, which was reminiscent of the AFib
subpopulation identified in scRNA-seq data (Figure 3A,C).
Given that each spot typically captured several overlap-

ping cell populations, we next de-convolved the STomics data
with the signature genes from scRNA-seq data. The analy-
sis revealed that clusters from STomics were dominated by a
subset of specific cell populations such as fibroblasts, epithe-
lial cells, endothelial cells, and neutrophils (Figure S11A).
These main cell populations were further compared between
STomics and scRNA-seq data (Figure 5F). Genes in cluster_0
showed the significantly upregulated expression of epithe-
lial cell markers, indicating enrichment of AEpi. The highly
expressed genes in cluster_1 belonged to Epi_1 and AEndo.
Genes in cluster_2 displayed high expression of immune
cell markers such as AFib and neutrophils, while cluster_3
contained highly expressed neutrophil gene markers. The
enriched marker genes in cluster_4 were derived from Epi_2.
Cluster_5 was not enriched for any cell marker genes and clus-
ter_6 represented a minor cell population, with a mixture of
several cell populations. Thus, STomics data indicated the spa-
tiotemporal heterogeneity of cell populations across 8, 24, and
48 h, which was confirmed by the enrichment of specific cell
populations from scRNA-seq data (Figure 5F).

Spatial relationship and co-localization among different cell
populations for the STomics slices (Figure 5G, Figure S11B)
were then analyzed. As expected, the activated lung struc-
tural cells AEpi, AFib, and AEndo were clustered together,

suggesting the formation of an inflammatory microenviron-
ment by these cells. We also observed co-localization of AFib
and neutrophils at 24 and 48 h (Figure 5G); this agrees with
the intracellular interaction findings, that AFib represents the
major source of chemoattractants for neutrophil recruitment,
as shown in the scRNA-seq data (Figure 4B–D).

. Spatial histopathological and gene
expression patterns during inflammatory
response

The spatial histopathological patterns on the STomics slice
(including lung parenchyma regions in lower, middle, and
upper lobe areas) at 24 h (Figure 6) were analyzed. The
slice could be divided into three distinct regions based on
the histopathological structures (Figure 6A): the lower lobe
represented the terminal bronchial region (Area_A), the mid-
dle lobe represented the bronchiole region (area_B), and
the upper lobe represented the principal bronchial region
(Area_C). A collagen deposition region was distributed
mostly in area_A, indicating that area_A was the main area of
ricin-induced DAD and underwent the wound healing pro-
gression. In contrast, no obvious pathological changes were
observed in area_B or area_C (Figure 6A). These histopatho-
logical findings agree with the unbiased spot clustering results
in Figure 5B.

The spatial enrichment profile of immune cells and acti-
vated lung structural cells in the STomics slice at 24 h
(Figure 6B) was then assessed. AEpi was detected mostly
in area_B, while AFib was exclusively enriched in area_C.
AEndo was distributed in area_A and area_C, while neu-
trophil was enriched in area_C. A functional enrichment
analysis revealed different biological progressions among the
three areas (Figure 6C,D). Area_A was responsible for physi-
ological reactions (such as hypoxia-response for adaption of
low oxygen content) and area_C was characterized by acti-
vated immune response and immune cell infiltration, while
area_B reflected an intermediate state between area_A and
area_C. Furthermore, neutrophil recruitment happened in the
upper lobe areas close to the bronchi regions. Collectively,
scRNA-seq identified the major activated structural cell pop-
ulation AFib (Figure 3A) and STomics indicated its location
in the upper lobe close to the bronchi regions (Figure 6B).
A spatial trajectory using both spatial information and

gene expression profiles was then constructed. A natural pro-
gression of cluster_0 cells toward cluster_2 cells in area_C
(Figure 6E,F) was observed. The root cells of the trajectory
showed significant upregulation of collagen deposition mark-
ers (such as Saa3, Fth1,Mgp, andCol3a1), while the end cells of
the trajectory displayed significant upregulation of transcrip-
tion factors (such as Egr1, Egr4, Atf4, and Junb), chemokines
(such as Cxcl2, Cxcl9), and transcriptional co-activators (such
as Ifrd1) (Figure 6G). These results are consistent with the
observations from scRNA-seq data (Figure 4A–D), again sug-
gesting that AFib served as the major trigger for neutrophil
recruitment in the upper lobe.
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F IGURE  Spatial histology and gene expression patterns at 24 h. (A) Annotated brightfield images of H&E-stained lung tissue section. (B) Visualization
of AEpi, AFib, AEndo, and neutrophil signature expressions in spots of the same tissue section. (C) Expression profile of distinct functional gene modules in
sots of the same tissue section. (D) GO enrichment for the marker genes in each area. (E) Visualization of cell state trajectories with tissue localization. (F) Tree
plot with hierarchical layout showing the flow of progress branching from cluster_0 regions (blue) to cluster_2 regions (green). (G) Plot showing the genes with
positive (blue) and negative (red) correlations with the spatial trajectory.

Based on the above combined analysis of scRNA-seq and
STomics data, we speculated that AFib boosted a rapid and
robust immune response via recruitment of neutrophils, and
then the recruited neutrophils produced many more proin-
flammatory mediators to further induce airway inflammation
outbreak in the upper lobe, an area we termed “inflamed
niche.”

. Spatial intercellular interaction between
AFib and neutrophil in inflamed niche

We studied the intercellular interaction between AFib and
neutrophils in a spatial context (Figure 7, Figure S9) using
stLearn, which can identify intensive signaling activity among

different spatial regions by calculating LR co-expression
scores of cell population diversity between individual “spots.”
Figure 7A shows that cluster_1 spots had fewer interactions
with other areas, which might be due to the physical con-
straint of cluster_1 cells by collagen deposited in response
to ricin-induced injury. By contrast, cluster_3 spots showed
the highest level of interaction with other regions, suggesting
active intercellular communication and molecule exchange of
cell populations in cluster_3. In addition, the top five active
LR pairs, Col1a2-Cd44, Thbs1-Sdc4, Col1a2-Itgb1, Mmp9-
Cd44, and Vcan-Cd44, were enriched for the functions of
cell migration and cell-matrix interaction (Figure 7B) and
were dominantly distributed in the inflamed niche (Figure
S12). Overall, these LR pairs influenced regional or longer-
range cellular interactions and guided intercellular proximity,
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F IGURE  Spatial cell population interactions at 24 h. (A) Chord-plot visualizing interactions between clusters. (B) Heatmap showing the top 5
individual cell–cell interactions across multiple LR pairs concurrently. (C) Heatmap showing the interaction weight and direction of individual spatial cluster.
(D) Visualization of Cxcl1-Cxcr2 gene pairs score and P-value at spot level in the spatial context. (E) Expression pattern of Cxcl1 and Cxcr2 genes in the spatial
context. (F) Representative image of multiplex immunofluorescent staining of PDGFRa, CXCL1, MPO, and CXCR2. Note (white dashed circle) that
neutrophil-recruited chemokine (CXCL1) and corresponding neutrophil receptor (CXCR2) are co-localized around the bronchioles.

thereby facilitating the formation of an “inflamed niche.”
Additionally, the gene pair Cxcl1-Cxcr2 showed the highest
degree of interaction and was distributed between cluster_2
and cluster_3 (Figure 7C,D), consistent with the above-
described strong interaction between AFib and neutrophils in
scRNA-seq data (Figure 4B,C). In addition, gene expression
and immunofluorescent staining also suggested a mechanism
whereby AFib promotes mobile neutrophil infiltration by
the CXCL1-CXCR2 chemokine axis (Figure 7E,F). Overall,
a close and strong spatial intercellular interaction between
hyper-inflammatory AFib and neutrophil cells facilitated
the consequence of an inflammation outbreak in the airway
during DAD progression.

 DISCUSSION

DAD is a complex condition characterized by hyperinflam-
matory responses in the lung, involving multiple interactions
among resident pulmonary structural cells and infiltrating

immune cells. In the present work, we used a mouse model
of non-infective DAD (induced by aerosolized intratracheal
inoculation of ricin toxin) to investigate early DAD pathobi-
ology, since this model has been shown to exert inflammatory
injury (rather than inflammatory cell death) on local tissues
by host immune cells.[2a] Our work reveals the dynamics
of histopathological changes, inflammatory cytokine profiles,
and infiltrating patterns of immune cells during DAD pro-
gression in the lung, and we construct a spatiotemporal
transcriptomic atlas of lung tissues at the level of cell com-
position and state. Our results suggest a key role of lung
resident structural cells (primarily fibroblasts) in boosting
neutrophil recruitment and lung inflammation. We further
identify a potential role of the CXCL1-CXCR2 chemokine axis
in promoting the infiltration of neutrophils during DAD pro-
gression. These findings enable a deeper understanding of
the complicated cellular and molecular mechanism for DAD
pathogenesis and provide a valuable resource for develop-
ing effective therapeutic strategies against lung inflammatory
diseases.
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Fibroblasts are located in the interface between airway
epithelial cells and vascular endothelial cells and are thus
well-placed to maintain a balance between boosting a suffi-
cient immune response, while compromising between lung
function and immunity-induced damage.[7] In this study, we
observed a DAD-responsive fibroblast subpopulation, termed
AFib, with proinflammatory features in the early-stage of
DAD progression. Our multi-dimensional data suggest that
the homeostatic fibroblasts were reprogramed to an activated
state (AFib), producing diverse inflammatory cytokines to
promote the immune responses. AFib expressed higher lev-
els of CXCL1, the major receptor of which was CXCR2, and
was involved in recruitingmobile immune cells. Since CXCR2
was highly expressed on neutrophils, secretion of CXCL1
by AFib might be responsible for the accumulation of neu-
trophils, the major pathological feature of DAD. Based on
spatial analysis through STomics, along with immunofluo-
rescence imaging, we identified a hyper-inflammatory region
(termed the inflamed niche) consisting of AFib and neu-
trophils located in the principal bronchi region and unveiled
this inflamed niche as the source for promoting infiltration of
immune cells into the lung.
It is now commonly accepted that pneumocytes consti-

tute more than just a barrier between the alveolar lumen and
the underlying mesenchyme.[8] As the first cells exposed to
inhaled noxious substances, epithelial cells are crucial regu-
lators for mediating the initial proinflammatory response by
secreting the first wave of cytokines and chemokines.[9] In
our experimental model, alveolar epithelial cells underwent
a phenotype switch that triggered the upregulation of sev-
eral inflammatorymediators, including GM-CSF, CXCL1, and
CXCL2, during DAD progression. Our cell–cell interaction
analysis revealed an interplay among injured epithelial cells
and fibroblasts through several immunomodulatory signal-
ing mediators, including heparin-binding EGF-like growth
factor (encoded by Hbegf), platelet-derived growth factor
subunit B (Pdgfb), and fibroblast growth factor 1 (Fgf1).
Since Hbegf-Egfr, Pdgfb-Pdgfra, and Fgf1-Fgfr1 interactions
are well-known to play critical roles in the early inflamma-
tory phase of rapidly progressive disease,[10] we speculated
that the hormone release upon epithelial cell death and the
subsequent activation of receptors on lung resident cells would
result in the initiation of immune responses. Collectively,
our data pinpoint a conceptual model in which lung fibrob-
lasts could potentially integrate damage signals emitted from
injured epithelial cells, thereby executing a role in promoting
neutrophil infiltration by producing inflammatory cytokines
in early-stage DAD. Therefore, neutralizing these paracrine
signaling mediators might have therapeutic benefit by revers-
ing the inflammatory fibroblast to a healthy state, further
inhibiting the pro-inflammatory effects and progression of
DAD.
An increasing number of reports have shown that a dys-

regulated hyperinflammatory response is initiated by damage-
associated molecular patterns (DAMPs) released by damaged
alveolar epithelial cells or recruited immune cells duringDAD
progression.[11] Our previous study also indicated that Retro-

2 (a compound for protecting cells from death) reduced the
expression levels of cytokines and increased the viability of
cells.[12] These results suggest that DAMPs play a role in initi-
ating immune response and have potential as an intervention
target in DAD. By analyzing DAD-related cytokine storms
and immune cell infiltration, the present study indicates a
central role of fibroblasts for lung immune response during
DAD progression through the recruitment of circulation neu-
trophils. We hypothesized that DAMPs released from stressed
epithelial cells might drive the fibroblast activation under the
complex inflammatory situation; this needs to be tested in
future studies since DAMPs’ profiles were not included in our
omics data.
This study has several limitations. First, only four represen-

tative stages during DAD progression (up to 48 h after injury)
were monitored using scRNA-seq and STomics. Although the
integrative analysis with other research validates our find-
ings to some extent,[13] data presented here may not reflect
the overall cellular and molecular dynamics during DAD
pathogenesis. Additionally, each group of samples includes
three murine individuals, and the single-cell digestive juices
from the three mouse lung tissues were pooled together
immediately to minimize changes in gene expression in cells,
but this may also obscure some heterogeneity. In addition,
some data (such as the cellular distribution of inflammatory
cytokines) cannot be statistically analyzed (only represented
by means). Nevertheless, data presented herein, especially
the phenotypic shifting of lung fibroblasts, are pertinent for
DAD immunopathology, andmay assist our understanding of
inflammatory lung diseases.

 CONCLUSION

In summary, we present a temporal-spatial view of ongoing
pulmonary immune responses in DAD lungs. This investi-
gation suggests a key role for AFib in mediating neutrophil
infiltration through integration and secretion of soluble sig-
naling mediators, thus boosting neutrophilic lung inflamma-
tion. These findings not only provide novel insight into the
pathogenesis of DADdisease, but also highlightmesenchymal
subpopulations as potential therapeutic targets in the context
of lung injury-related diseases.

 EXPERIMENTAL SECTION

. Murine model and pulmonary single-cell
preparation

C57BL/6c mice (Mus musculus), used in our experiments,
were purchased from Beijing Charles River Laboratory. Mice
were housed under a standard diet ad libitum and main-
tained on a 12-h light/dark cycle. The mouse model of DAD
was generated as previously described.[4] Briefly, following
anesthetization with pentobarbital, aerosolized ricin (twice
the half-maximal lethal dose, approximately 0.01 mg kg−1) in



 of 

50 μL phosphate-buffered saline was delivered to the mice
intratracheally using aMicroSprayer aerosolizer. Controlmice
were treated with an identical volume of phosphate-buffered
saline. Mice were sacrificed by excessive anesthesia at the
indicated time-points after exposure. Three female mice aged
10 weeks were used for pulmonary single-cell preparations
for scRNA-seq and flow cytometry analysis by tissue mincing
and enzyme digestion. The lungs were isolated and the lobes
were minced. Minced tissue was digested with collagenase A
and DNase I, filtered, and resuspended in phosphate-buffered
saline. The lung cells of three mice were pooled.

. scRNA-seq library preparation and
sequencing

Samples were loaded onto a Chromium Controller (10×
Genomics, Pleasanton, CA, USA) to generate gel beads in
emulsions of approximately 10,000 cells. RNAs from the bar-
coded cells were reverse-transcribed and sequencing libraries
were constructed with reagents from a Chromium Single Cell
3′ v3 reagent kit (10× Genomics) according to the manufac-
turer’s instructions. Libraries were sequenced on an Illumina
instrument (NovaSeq PE150; San Diego, CA, USA) aiming for
an average of 100,000 read pairs per cell.

. scRNA-seq data preprocessing

Raw scRNA-seq reads were processed by Cell Ranger (version
3.1.0). Reads were mapped to the genome using STAR, and
downstream reads were used to generate normalized aggre-
gate data across samples and create a matrix of gene counts
versus cells. Genes expressed in fewer than three cells and cells
detected in fewer than 200 genes were excluded. Low-quality
cells where > 5% of the counts were derived from mitochon-
drial genes were also excluded. Finally, normalized gene count
was obtained through the normalization on library size.

. scRNA-seq data analysis

The Seurat[14] R package (version 3.1.1) was used to calculate
the first 2000 genes with the highest differential expressions by
using the FindVariableFeatures function, PCA was employed
to perform dimensionality reduction after regression on con-
founding factors, including percent of mitochondrial RNA
and cell cycle. Findcluster function was used to calculate the
cell clusters with a resolution 1.0 for major cell types and 0.2
for specific sub-cluster. Clustering was visualized byUMAP in
two-dimensional space.
DEGs in each cluster were identified by FindaAllMarkers

functions in the Seurat R package (use default parameters).
Genes were considered differentially expressed with a log2
average differential expression of 0.5 and when P < 0.05.
Canonical marker genes of known cell populations were used
to annotate each cluster. Cells from epithelial, endothelial, and

fibroblast compartments were subset for further analysis. Cell
nomenclature for sub-cluster was designated by functional
property.

. GO enrichment and pathway activity
analysis

GO analyses were carried out by using the “clusterProfiler”
R package.[15] Package “org.Mm.eg.db” was used to map
gene identifiers. P-value was adjusted by using Benjamini-
Hochberg correction. GO terms represent biological pro-
cesses.
PROGENy (V1.17.3) R package was used to estimate the

activity of relevant signaling pathways.[16]

. Inference of developmental directions
for single cells using VECTOR

VECTOR (V0.0.4) R package was used to identify the start-
ing cells and infers the vectors of developmental directions for
cells in UMAP.[17]

. Cell state transition trajectory

Monocle (V2.14) packages were used to construct trajec-
tories to discover the fibroblast transitions.[18] The identi-
fied DEGs in Seurat were used to obtain cells in pseudo-
times. “DDRtree” and “plot_complex_cell_trajectory” func-
tions were applied to reduce dimensions and plot minimum
spanning tree, respectively. Thenweused “BEAM” function to
analyze the DEGs for each transited path, which were shown
as heatmap.

. Cell–cell communication analysis

CellChat (version 0.5) was used to perform the cell–cell com-
munication analysis.[19] Briefly, cell annotated labels and the
normalized gene expression level generated through Seu-
rat workflow was integrated as input for CellChat. The
expression level of ligand and receptor genes in each cell
population was projected into the protein–protein interaction
network. Permutation testing of randomized network connec-
tions was used to determine significant source-target network
connections.

. Measurement of cytokines levels in
BALF

Mouse BALF was used to measure the levels of inflamma-
tory cytokines, including IL6, IL-1β, GM-CSF, TNF-α, Eotaxin
(CCL11), MIP-1 (CCL2), MIP-1β (CCL4), MIP-2 (CXCL2),
MCP-3 (CCL7), IP-10 (CXCL10), RANTES (CCL5) and
GRO-α (CXCL1). These cytokines were measured using
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Luminex multiple assay according to the manufacturer’s
protocol.

. Antibodies and immunofluorescence
stainings

For multiplex immunofluorescence staining, we followed
the Opal protocol staining method for the following mark-
ers: For the colocalization assessment between fibroblast
and neutrophil, Ly6G(ab238132, Abcam, 1:200) were labeled
with Akoya Opal fluorophores 620; PDGFRα (ab134123,
Abcam, 1:250) were labeled with Akoya Opal fluorophores
520; CXCL1 (PA5-86508, Invitrogen, 1:50) were labeled with
Akoya Opal fluorophores 570; CXCR2 (MAB2164, R&D Sys-
tems, 1:100) were labeled with Akoya Opal fluorophores 690;
MPO (ab208670, Abcam, 1:200) were labeled with Akoya
Opal fluorophores 780; The nucleus was labeled with DAPI
(1:100, Akoya). For immune cell quantitative research: MPO
(ab208670, Abcam, 1:200) were labeled with Akoya Opal flu-
orophores 690; Ly6G (ab238132, Abcam, 1:200) were labeled
with Akoya Opal fluorophores 620; F4/80 (70076S, CST,
1:200) were labeled with Akoya Opal fluorophores 570; CD3
(ab16669, Abcam, 1:150) were labeled with Akoya Opal flu-
orophores 520; CD19 (ab245235, Abcam, 1:300) were labeled
with Akoya Opal fluorophores 480; Ly6C (ab15627, Abcam,
1:300) were labeled with Akoya Opal fluorophores 780; The
nucleus was labeled with DAPI(1:100, Akoya). All sections
were cover-slipped using Anti-Fade Fluorescence Mounting
Medium (ab104135, Abcam).

. FACS

After the cells were counted with a Countess II FL automated
counter (Thermo Fisher Scientific, Waltham, MA, USA),
approximately 2 × 106 cells per mouse were incubated in
blocking solution containing 0.25% FcBlock (catalog number
553141, BD Biosciences, San Jose, CA, USA) in phosphate-
buffered saline for 15 min and then stained with fluorochrome
conjugating antibodies for 30 min at 4◦C. After staining,
cells were washed and fixed with 1% paraformaldehyde in
phosphate-buffered saline for 30 min, then washed and resus-
pended in phosphate-buffered saline with 0.5% bovine serum
albumin. Flow cytometry was conducted with a BD FAC-
Symphony A5 flow cytometer using BD FACSDiva software
(BDBiosciences). The following antibodies were used: Fixable
viability stain 510 (mouse, BD Biosciences, 564406), anti-
CD45 (mouse, BD Biosciences, 564279), anti-CD16 (mouse,
BDBiosciences, 553141), anti-Ly6c (mouse, BioLegend, 128011;
San Diego, CA, USA), anti-Ly6g (mouse, BioLegend, 127641),
anti-CD11b (mouse, BioLegend, 101237), anti-CD11c (mouse,
BioLegend, 117308), anti-CD64 (mouse, BioLegend, 139305),
anti-CD24 (mouse, BioLegend, 101825), and anti-MERTK
(mouse, eBioscience, 25-5751-80; San Diego, CA, USA). Data
were analyzed by FlowJo version 10 (Ashland, OR, USA). All
experiments were performed in four replicates.

. Hematoxylin and eosin (H&E) staining

In a separate series of experiments, ricin-injured mice and
control mice were sacrificed at each measurement time point,
and lungs were inflated with 4% paraformaldehyde and
removed for paraffin embedding. Slices of 4-μm thickness
were stained with hematoxylin and eosin and observed under
a light microscope. Semiquantitative evaluation of lung injury
based on the method reported previously.[20]

. Sample preparation for × Visium
STomics

Mouse model of DAD was constructed according to the
method mentioned above. Sampling time points of STomics
experiments were in accord with scRNA-seq. After resec-
tion, tissue sections from fresh frozen mouse lungs and
then tissue optimization experiment was conducted as the
pipeline from 10× Genomics. First, tissue staining & imag-
ing was performed, then tissue permeabilization, fluorescent
cDNA synthesis, and RNA quality assessment were car-
ried out. Next, the tissues were removed slide imaging was
performed. Finally, spatially localized gene expresison was
performed (10× Genomics) following the manufacturer’s
instructions.

. × Visium STomics library
preparation and sequencing

Tissue sections were first stained and imaged. Then tissues
permeabilization within 30 min results in maximum fluo-
rescence signal. Next, reverse transcription, second-strand
synthesis, cDNA amplification, quality control, library con-
struct, and sequencingwere performed sequentially, following
the manufacturer’s instructions. Overall, tissue sections from
control to 48 h covered a total of 1795, 1832, 3389, and 3089
spots on the capture area, respectively. Sequencing data were
then mapped to the mouse reference genome using the Space
Ranger to derive a feature spot-barcode expression matrix for
downstream analysis.
The output files including rawUMI countmatrix and image

information, were processed with R and Python language.
PCA was used to reduce the number of dimensions. The
Louvain clustering algorithm was used to do the clustering,
and the UMAP was used to show the clusters. Over H&E
images, clusters and individual subpopulation distributions
were viewed in a spatial context.

. Defining cell state scores

With default settings using Seurat AddModuleScore function,
we calculated cell scores to assess the level of expression of
a particular predetermined expression gene set in individual
cells or areas. The average expression of the genes from the
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preset gene set in each individual cell or spot was used to
calculate the cell scores.

. Deconvolution analysis of individual
spots across slices

SPOTlight software was used to perform the deconvolution
analysis of individual spots.[21] It could identify the topic pro-
file signatures by means of an NMFreg model, which were
determined by optimizing the cell population proportions in
the mixture of individual spots.

. Spatial co-localization of between cell
populations

To identify spatially co-localizing cell population pairs, we
tested all putative pairs from our deconvolution analysis. For
each two cell-type pair, we calculated the Pearson’s correlation
values to evaluate the relationship between different inferred
cell populations in Stomics. P-value of < 0.05 and a positive
coefficient were considered as spatial co-localization.

. Spatial trajectory inference and cell–cell
interactions

stLearn (V0.4.0) was used to comprehensively analyze
STomics data for the reconstruction of cell population evo-
lution within a tissue.[22] In detail, stLearn reconstructed
spatial transition gradients within and between clusters that
were connected locally by a directed minimum spanning tree
optimization approach. Spatial information and gene expres-
sion profiles were integrated to identify locations in the tissue
where there is high LR interaction activity. These areas were
predicted to be hotspots where cell–cell interactions were
more likely to occur.

. Statistical analysis

Data were analyzed by R (version 3.6.3) and expressed as
mean ± SEM. The statistical test performed was reported
in each figure legend. T-tests were two-sided. P-value was
adjusted using Benjamini-Hochberg correction.

 CODE ANDDATA ACCESSION

The scRNA-seq and 10× Visium datasets in this study
are available at Gene Expression Omnibus database (acces-
sion number GSE161524). There are no custom codes for
data analysis, analysis codes used in the current study are
available from the corresponding author (Dr. Dongsheng
Zhou) upon reasonable request and through collaborative
investigations.
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