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Abstract
Background and Objectives
There has been considerable interest in statins because of their pleiotropic effects beyond their
lipid-lowering properties. Many of these pleiotropic effects are predominantly ascribed to Rho
small guanosine triphosphatases (Rho GTPases) proteins. We aimed to genetically investigate
the role of lipids and statin interventions on multiple sclerosis (MS) risk and severity.

Method
We used two-sample Mendelian randomization (MR) to investigate (1) the causal role of
genetically mimic both cholesterol-dependent (through low-density lipoprotein cholesterol
(LDL-C) and cholesterol biosynthesis pathway) and cholesterol-independent (through Rho
GTPases) effects of statins onMS risk andMS severity, (2) the causal link between lipids (high-
density lipoprotein cholesterol [HDL-C] and triglycerides [TG]) levels and MS risk and
severity, and (3) the reverse causation between lipid fractions and MS risk. We used summary
statistics from the Global Lipids Genetics Consortium (GLGC), eQTLGen Consortium, and
the International MS Genetics Consortium (IMSGC) for lipids, expression quantitative trait loci,
andMS, respectively (GLGC: n = 188,577; eQTLGen: n = 31,684; IMSGC (MS risk): n = 41,505;
IMSGC (MS severity): n = 7,069).

Results
The results of MR using the inverse-variance weighted method show that genetically predicted
RAC2, a member of cholesterol-independent pathway (OR 0.86 [95% CI 0.78–0.95], p-value
3.80E-03), is implicated causally in reducing MS risk. We found no evidence for the causal role
of LDL-C and the member of cholesterol biosynthesis pathway onMS risk. TheMR results also
show that lifelong higher HDL-C (OR 1.14 [95% CI 1.04–1.26], p-value 7.94E-03) increases
MS risk but TG was not. Furthermore, we found no evidence for the causal role of lipids and
genetically mimicked statins onMS severity. There is no evidence of reverse causation between
MS risk and lipids.

Discussion
Evidence from this study suggests that RAC2 is a genetic modifier ofMS risk. Because RAC2 has
been reported to mediate some of the pleiotropic effects of statins, we suggest that statins may
reduce MS risk through a cholesterol-independent pathway (that is, RAC2-related mecha-
nism(s)). MR analyses also support a causal effect of HDL-C on MS risk.
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Introduction
Findings from the phase 2 MS-STAT trial (a randomized,
placebo-controlled trial) showed that a high dose of simvas-
tatin (80 mg per day) led to a significant drop in brain atrophy
(by 43%) and disability progression among 140 patients with
secondary progressive multiple sclerosis (MS) over 2 years.1

However, whether statins’ beneficial effects on MS are me-
diated by cholesterol-lowering or cholesterol-independent
pathway is not clear yet.

Indeed, recent evidence derived from clinical and experi-
mental animal models of autoimmune diseases has shown that
statins exert immunomodulatory and anti-inflammatory ef-
fects beyond their lipid-lowering properties that may be
beneficial in autoimmune diseases such as MS.2,3 Many of
these effects are predominantly ascribed to statins’ capacity to
inhibit the isoprenylation (also known as prenylation or lip-
idation) of Rho small guanosine triphosphatases (GTPases,
also known as small G-proteins).4-6

Statins exert effects through Rho GTPases by 2 distinct
mechanisms: preventing Rho proteins from localizing to the
membrane localization and loading Rho proteins with GTP
(Figure 1). By inhibiting 3-hydroxy-3-methylglutaryl co-
enzyme A reductase (HMGCR), statins prevent the synthesis
of isoprenoid intermediates and the subsequent iso-
prenylation of Rho GTPases.7 This leads to the inhibition of
Rho protein translocation to the plasma membrane and thus
prevents the activation of their downstream effectors.7 The
second mechanism by which statins exert effects through Rho
GTPases is GTP loading, which is the conversion of Rho
proteins to their active form (GTP-bound). Inhibition of
isoprenoid biosynthesis by statins results in disruption of
guanine nucleotide dissociation inhibitors (GDIs)–Rho
GTPase binding, which provides a potential mechanism for
GTP loading of the cytosolic Rho proteins.8,9 GDIs are a
negative regulator of Rho GTPases that only bind to iso-
prenylated Rho proteins to sequester them in the inactive
form (GDP-bound) into the cytosol, preventing them from
anchoring to membranes or being activated by guanine nu-
cleotide exchange factors.10 Thus, in the absence of iso-
prenoid intermediates, GDIs cannot bind to Rho proteins,
allowing them to be constitutively active (GTP-bound).10

A previous Mendelian randomization (MR) analysis used
single-nucleotide polymorphisms (SNPs) within HMGCR

gene region to mimic the effects of statins on the risk of MS
developing through HMGCR inhibition.11 This study
revealed no causal link between these SNPs and MS risk,
suggesting that statins have no effect onMS risk.11HMGCR is
the target for statins; therefore, it is not surprising that MR
studies focus on HMGCR to mimic the effects of statins.
Nevertheless, by only targeting HMGCR, these studies ex-
amined the cholesterol-lowering effect only and may have
missed observing the statins’ pleiotropic effects. Furthermore,
the effect of statins on MS severity has not yet been
established. To address this knowledge gap, we adopted two-
sample MR approach to genetically mimic both cholesterol-
dependent and cholesterol-independent effects of statins to
explore whether statins’ effects on MS risk and/or MS se-
verity, if any, are mediated by lowering cholesterol or are
independent of cholesterol. In particular, the cholesterol-
dependent pathway was studied by (a) examining the causal
role of genetically predicted change in the blood expression
levels of 25 genes (including the HMGCR gene) that encode
proteins involved in cholesterol biosynthesis and (b) exam-
ining the causal role of genetically predicted LDL-C, given
that LDL-C is a relevant prognostic factor for assessing the
degree ofHMGCR inhibition.12 The cholesterol-independent
pathway was studied by examining the causal role of geneti-
cally predicted change in the blood expression levels of 20
genes that encode Rho GTPase family members. We sought
also to examine the causal role of genetic predisposition to
increased other major plasma lipid fractions (high-density li-
poprotein cholesterol [HDL-C] and triglycerides [TG]) in
MS risk and severity. In addition, the reverse causation be-
tween HDL-C, LDL-C, TG, and MS risk is addressed in this
study. Because no single loci achieved genome-wide signifi-
cance in MS severity data, we were unable to perform a re-
verse causation between lipid fractions and MS severity.

We tested 2 hypotheses to examine whether statins influence
MS through cholesterol-dependent or cholesterol-independent
pathways:

1. We would expect statins causally influence MS
through lowering blood cholesterol levels if we obtain:
a. A statistically significant causal estimates for MR

analyses involving LDL-associated SNPs.
b. A statistically significant causal estimates for MR

analyses involving SNPs of HMGCR and any
other downstream genes involved in cholesterol
biosynthesis.

Glossary
eQTL = expression quantitative trait loci; FDR = false discovery rate; GLGC = Global Lipids Genetics Consortium; GTEx =
Genotype-Tissue Expression; GWAS = genome-wide association study; HDL-C = high-density lipoprotein cholesterol;
IMSGC = International Multiple Sclerosis Genetics Consortium; IVW = inverse‐variance weighted; LD = linkage
disequilibrium; LDL-C = low-density lipoprotein cholesterol; MHC = major histocompatibility complex; MR = Mendelian
randomization; SNPs = single-nucleotide polymorphisms; TG = triglycerides.
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2. By contrast, we would expect statins causally influence
MS through cholesterol-independent pathway, if we
obtain a statistically significant causal estimates forMR
analyses involving SNPs of Rho GTPases.

In simple terms, MR is a type of “instrumental variable” analysis
that uses genetic variants, such as SNPs, robustly associated with
exposures as proxies for the risk factors of interest to investigate
their causal effect roles on outcomes.13 MR is a useful method to
appraise causality within observational epidemiology, which is
relatively quicker and easier than randomized controlled trial
studies and overcomes some of the limitations inherent in
conventional epidemiologic studies.14

Method
Genetic Instrument Selection for Exposures
The summary statistics data for SNPs associated with blood
lipid fractions at p-values <5 × 10−8 were taken from the
Global Lipids Genetics Consortium (GLGC) genome-wide

association study (GWAS) to investigate the association be-
tween lipids and MS.15

To explore the reverse causation between lipid fractions and
MS risk, we initially selected 200 autosomal susceptibility
SNPs outside the major histocompatibility complex (MHC)
region that reported the International Multiple Sclerosis
Genetics Consortium (IMSGC) as genome-wide significant
for MS.16 With MS risk–associated SNPs as the exposure, we
obtained corresponding effect estimates for HDL-C, LDL-C,
and TG from GLGC as the outcome.

All the selected SNPs for lipid fractions and MS risk (as expo-
sure) were clumped at a linkage disequilibrium (LD) threshold
value of r2 < 0.01. Then, we used Steiger filtering to remove
genetic variants that explained more of the variation in the
outcome than the variation in the exposure of interest.17,18

The remaining SNPs were used to calculate the mean
F-statistic and the proportion of variance explained (R2) to

Figure 1 Statin Effects on Cholesterol and Rho GTPases

HMGCR inhibition by statins leads to (1) reduction
in the synthesis of cholesterol (2) and prevention
of the synthesis of isoprenoids (such as Farnesyl-
PP and Geranylgeranyl-PP). Isoprenoids are
essential molecules for the prenylation and
functioning of the Rho GTPase family.10,50 After
isoprenylation, the Rho proteins localize to a tar-
get cell membrane (I) and are activated by GEFs
that facilitate the exchange of GDP for GTP10,50

(II). This enables them to pass on signals to cor-
responding downstream effectors and regulate
numerous cellular functions.10,50 Finally, the Rho
proteins interact with GAPs that hydrolyze GTP to
GDP, thereby inactivating the Rho proteins10,50

(III). When the Rho proteins are inactivated
(GDP-bound form), GDIs extract them from the
membrane and sequester the proteins in the
GDP-bound form into the cytosol10,50 (IV). Thus,
preventing the isoprenylation of Rho GTPases by
statins lead to (2a) the inhibition of Rho protein
translocation to the plasma membrane and pre-
vents the activation of their downstream effec-
tors7 (2b) and disruption of GDIs-Rho GTPase
binding, which causes an increase in the levels of
the cytosolic GTP-bound forms of RhoGTPases.8,9

GAPs, GTPase-activating proteins; GDIs, guanine
nucleotide dissociation inhibitors; GEFs, guanine
nucleotide exchange factors; HMGCR, 3-Hydroxy-
3-Methylglutaryl-CoA Reductase; Rho GTPases,
Rho small guanosine triphosphatases.
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evaluate the strength of the selected variants.19 The value of
the mean F-statistics more than 10 indicates that bias due to
weak instruments is negligible.19

To investigate the potential role of and mechanisms used by
statins in MS risk and severity, expression quantitative trait
loci (eQTL) data with p-values <5 × 10−8 were obtained from
the eQTLGen to genetically mimic statin effects.20 We used
whole-blood cis-eQTL in a ±5 kilobases flank around 25 genes
(including HMGCR) that encode proteins involved in cho-
lesterol biosynthesis and around 20 RhoGTPase gene regions
to genetically mimic the effects of statins elicit through the
cholesterol-dependent and cholesterol-independent path-
ways, respectively, (eTable 1, links.lww.com/WNL/D90). All
the selected SNPs clumped at the liberal LD-clumping
threshold value of r2 < 0.4.

For replication purpose, we obtained independent summary
statistics data for lipid fractions from MR Base (was accessed
on August 24, 2022)21 and for eQTL data from the Genotype-
Tissue Expression (GTEx) project (version 8).22 For further
details on exposure data sets, see the SupplementaryMaterials
(links.lww.com/WNL/D90).

Genetic Instrument Selection for Outcome
The summary statistics data from the discovery cohorts of the
most recent MS risk GWAS were obtained from the
IMSGC.16 Owing to complex LD structures and a high po-
tential for pleiotropy in the MHC region, 12 Mbps around
this region (from 24 to 35 megabase pairs of chromosome 6;
GRCh37) were excluded from MS discovery GWAS. For MS
severity, we obtained the summary statistics data from the
corresponding author of the original publication.23 For fur-
ther details on outcome data sets, see the Supplementary
Materials (links.lww.com/WNL/D90).

MR Analysis
To assess a potential effect of the exposure of interest on the
outcome, we first used the inverse‐variance weighted (IVW)
method which in the absence of directional pleiotropy, it
provides a robust causal estimates.24 Then, we used the MR-
Egger approach, as a sensitivity analysis to detect the possible
pleiotropy effects and to account for it.24 Because many of the
SNPs were associated with more than one lipid fraction,
multivariable MR (MVMR) through IVW was used to ac-
count for the potential pleiotropic influence.25 For cis-eQTL
data, where the genetic variants are in a moderate LD (r2 <
0.4), we implemented the IVW and MR-Egger methods
suggested by Burgess et al., which account for a correlation
structure between genetic variants, thus avoiding ‘double
counting’ of variant effects.26

To assess the heterogeneity, we used the Cochran Q statistic
and the related I2 index to facilitate heterogeneity in-
terpretation that expresses the amount of heterogeneity as a
percentage.27 The MR-Egger intercept was used to assess the
presence of pleiotropic effects, a statistically significant

intercept term (p-values <0.05) indicating directional
pleiotropy.27

Correcting for multiple testing was performed on IVW results
using the Benjamini-Hochberg method to identify signifi-
cant associations (false discovery rate [FDR] ≤ 0.05).28

The results with FDR ≤0.05 were considered having strong
evidence.

Standard Protocol Approvals, Registrations,
and Patient Consents
The data sources used in this study obtained valid informed
consent from all participants. Separate institutional review
board approval was not required for the current study.

Data Availability
The GWAS summary data used in this article are available at
the URLs as follows: lipid fractions (GLGC) csg.sph.umich.
edu/willer/public/lipids2013/; whole blood cis-eQTL
(eQTLgen consortium) eqtlgen.org/cis-eqtls.html; whole
blood cis-seQTL (GTx consortium) gtexportal.org/home/
datasets; HDL-C (MR Base) mrbase.org/; MS risk and MS
severity data are available on request to the IMSGC Data
Access Committee through the IMSGC website (imsgc.net/?
page_id=31).

Results
Figure 2 summarizes this study’s data sets, method, and
results.

Genetically Mimicked Effect of Statins on MS
Risk Is Independent of Cholesterol Pathway
To genetically mimic the effect of statins onMS risk (obtained
from IMSGC), QTL data (obtained from eQTLGen Con-
sortium) for a total of 35 genes (21/25 genes of the choles-
terol biosynthesis pathway and 14/20 genes of the Rho
GTPase family) were selected for analysis on the basis of
having at least one SNP strongly associated with their ex-
pression to examine the causal role of cholesterol-dependent
and cholesterol-independent pathways in MS risk. In addi-
tion, 99 LDL-C–associated SNPs were obtained from GLGC
to examine the causal role of the cholesterol-dependent
pathway in MS risk.

Figure 3, eTable 2, and eFigures 1 and 2 (links.lww.com/
WNL/D90) display the associations between the genetically
mimicked statin effects and MS risk through cholesterol-
dependent (LDL-C [see Table 1] and cholesterol bio-
synthesis pathway) and cholesterol-independent (Rho
GTPases). The IVW, MR-Egger, and MVMR results revealed
no evidence on the causal role of LDL-C on MS risk. MR
analyses involving SNPs in these gene regions found only a
link between the expression levels of RAC2 and MS, sug-
gesting that statins may reduce MS risk using a cholesterol-
independent pathway, specifically through a RAC2-related
mechanism(s). The heterogeneity, in general, in these
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analyses ranged from nonsignificant to moderate, and the
MR-Egger intercept test provided no evidence for horizontal
pleiotropy except for RHOH.

For RAC2, the IVW result revealed that one standard de-
viation increase in genetically predicted RAC2 expression in
the blood was associated with a 14% reduction inMS risk. The
MR-Egger causal estimate was significant and largely consis-
tent with the IVW results, reducing the probability that

pleiotropy influenced these results. There was no evidence for
heterogeneity, and the MR-Egger intercept test provided no
evidence for directional pleiotropy. Because the results sur-
vived multiple testing corrections (RAC2 FDR = 0.05), rep-
lication was assessed using the whole-blood cis-eQTL data set
from the GTEx project. It was found that the direction of the
effect was identical across the discovery and replication re-
sults, providing further support for RAC2 playing a protective
role in MS risk (Table 2).

Figure 2 Flow Diagram Summarizing This Study’s Method and Results

The red cross symbol indicates that
there is no causal association, while the
green tick symbol indicates that there is
a causal association (p-value < 0.05).
Abbreviations: GLGC, global lipids
genetics consortium; MS, multiple scle-
rosis; HDL-C, high-density lipoprotein
cholesterol; LDL-C, low-density lipopro-
tein cholesterol; TG, triglyceride; IMSGC,
the International Multiple Sclerosis
Genetics Consortium; MHC, major his-
tocompatibility complex.
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Genetically Mimicked Effect of Statins Had No
Causal Association With MS Severity
To genetically mimic the effect of statins on MS severity
(obtained from IMSGC), a total of 31 genes (19/25 genes
involved in the cholesterol biosynthesis pathway and 12/20
genes of the Rho GTPase family) were selected from
eQTLGen for analysis on the basis of having at least one SNP
strongly associated with their expression. The MR results
showed no evidence of an association between the SNPs in
these genes and MS severity. To further examine the causal
role of the cholesterol-dependent pathway in MS severity, we

selected 70 LDL-C–associated SNPs from GLGC. The MR
results revealed no evidence of a causal role for LDL-C onMS
severity. There was no evidence for heterogeneity or hori-
zontal pleiotropy in these MR analyses.

Figure 4, eTable 3, and eFigure 3 (links.lww.com/WNL/
D90) display the associations between the genetically
mimicked statin effects and MS severity through
cholesterol-dependent (LDL-C (see Table 1) and choles-
terol biosynthesis pathway) and cholesterol-independent
(Rho GTPases).

Figure 3 Forest Plot Showing the Associations Between the Genetically Mimicked Statins’ Biological Effects Through
Cholesterol-Dependent (Through LDL-C and Cholesterol Biosynthesis Pathway) and Cholesterol-Independent
(Through Rho GTPases) and MS Risk

Results from the Wald ratio (if the number of SNPs <2) or IVW are shown. Each point represents causal odds ratios of MS risk per one standard deviation
increase in LDL-C level or gene expression in bloodwith a 95% confidence interval error bars. The gray vertical line (null line) indicates no effect. Abbreviations:
LDL-C, low-density lipoprotein cholesterol; OR, odds ratio; FDR, false discovery rate; No. of SNPs, the number of genome-wide significant single-nucleotide
polymorphisms.
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Genetically Predicted HDL-C Associated With
Increased MS Risk but Not MS Severity
MR analysis was performed for each of lipid fractions (HDL-
C and TG) in turn to examine the causal link between lipids
(obtained from GLGC) and MS risk and severity (obtained
from IMSGC). Table 1 presents the number of SNPs, the
explained variance (R2), and the mean F-statistics for each lipid
trait, and the results of these analyses are displayed in Figure 5A,
eTable 4, and eFigure 4 (links.lww.com/WNL/D90).

For HDL-C, assessment through IVW showed evidence that
raised HDL-C is associated with an increase in MS risk. The
MR-Egger analysis results replicated this finding. The het-
erogeneity was significant (Cochran Q p-value <0.05).
However, because the MR-Egger intercept indicates a bal-
anced horizontal pleiotropy (p-value >0.05), this heteroge-
neity is not due to pleiotropic variants. Instead, it is possibly
due to a different SNP–HDL-C influence on MS risk medi-
ated through a different biological mechanism. The MVMR
analysis results after adjustment for LDL-C and TG remained
broadly consistent with the primary findings in the IVW es-
timator, which further supported the causality relationship
between HDL-C and MS risk. For TG, there was no evidence
for a causal relationship with MS risk found in the IVW, MR-
Egger, and MVMR estimator results. There was evidence of
heterogeneity; however, the MR-Egger intercept test did not
provide any evidence of horizontal pleiotropy in these results.

Because the HDL-C results were deemed significant (FDR<0.05)
after multiple testing corrections, the results were assessed for
replication using independent HDL-C data. The replication result

aligned with the initial results, further supporting the significant
causal association between HDL-C and MS risk (Table 2).

The IVW, MR-Egger, and MVMR methods were also imple-
mented to assess the lipid influence on MS severity. The results
revealed no evidence of HDL-C or TG having a causal role in
MS severity (Figure 5B, eTable 5, eFigure 5, links.lww.com/
WNL/D90). No evidence of heterogeneity or pleiotropy was
detected in this analysis.

Genetically Predicted MS Risk Not Associated
With Lipid Levels (Reverse Causation Analysis)
MR has advantages over cross-sectional observational studies
in that it can examine the possibility of reverse causation, that
is, the outcome has a causal effect on the risk factor. There-
fore, we sought to explore whether the liability to MS risk
would exert a change in lipid levels. To do so, we selected 118
and 119 SNPs of the 200 from the latest IMSGC that account
for almost 19% of theMS heritability. The mean F-statistics of
these SNPs was around 75. The IVW and MR-Egger results
revealed no causal link between the genetic determinants of
MS risk and HDL-C, LDL-C, or TG (Figure 5C, eTable 6,
eFigure 6, links.lww.com/WNL/D90). There was evidence of
significant heterogeneity; however, the MR-Egger intercept
test suggested no evidence of pleiotropy.

Discussion
The work presented in this study aimed to (1) explore the
potential effects of statins onMS (risk and severity) using MR
analysis conducted using SNPs in different gene regions that

Table 1 Sample Characteristics of the Lipid Traits

Lipid trait

Lipid-MS risk Lipid-MS severity

No. of SNPs R2 (%) Mean F-statistics No. of SNPs R2 (%) Mean F-statistics

HDL-C 118 9 124 83 6.9 139

LDL-C 99 11.6 159 70 7.7 156

TG 65 6.3 159 46 5.2 189

Abbreviations: HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; No. of SNPs, the number of independent genome-wide sig-
nificant single-nucleotide polymorphisms; TG, triglyceride.
R 2 (%), approximate variance explained by SNPs in the target trait that expressed in percentage.

Table 2 Replication Analysis Results for the Effect of RAC2 and HDL-C on MS Risk

Trait Method No. SNP OR (95% CI) p Value Q p value I2 (%) MR-Egger intercept MR-Egger intercept p value

RAC2 IVW 2 0.7 (0.51–0.96) 2.80E-02

HDL-Ca IVW 186 1.13 (1.03–1.23) 6.41E-03

MR Egger 186 1.22 (1.04–1.42) 1.63E-02 3.48E-01 3.6 −0.0034 2.64E-01

Abbreviations: CI, confidence interval; FDR, false discovery rate; HDL-C, high-density lipoprotein cholesterol; IVW, inverse‐variance weighted; No. of SNPs, the
number of independent genome-wide significant single-nucleotide polymorphisms; OR, odds ratio; Q p-value, Cochran Q statistic.
I2 (%) expresses the level of heterogeneity as a percentage.
a The 186 SNPs explained 11% of the variation in HDL-C, and the mean F-statistics for these SNP is 255.
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genetically mimic statins biological effects, (2) dissect the
causal nature of the association between blood lipid levels and
MS and explore whether genetic predisposition to increased
major plasma lipid fractions plays an etiological role in MS,
and (3) assess whether there is reverse causation between
lipid fractions and MS risk.

We used variants related to LDL-C, HMGCR, and other
downstream genes tomimic the cholesterol-dependent effects
of statins in relation to MS risk. The findings suggest that
stains have no effect on MS risk through mechanisms that

contribute to cholesterol level reduction. This result was
expected because LDL-C itself does not have a causal role
in MS risk in the current results and therefore using a drug
intended to lower cholesterol as a therapeutic strategy will
be an ineffective approach for MS prevention. Indeed, a
recent study suggests that the beneficial effects of sim-
vastatin in patients with MS are independent of serum
cholesterol.29 In that study, the authors reanalyzed the
phase 2 MS-STAT trial by applying structural equation
models to examine whether the beneficial effects of sim-
vastatin on reducing the rate of brain atrophy and slowing

Figure 4 Forest Plot Showing the Associations Between the Genetically Mimicked Statins’ Biological Effects Through
Cholesterol-Dependent (Through LDL-C and Cholesterol Biosynthesis Pathway) and Cholesterol-Independent
(Through Rho GTPases) and MS Severity

Results from the Wald ratio (if the number of SNPs <2) or IVW are shown. Each point represents causal betas of MS severity per one standard deviation
increase in LDL level or gene expression in blood with a 95% confidence interval. The gray vertical line (null line) indicates no effect. FDR, false discovery rate;
LDL-C, low-density lipoprotein cholesterol; No. of SNPs, the number of genome-wide significant single-nucleotide polymorphisms.
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deterioration are dependent on or independent of blood
cholesterol reduction.29

Because the cholesterol-dependent pathway showed no effect
on MS risk, our attention was directed to exploring the causal
link between Rho GTPases (i.e., mimicking the independent
cholesterol effect of statins) and MS risk. Interestingly, the
MR results showed that genetically predicted RAC2 expres-
sion was causally associated with reducing MS risk. Although
RAC2 survived multiple testing corrections at borderline, this
finding emerged as robust with sensitivity analysis and was
replicated in an independent eQTL data set (GTEx).

RAC2 is a Rho GTPase family member (eTable 1, links.lww.
com/WNL/D90) expressed mainly in blood cell lineages.30

RAC2 regulates multiple key processes of inflammatory re-
sponses, including dendritic cell migration, nicotinamide ad-
enine dinucleotide phosphatase oxidase activity, and T-cell
proliferation, migration, and differentiation to the Th1
subtype.31,32 In addition to immune activation, RAC2 is in-
volved in the induction of peripheral immune tolerance. It is
an essential component of restimulation-induced cell death,33

a necessary process in the self-limiting negative feedback
mechanism used to control T-cell expansion during ongoing
immune responses.34

Figure 5 Forest Plots Showing the Causal Link Between Lipids and MS

(A) Forest plot showing the associa-
tions between genetically predicted
lipid fractions and MS risk that repor-
ted as causal odds ratios ofMS risk per
one standard deviation increase in
each lipid fractions. (B) Forest plot
showing the associations between
genetically predicted lipid fractions
and MS severity that reported as
causal betas of MS severity per one
standard deviation increase in each
lipid fractions. (C) Forest plot showing
the associations between genetically
predicted MS risk and the lipid frac-
tions which presented as causal betas
per 1 unit higher log odds of MS risk.
The horizontal line represents 95%
confidence interval error bars. The
gray vertical line (null line) indicates no
effect. FDR, false discovery rate; IVW,
inverse-variance weighted; MVMR,
multivariable Mendelian randomiza-
tion; No. of SNPs, the number of
genome-wide significant single-nucle-
otide polymorphisms; OR, odds ratio.
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The exact mechanisms underlying the protective role for
RAC2 in MS risk has not yet been elucidated; however, an
association between RAC2 and MS has previously been
reported.32,35 For example, the expression level of RAC2 in
whole blood samples from patients with MS were found to be
low compared with those in healthy controls.35 This finding
supports the protective role of RAC2 on MS risk that we
observed in the current results.

Recent findings suggest that the RAC2 represents a pleio-
tropic effect of statin therapy. It has been shown that statins,
through inhibition of isoprenylation of Rac2, reduce oxidative
stress during sepsis and downregulate pentraxin 3 in vascular
cells during immune-inflammatory responses.36-38 Further-
more, statins have been shown to induce the expression of
several genes, including RAC2, that are involved in epidermal
growth factor signaling39; however, the mechanism by which
statins can induce RAC2 expression remains to be identified.

Taken together, the current results shed light on the role
RAC2 plays as genetic modifier of MS risk. In addition, the
results suggest that statins might mediate some beneficial
effects on MS risk through RAC2-regulated pathways.
Nonetheless, caution should be taken to avoid over-
interpretation of these findings. Although MR is a powerful
tool for investigating the causal relationship between an ex-
posure and an outcome, this approach cannot identify the
specific molecular mechanism(s) of the relationship or
confirm the hypothesis in this study regarding statins,
RAC2, and MS risk. In addition, the possibility that RAC2
reducing the risk of MS is independent of statin effect
cannot be ruled out. Thus, further studies are required to
identify the mechanism responsible for the observed causal
relationship between RAC2 and MS risk and to test the
hypothesis that statins reduce MS risk using a RAC2-
related mechanism.

We conducted a separate MR analysis to address the influence
of other lipid fractions (HDL-C and TG) on MS risk. The
results show that lifelong high HDL-C leads to an increased
MS risk. This finding is reproducible and robust in hetero-
geneity, pleiotropy, and reverse causation testing. By contrast,
genetically raised circulating TGs are unlikely to be associated
with the risk of developing MS.

Associations between lipids and MS risk have received in-
sufficient attention in epidemiologic studies. Surprisingly,
only one MR analysis on lipids and MS risk with GLGC and
IMSGC data, the same data sets used in this study, has been
published.40 The primary findings of that study demonstrated
that there is no causal role for genetically raised LDL-C and
TGs on MS risk, and there was only weak evidence of asso-
ciation between genetically raised HDL-C and MS risk (IVW
OR = 1.14, p-value = 0.057).40

The MR results of this study agree with the above study
regarding LDL-C and TGs but not HDL-C—we found robust

evidence of a HDL-C–MS risk association. The most notable
difference is the number of SNPs included in the analysis
model, which may explain why previous results differ from
current results regarding HDL-C. In the aforementioned
study, 68 SNPs were used to genetically proxy circulating
levels of HDL-C, and they explained about 1.6% of the vari-
ance in HDL-C levels. In this study, we used 118 SNPs to
genetically proxy circulating levels of HDL-C, and they
explained about 9% of the variance in HDL-C levels, clearly
more than the variances explained by the 68 SNPs in the
previous MR study. Thus, the MR model used here had suf-
ficient power to detect a causal association between HDL-C
and MS risk.

Despite several epidemiologic studies investigating the asso-
ciations between circulating lipid fractions and accrual of
disability in patients with MS, most of these studies used the
Expanded Disability Status Scale (EDSS) to measure the
disability and a few used MS severity scores. The difference
between these measures is that the MS severity score has
better metric properties that correct the EDSS for disease
duration.41

Reports on association between lipid fraction levels and
EDSS and MS severity are however inconsistent. Whereas
some studies report that worsening EDSS and MS severity
was associated with higher LDL-C and TGs but not
HDL-C,41,42 others showed the association between LDL-
C and TG levels and EDSS diminished after accounting for
confounding but remained significant for MS severity.42

Moreover, other studies found no significant association
between lipid fractions and MS severity or EDSS.43,44 In-
deed, confounding and reverse causality in observational
studies cannot be entirely ruled out. In this study, MR
approach was used, which limited the potential bias asso-
ciated with the presence of confounders.

No evidence of association was found between variants in
the gene regions that mimic the cholesterol-dependent and
cholesterol-independent pathways and MS severity. To
the best of our knowledge, the impact of statin treatment
on disability progression measured by the MS severity
score has not yet been studied. A handful of studies have
explored the impact of statins on disability progression
measured by the EDSS; however, the results were in-
conclusive. Whereas the phase 2 MS-STAT trial reports an
association,1 others found that statin treatment had no
effect on the EDSS score.45,46 The possible explanation for
this apparent contradiction is that the phase 2 MS-STAT
trial had a larger sample size, and the statin doses were
larger than the doses in the latter 2 studies, indicating
the possibility that higher doses of statins may be effective
to reduce the worsening of disability in patients with MS.
We note there are ongoing clinical trials, in particular
phase 3 MS-STAT2 trial [NCT03387670], which will
provide further insights into the effect of simvastatin on
disability.
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This study has several limitations. First, the major lipid frac-
tions (HDL-C, LDL-C, and TG) are each heterogeneous
groups of particles defined by differences in particle size,
density, apoprotein content, migration characteristics, and
relationships to disease, and these subfractions differ in their
risk profiles.47 This study was designed to investigate total
blood lipid levels and thus did not consider whether there
are subtypes of these fractions (e.g., LDL subparticles)47,48

that might play different roles in MS risk or severity. Sec-
ond, this study is unable to determine the underlying
mechanism(s) for the potential causal relationship between
RAC2 and MS risk; however, it is hoped that the findings
presented may motivate further basic science investiga-
tions. Third, we cannot exclude the possibility that the
absence of a causal link between statins and MS severity is
due to other pathways unrelated to Rho GTPases or
HMGCR inhibition, which we could not investigate here
because such pathways remain to be identified. Fourth, al-
though reverse causation MR was not performed to determine
whether MS severity is causally associated with alterations in
lipid levels, the MR-Steiger results indicated that the assumption
of causal directionality was accurate.

Finally, a further limitation of this work is that we used cross-
sectional MS severity GWASs, which may limit identifying a
causal link between lipid-related traits/statins andMS severity
for several reasons. First, cross-sectional MS severity GWAS
has not been validated longitudinally against long-term dis-
ability data and might not represent a stable measure of long-
term outcome.49 Second, the heterogeneity in MS severity
between individuals and within individuals over time is large,
so linear regression may not be applicable.49

Taken together, the MR findings reported here show that
RAC2 is a genetic modifier of MS risk. Because RAC2 has
been reported to mediate some of the pleiotropic effects of
statins, these data suggest that statins may reduce MS risk
through a cholesterol-independent pathway (that is, RAC2-
related mechanism(s)). Evidence from this study also sup-
ports the existence of a causal effect of HDL-C on MS risk.
However, no evidence of a causal effect of lipid-related traits/
genetically mimicking statins on MS severity was found.
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