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Machine learning‑based cluster 
analysis of immune cell subtypes 
and breast cancer survival
Zhanwei Wang 1, Dionyssios Katsaros 2, Junlong Wang 1,3, Nicholetta Biglio 4, 
Brenda Y. Hernandez 1, Peiwen Fei 5, Lingeng Lu 6, Harvey Risch 6 & Herbert Yu 1*

Host immunity involves various immune cells working in concert to achieve balanced immune 
response. Host immunity interacts with tumorigenic process impacting disease outcome. Clusters 
of different immune cells may reveal unique host immunity in relation to breast cancer progression. 
CIBERSORT algorithm was used to estimate relative abundances of 22 immune cell types in 3 
datasets, METABRIC, TCGA, and our study. The cell type data in METABRIC were analyzed for cluster 
using unsupervised hierarchical clustering (UHC). The UHC results were employed to train machine 
learning models. Kaplan–Meier and Cox regression survival analyses were performed to assess cell 
clusters in association with relapse‑free and overall survival. Differentially expressed genes by clusters 
were interrogated with IPA for molecular signatures. UHC analysis identified two distinct immune cell 
clusters, clusters A (83.2%) and B (16.8%). Memory B cells, plasma cells, CD8 positive T cells, resting 
memory CD4 T cells, activated NK cells, monocytes, M1 macrophages, and resting mast cells were 
more abundant in clusters A than B, whereas regulatory T cells and M0 and M2 macrophages were 
more in clusters B than A. Patients in cluster A had favorable survival. Similar survival associations 
were also observed in other independent studies. IPA analysis showed that pathogen‑induced 
cytokine storm signaling pathway, phagosome formation, and T cell receptor signaling were related 
to the cell type clusters. Our finding suggests that different immune cell clusters may indicate distinct 
immune responses to tumor growth, suggesting their potential for disease management.

Host immunity in tumor progression has reemerged as an important focus in cancer  research1. The new devel-
opment offers renewed hopes for novel anti-cancer therapies. Recent breakthrough in cancer immunotherapy, 
especially in the use of immune checkpoint inhibitors (ICI) to treat solid tumors, has invigorated researchers and 
oncologists in search for new therapeutic modalities to manage recurrent and metastatic malignancies which 
are otherwise resistant to available  treatment2–4. However, the success in ICI has not been achieved uniformly 
for all cancer sites as certain types of cancer do not respond well to the new immunotherapy. ICI has shown 
promising results in treating melanoma, lung cancer (small cell and non-small cell), renal cell carcinoma, and 
urothelial carcinoma with significant improvement in clinical  outcomes5–11, but the efficacy in breast cancer is 
 limited12,13. Hormone receptor-positive tumors which are the most common breast cancer do not respond well to 
immunotherapy; only triple-negative breast cancer (TNBC) appears to have limited  responses14. Thus, to better 
understand host immunity in breast cancer, we need to know not only the involvement of different immune and 
tumor cells, but also their interactions and responses to treatment.

Tumor microenvironment (TME) has been recognized to have significant impacts on cancer cell functions 
and activities and therefore affect tumor progression and metastasis. In addition to tumor cells and stromal 
components in TME, many local and infiltrating immune cells also play a crucial role in determining tumor 
growth and disease  outcome15–17. Analyzing their configurations and abundances in TME has emerged as 
important parameters in assessing tumor specimens, predicting disease outcomes, and developing treatment 
strategies. Studies have shown that infiltrating cytotoxic lymphocytes in TME are associated with the efficacy of 
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 immunotherapy17,18. TNBC patients with high tumor infiltrating lymphocytes (TIL) are more responsive to ICI, 
whereas those with hormone receptor-positive breast tumors and low TIL are less  responsive19. This discrepancy 
in TIL is explained in part by the differences in somatic mutations which not only reprogram cell signal pathways 
and metabolisms, but also generate tumor-associated and tumor-specific antigens (TAA, TSA)20,21. These altered 
or mutant molecules induce host immune response by attracting immune cell infiltration and congregation. 
Characterizing the abundance and composition of immune cell subtypes in tumor samples has shown values in 
disease prognosis and prediction of treatment  responses22,23.

Cell sorting by flow cytometry and tissue staining with immunohistochemistry have been used to assess TIL, 
but these methods have some limitations with respect to tissue accessibility, processing challenges, and subjec-
tive  evaluation24. Recently, computational approaches have been developed for in silico prediction of immune 
cell subtype abundances based on the readily available gene expression data on tissue transcriptomes. To assess 
if immune cell subtype clusters are useful for breast cancer prognosis, we analyzed transcriptomic data from 
several breast cancer datasets using the computation algorithm  CYBERSORT25. The results of our analyses are 
presented in this report.

Results
Clusters of immune cell subtypes
Figure 1 shows the relative abundances of each immune cell subtypes in METABRIC. Over half of the cell sub-
types had very low abundances. Cell subtypes with relatively high abundances were M0 macrophages (14.8%), 
M2 macrophages (11.5%), plasma cells (9.3%), M1 macrophages (8.2%), resting mast cells (8.0%), follicular 
helper T cells (6.2%), CD8 positive T cells (5.5%), gamma delta T cells (4.8%), activated NK cells (3.9%), and 
memory B cells (3.2%).

UHC analysis indicated two clusters of immune cell subtypes in METABRIC (Supplementary Fig. 1). One 
cluster (hcluster 1 or cluster A) was observed in 1113 patients (83.2%), and another (hcluster 2 or cluster B) 
was in 224 patients (16.8%). Differences in cell subtypes between the two clusters and their comparisons with 
normal breast tissues are shown in Table 1. Cell subtypes which were significantly different between the two 
clusters included memory B cells, plasma cells, CD8 positive T cells, resting memory CD4 T cells, activated NK 
cells, monocytes, M1 macrophages, and resting mast cells, which showed higher abundances in cluster A than 
cluster B. Cell subtypes with relative abundances higher in cluster B than cluster A were regulatory T cells and 
M0 and M2 macrophages.

Immune cell subtype abundances were very different between normal breasts and breast tumors (Table 1). 
Compared to normal breasts, less abundant cell types in breast tumors included naïve B cells, resting CD4 
memory T cells, resting NK cells, M2 macrophages, and resting mast cells; more abundant cell types in tumor 
samples were memory B cells, follicular helper T cells, gamma delta T cells, and M0 and M1 macrophages. Dif-
ferent abundances between clusters A and B tumor samples in comparison to normal breasts were plasma cells 
(higher in A, but lower in B), CD8 T cells (no difference in A, but lower in B), and activated NK cells (higher in 
A, but no difference in B).

Associations of immune cell clusters with clinical and pathological variables of breast cancer in METABRIC 
are shown in Table 2. Patients with ER negative tumors or invasive ductal carcinoma were more prevalent in 
cluster B than in cluster A, and patients in cluster B were also more likely to develop recurrent disease or die. 

Figure 1.  Distributions of immune cell subtypes in METABRIC.
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As expected, patients in cluster A had higher immune cytolytic activity or CYT scores compared to those in 
cluster B. Disease stage, tumor grade, age at diagnosis, PR status, and ERBB2 (HER2) overexpression were not 
significantly different between the two cell clusters. The cell cluster variable was significantly associated with 
relapse-free and overall survival (Fig. 2, METABRIC). These associations remained statistically significant in Cox 
proportional hazards regression models after clinical and pathological variables were adjusted in the analysis, 
including age at diagnosis, disease stage, tumor grade, tumor histology, and hormone receptor status (Table 3).

Immune cell cluster modeling
We used random forest (RF) to build a prediction model for cell subtype clusters. The RF model was trained 
with the UHC results in 60% of the METABRIC data, and the model fit well to the UHC clusters with 100% 
and 98% AUC in the training and testing sets, respectively (Supplementary Fig. 2). Although DNN, elastic net, 
and stepAIC models were also matched well to UHC, the AUC of RF in the training set was higher than that in 
other three models. Thus, we used the RF model to predict immune cell clusters in the Turin study and TCGA. 
The RF predicted cell clusters were analyzed for its associations with patient survival. Similar associations with 
relapse-free and overall survival were found in the Turin study (Fig. 2), i.e., cluster B associated with poor sur-
vival, although the associations were not statistically significant after adjusting for clinicopathological variables 
(Table 3). Associations between patient survival and immune cell clusters were also observed in TCGA. Patients 
with immune cell subtypes in cluster B had higher risks for disease recurrence and death compared to those with 
cell subtypes in cluster A (Fig. 2). The survival associations in TCGA were statistically significant after adjust-
ing for clinicopathological variables (Table 3). No associations between immune cell clusters and ER status or 
histological types were observed in these validation studies (data not shown).

The importance of each cell type in the RF model was evaluated with mean decreases in accuracy and the 
Gini coefficient. The top 5 important cell types were M0 and M2 macrophages, CD8 positive T cells, activated 
NK cells, and resting mast cells (Supplementary Fig. 3). The stepAIC analysis showed a 19-cell model, and the 
elastic net suggested a 13-cell regression (Supplementary Table 1). Twelve cell types were common in both 
models, including naïve B cells, memory B cells, plasma cells, CD8 positive T cells, resting memory CD4 T 
cells, activated memory CD4 T cells, regulatory T cells, activated NK cells, M2 macrophages, resting mast cells, 
activated mast cells, and neutrophils.

IPA analysis on DEGs
There were 16,621 genes overlapping between the transcriptomic data of METABRIC and TCGA. IPA was 
performed on the 268 DEGs in TCGA (absolute log2 fold change at 1.2 or larger for cluster B versus cluster A; 
BH adjusted P < 0.05) (Fig. 3A). Since the expression data in METABRIC had a smaller range and the median 

Table 1.  Two clusters of immune cell subtypes in METABRIC and immune cell subtypes in GTEx breast. 
*Mann–Whitney nonparametric test; bold p values < 0.002273 (0.05/22).

Immune cell subtype
Median % in Cluster A 
(n = 1113)

Median % in Cluster B 
(n = 224)

Median % in GTEx 
(n = 269)

P value* Cluster A 
versus Cluster B

P value* Cluster A 
versus GTEx

P value* Cluster B 
versus GTEx

B cells naïve 0.50 0.49 8.10 0.9907 4.4E−85 1.0E−48

B cells memory 3.44 2.08 0.00 5.8E−10 6.4E−99 3.9E−51

Plasma cells 10.10 4.86 6.49 4.1E−22 6.1E−07 0.0084

T cells CD8 6.33 2.71 7.41 4.7E−29 0.0092 2.7E−26

T cells CD4 naïve 0.00 0.00 0.00 0.0922 3.1E−13 1.7E−07

T cells CD4 memory 
resting 2.80 0.00 9.47 3.3E−08 1.2E−42 2.5E−45

T cells CD4 memory 
activated 0.00 0.00 0.00 0.0002 7.2E−26 1.8E−12

T cells follicular helper 6.22 6.13 2.68 0.1943 1.3E−26 3.0E−13

T cells regulatory Tregs 0.00 1.28 0.00 3.4E−15 2.8E−05 2.1E−22

T cells gamma delta 4.86 4.25 0.00 0.1071 4.0E−109 4.6E−82

NK cells resting 0.00 0.00 1.92 5.1E−13 7.4E−114 5.7E−26

NK cells activated 4.32 1.70 2.09 5.4E−33 9.9E−25 0.011

Monocytes 1.03 0.00 3.16 5.5E−13 2.8E−32 2.4E−40

Macrophages M0 12.40 36.00 0.00 8.5E−107 8.7E−66 2.0E−76

Macrophages M1 8.52 6.46 1.65 3.1E−09 1.6E−86 3.9E−33

Macrophages M2 10.90 15.40 23.79 1.5E−14 7.2E−65 3.5E−26

Dendritic cells resting 0.00 0.00 0.00 1.1E−15 3.4E−22 0.29

Dendritic cells activated 0.00 0.00 0.00 0.8621 5.8E−07 0.0019

Mast cells resting 8.98 3.93 11.72 2.3E−27 0.0001 5.6E−31

Mast cells activated 0.00 0.00 0.00 2.6E−12 0.0074 5.2E−14

Eosinophils 0.00 0.00 0.00 0.0364 6.3E−15 0.0023

Neutrophils 0.00 0.00 0.00 0.0605 2.5E−21 2.7E−06
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fold change was only 1.001 (IQR: 0.996–1.184), we used the absolute log2 fold change at 0.07 as a threshold 
and selected 306 DEGs for IPA analysis. Volcano plot showed the selected DEGs in METABRIC and TCGA 
(Fig. 3B,C). Graphical summary of IPA analysis on cell cluster associated DEGs showed that the transcription 
profiles were similar between METABRIC and TCGA, with most of the signal pathways being downregulated 
(Supplementary Fig. 4). The top 5 common signal pathways predicted by IPA in METABRIC and TCGA were 
pathogen induced cytokine storm signaling pathway, phagosome formation, T cell receptor signaling, T helper 
1 pathway, and macrophage classical activity, all of which were downregulated (Fig. 4A). The T cell receptor 
signaling showed the similar patterns of network in METABRIC and TCGA (Fig. 4B,C).

Discussion
We used CIBERSORT to estimate the relative abundances of 22 immune cell subtypes in breast cancer and 
normal breast tissues and found significant differences in cell types between tumor and normal tissues. The 
deconvolution results on cell subtypes were further analyzed in breast cancer (METABRIC) with unsupervised 
hierarchical clustering, and the analysis suggested two distinct clusters of immune cell subtypes associated with 
different survival outcomes of breast cancer. These survival associations were replicated independently in our 
study (Turin) and TCGA when using a random forest model which was trained with the UHC classifications in 
METABRIC. The survival associations with immune cell clusters appeared to be independent from most known 

Table 2.  Associations between clinicopathological variables in METABRIC and immune cell clusters. 
*Student’s T-test, Pearson’s Chi-squared test, or Fisher’s exact test where appropriate. Significant values are in 
bold.

Clinicopathological variable

Immune cell subtype clusters

p value*Cluster A, n = 1113 (83.2%) Cluster B, n = 224 (16.8%) Total n = 1337

Mean age (SD) 59.4 (13.1) 59.8 (13.2) 59.4 (13.1) 0.67

Age group 0.91

 < 60 years 556 (50.0) 111 (49.6) 667 (49.9)

 ≥ 60 years 557 (50.0) 113 (50.4) 670 (50.1)

Stage 0.41

 0 2 (0.2) 1 (0.6) 3 (0.3)

 1 2781 (33.5) 56 (32.2) 334 (33.2)

 2 464 (55.8) 105 (60.3) 569 (56.6)

 3 80 (9.6) 12 (6.9) 92 (9.2)

 4 7 (0.8) 7 (0.7) 0

Grade 0.11

 1 89 (8.3) 13 (6.0) 102 (7.9)

 2 405 (37.7) 70 (32.4) 475 (36.8)

 3 580 (54.0) 133 (61.6) 713 (55.3)

Histology 0.006

 Ductal 830 (75.1) 191 (86.0) 1021 (76.9)

 Lobular 96 (8.7) 10 (4.5) 106 (8.0)

 Mixed 128 (11.6) 16 (7.2) 144 (10.9)

 Others 51 (4.6) 5 (2.3) 56 (4.2)

ER 0.006

 Positive 799 (71.8) 140 (62.5) 939 (70.2)

 Negative 314 (28.2) 84 (37.5) 398 (29.8)

PR 0.16

 Positive 529 (47.5) 95 (42.4) 624 (46.7)

 Negative 584 (52.5) 129 (57.6) 713 (53.3)

HER2 0.24

 Positive 168(15.1) 27(12.1) 195(14.6)

 Negative 945(84.9) 197(87.9) 1,142(85.6)

Relapse 0.003

 No 677(60.9) 112(50.0) 789(59.1)

 Yes 435(39.1) 112(50.0) 547(40.9)

Death 0.001

 No 522(46.9) 78(34.8) 600(44.9)

 Yes 591(53.1) 146(65.2) 737(55.1)

Cytolytic activity < 0.0001

 CYT score 6.9 (0.7) 6.3 (0.6) 6.8 (0.8)
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clinical and pathological variables of breast cancer, suggesting the importance of host immunity in determining 
tumor progression and host-tumor interaction. The machine learning-based cell cluster analyses split the tumor 
samples into large (83%) and small (17%) groups, which appears to match with the general trend of breast cancer 
outcome where most patients have a favorable prognosis (> 80%).

Previously, Ali et al. performed hierarchical clustering analysis on immune cell subtypes in 10,988 tumor sam-
ples from 56  studies26. Their analysis showed 7 clusters in 6071 samples. The authors concluded that there were 

Figure 2.  Kaplan–Meier curves on relapse-free survival (RFS) and overall survival (OS) in METABRIC, Turin, 
and TCGA.
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Table 3.  Associations between immune cell subtype cluster and breast cancer survival. *Adjusted for age, 
stage, grade, ER, PR, and histology. # Tumor grade not included in multivariate analysis. Significant values are 
in bold.

Dataset

Relapse-free survival Overall survival Relapse-free survival* Overall survival*

HR 95%CI P HR 95%CI P HR 95%CI P HR 95%CI P

METABRIC 0.001 < 0.001 0.009 0.011

 Cluster A 1 1 1 1

 Cluster B 1.42 1.15–1.74 1.60 1.28–2.00 1.38 1.08–1.76 1.37 1.08–1.75

Turin study 0.028 0.114 0.154 0.358

 Cluster A 1 1 1 1

 Cluster B 1.87 1.07–3.27 1.74 0.85–3.47 1.53 0.85–2.73 1.40 0.68–2.89

TCGA# 0.072 0.017 0.002 0.004

 Cluster A 1 1 1 1

 Cluster B 1.54 0.96–2.47 1.63 1.09–2.43 2.24 1.34–3.74 1.93 1.24–3.01

Figure 3.  (A) Venn diagram of total available genes and DEGs in METABRIC and TCGA; (B) Volcano plot of 
DEGs identified in METABRIC; (C) Volcano plot of DEGs identified in TCGA. FC: fold change.
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substantial variations in immune cell subtypes in TME and that tumor characteristics might determine the cell 
type variability. A recent study by Tekpli et al.27 reported 3 clusters of immune infiltration based on the expression 
of 509 genes, and the clusters were correlated with lymphoid and myeloid infiltration from low to high, with high 
and low infiltration clusters associated with favorable survival compared to intermediate infiltration. Since the 
study used a different method to determine tumor immunity, we cannot directly compare the clustering results 

Figure 4.  (A) Comparison of IPA analysis between METABRIC and TCGA using the ingenuity pathway 
analysis (IPA, www. qiagen. com/ ingen uity); (B) T cell receptor signaling predicted IPA in METABRIC; (C) T cell 
receptor signaling predicted by IPA in TCGA.

http://www.qiagen.com/ingenuity
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between the two studies, but both studies indicate that breast cancer may be classified into immunity-based 
subtypes which have clinical implications in predicting disease prognosis and treatment response.

Going through the cell types in each cluster, we found that memory B cells, plasma cells, CD8 positive T cells, 
resting memory CD4 T cells, activated NK cells, monocytes, M1 macrophages, and resting mast cells were signifi-
cantly higher in the favorable cluster (cluster A), whereas regulatory T cells and M0 and M2 macrophages were 
substantially higher in unfavorable cluster (cluster B). These differentiating cell types appear to be consistent with 
the current understanding that hot or immune-inflamed TME, which has favorable prognosis and is responsive 
to immunotherapy, is infiltrated with cytotoxic T cells (CD8 positive T cells), NK cells, and M1 macrophages, 
whereas cold TME is filled with immunosuppressive lymphocytes like regulatory T cells and tumor-associated 
macrophages (TAM), M0 and  M228. NK cells and CD8 positive T cells are known to be able to suppress tumor 
growth through their cytotoxic  activities28,29. Furthermore, CD4 memory T cells and M1 microphages facilitate 
the effects of NK cells and cytotoxic T  cells30. Conversely, M2 macrophages and regulatory T cells inhibit the 
activities of CD4 memory and CD8 cytotoxic T cells,  respectively31.

We analyzed the cell type data by focusing on immune cells in clusters instead of individual cells because host 
immunity is complex and involves different mechanisms and diverse cell lineages which give rise to innate versus 
adaptive, local versus systemic, and cellular versus humoral immunities. These distinct immune activities are 
carried out by a variety of cell types which work in concert to mount an appropriate immune  response32. Thus, 
analyzing any single cell or a few cell types may not reveal enough insights into the interplay between tumor 
immunogenicity and host immune response as well as the potential impact of their interaction on tumor growth 
and disease  outcome33. Ali et al.26 assessed individual immune cell subtypes in relation to breast cancer survival 
by ER status, and the large study found that only two cell types showed consistent associations with survival 
outcomes, regulatory T cells and M2 macrophages, both of which were associated with poor survival. Although 
multiple cell type clusters were found in that study, the survival associations with some cell types were generally 
consistent with those observed in our cluster analysis. For example, Ali et al.26 found favorable survival associa-
tions with monocytes and memory B cells in ER positive tumors and with CD8 positive T cells in ER negative 
tumors, as well as unfavorable survival associations with M0 macrophages for ER positive tumors.

TCR stimulation is a fundamental step in most T cell responses. TCR signaling is important for many aspects 
of T cell regulation, including development, differentiation, activation, proliferation, and survival. Dysregulation 
of TCR signaling can result in allergy and autoimmune  diseases34. The molecular mechanism of TCR suppression 
underlying the link between immune cells in cluster B and breast cancer progression remains to be elucidated.

One limitation of our study is that we cannot assess the temporal and spatial variations of immune cell sub-
types in tumor specimens, which is known to play an important role in determining the effect of host immunity 
and host-immune interplay in addition to cell  types35,36. Anti-cancer therapies are known to have significant 
impacts on TME and immune cell  infiltration37. Our analysis of immune cell subtypes in cluster only reflects 
the cell composition at the time of initial mastectomy which may be considered as a baseline status of TME that 
is different from those of post-surgery and during systemic anti-cancer treatment. The other limitation is that 
our deconvolution was not based on the entire 547 reference genes in LM22. Although not all signature matrix 
genes are required for deconvolution, the algorithm’s performance is improved with the presence of more sig-
nature  genes38.

Conclusions
This study applied different machine learning methods to analyze immune cell subtypes in clusters and found 
two distinct clusters in breast cancer associated with survival outcomes. The survival associations were replicated 
independently in two additional datasets. Immune cell subtypes which were more abundant in the cluster of 
favorable prognosis included memory B cells, plasma cells, CD8 positive T cells, resting memory CD4 T cells, 
activated NK cells, monocytes, M1 macrophages, and resting mast cells, and those less abundant were regula-
tory T cells, and M0 and M2 macrophages. The immune cell clusters associated with breast cancer progression 
may involve suppression of pathogen induced cytokine storm signaling pathway, phagosome formation, T cell 
receptor signaling, T helper 1 cell pathway, and macrophage classical activity pathways. Our finding suggests 
that immune cell clusters in primary breast cancer may be an important parameter to consider, in addition to 
individual cell types, when predicting disease outcome and planning treatment strategy.

Methods
Study design and participants
Two online datasets on transcriptome, METABRIC and TCGA 39,40, were used for analysis together with their 
clinical and follow-up information. METABRIC, downloaded from cBioPortal (https:// www. cbiop ortal. org/)41,42, 
has 1903 breast tumor samples with gene expression data on 24,368 genes measured by a microarray chip from 
Illumine (Illumina HT-12 v3). The log2 intensity values were used for cell type deconvolution. Clinical data and 
survival information available for analysis in METABRIC include age at diagnosis, disease stage, tumor grade, 
histological type, estrogen receptor (ER) status, progesterone receptor (PR) status, ERBB2 (HER2) overexpres-
sion, disease recurrence, death, and follow-up time. TCGA RNA-seq data, expressed as fragments per kilobase of 
exon per million mapped fragments (FPKM), on 1075 breast tumor samples were downloaded from the Genomic 
Data Commons (GDC) data portal (https:// portal. gdc. cancer. gov/)43. The corresponding clinical information 
was downloaded from cBioPortal.

An independent dataset of tumor transcriptomes from 204 breast cancer patients was available from a previ-
ous study (Turin) of ours described in detail  elsewhere44. In brief, we recruited 348 patients who were diagnosed 
with primary breast cancer and underwent mastectomies in the University Hospital at University of Turin in 
 Italy45. Fresh tumor samples were collected during surgery and snap-frozen in liquid nitrogen immediately 

https://www.cbioportal.org/
https://portal.gdc.cancer.gov/
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after resection. Total RNA was extracted, of which 205 were selected for microarray analysis using the Illumina 
Expression BeadChip (HumanRef-8 v1). The raw expression data (~ .idat) generated by the Illumina microar-
ray assay were processed using GenomeStudio V2011.1. Data was normalized using the function neqc() in R 
package limma, This function performs normexp background correction using negative controls, then quantile 
normalizes and finally log2 transforms. The normalized data was ready for CIBERSORT deconvolution of 22 
immune cell  types24,46. Transcriptomic data on normal breast tissues were downloaded from the GTEx Portal 
(https:// www. gtexp ortal. org/ home/ datas ets) which contains the transcripts per million (TPM) of RNA-seq data 
on 459 tissue specimens (GTEx Analysis V8).

CIBERSORT estimates the relative abundances of immune cell subtypes in tissue samples. The computation 
algorithm deconvolutes 22 immune cell subtypes from tumor transcriptomes using reference LM22. LM22 
includes the expression of 547 reference genes, of which 475 were available in METABRIC, 444 in the Turin 
study, 537 in TCGA, and 527 in the GTEx data. CIBERSORT interrogates tumor transcriptome for immune 
cell subtypes based on the assumption that tissue samples contain mixed cell  populations38. To evaluate the 
validity of cell type deconvolution in METABRIC and TCGA, we selected 100 permutations as recommended 
to achieve statistical rigor without applying quantile normalization. Tumor samples with deconvolution results 
not significantly different from the null hypothesis (p > 0.05) were excluded from final analysis. The null hypoth-
esis assumes no immune cell subtypes present in a tumor sample based on LM22. After removing the samples 
without significance, we obtained 1337 samples from METABRIC, 848 samples from TCGA, and 269 samples 
from GTEx qualified for cell type analysis.

Model development and statistical analysis
We performed unsupervised hierarchical clustering (UHC) analysis on the immune cell subtypes from META-
BRIC using the ‘hclust’ function with ‘complete’ selection in R. Based on the UHC results, we created a dichoto-
mous variable on cell subtype clusters. Differences in immune cell subtypes between clusters were compared 
using the Mann–Whitney nonparametric U test. Associations of cell subtype clusters with clinical and pathologi-
cal variables were analyzed with the Chi-square test. Kaplan–Meier survival curves and log-rank test were used 
to evaluate survival differences between patients in different immune cell clusters. Cox proportional hazards 
regression analysis was performed to determine survival associations with immune cell clusters while adjusting 
for clinicopathological variables. Two-side p values < 0.05 were considered statistical significance. All the analyses 
were performed using R (version 4.0.5).

To predict cell subtype clusters, we tested 4 machine learning models, including random forest (RF), deep 
neural network (DNN), stepAIC, and elastic net. The models were initially trained based on the UHC results 
in 60% of METABRIC and then tested in the remaining 40% of the data. METABRIC data were randomly split 
into training and testing sets. The RF model was developed using the ‘randomForest’ package in R with 500-tree 
selection. The importance of immune cell subtypes in the model was evaluated by mean decrease in accuracy and 
the Gini coefficient. The DNN model was trained using the CPU implementation of TensorFlow (version 1.14.0) 
for 2000 steps with a 7 × 7 hidden layer in Python (version 3.6.13). Regression models of stepAIC and elastic net 
were developed using the “MASS” and “glmnet” packages in R (version 4.0.3)47. Model comparison was made 
between UHC and each of the 4 machine learning methods using the “pROC” package in R which calculates the 
receiver operating characteristic (ROC) curves and area under the curve (AUC)48. DeLong’s test was used for 
AUC comparison between models. We also evaluated immune cytolytic activity by calculating the CYT  score49.

Wilcoxon test was performed for the differentially expressed genes (DEG) analysis between cluster A and 
cluster B (cluster B vs. cluster A) in METABRIC and TCGA. P values were adjusted for the Benjamin-Hochberg 
correction (BH). The ingenuity pathway analysis (IPA) (www. qiagen. com/ ingen uity) was performed on the 
significant DEGs to explore the signal pathways enriched in cell clusters.

Data availability
The TCGA, METABRIC, and Transcriptomic data on normal breast tissues are available in the following website: 
https:// portal. gdc. cancer. gov; https:// www. cbiop ortal. org; https:// www. gtexp ortal. org/ home/ datas ets, respec-
tively. All additional information including Turin data required to reproduce our results is available from the 
corresponding author upon request.
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