
Vol.:(0123456789)1 3

DARU Journal of Pharmaceutical Sciences (2023) 31:155–171 
https://doi.org/10.1007/s40199-023-00471-1

RESEARCH ARTICLE

COVID‑19: A novel holistic systems biology approach to predict its 
molecular mechanisms (in vitro) and repurpose drugs

Marzieh Sameni1,2 · Seyed Amir Mirmotalebisohi1,2 · Sadaf Dadashkhan3 · Sepideh Ghani1,2 · Maryam Abbasi4,5 · 
Effat Noori2 · Hakimeh Zali6,7

Received: 1 July 2022 / Accepted: 13 July 2023 / Published online: 19 August 2023 
© The Author(s), under exclusive licence to Tehran University of Medical Sciences 2023

Abstract
Purpose COVID-19 strangely kills some youth with no history of physical weakness, and in addition to the lungs, it may 
even directly harm other organs. Its complex mechanism has led to the loss of any significantly effective drug, and some 
patients with severe forms still die daily. Common methods for identifying disease mechanisms and drug design are often 
time-consuming or reductionist. Here, we use a novel holistic systems biology approach to predict its molecular mechanisms 
(in vitro), significant molecular relations with SARS, and repurpose drugs.
Methods We have utilized its relative phylogenic similarity to SARS. Using the available omics data for SARS and the fewer 
data for COVID-19 to decode the mechanisms and their significant relations, We applied the Cytoscape analyzer, MCODE, 
STRING, and DAVID tools to predict the topographically crucial molecules, clusters, protein interaction mappings, and 
functional analysis. We also applied a novel approach to identify the significant relations between the two infections using 
the Fischer exact test for MCODE clusters. We then constructed and analyzed a drug-gene network using PharmGKB and 
DrugBank (retrieved using the dgidb).
Results Some of the shared identified crucial molecules, BPs and pathways included Kaposi sarcoma-associated herpesvirus 
infection, Influenza A, and NOD-like receptor signaling pathways. Besides, our identified crucial molecules specific to host 
response against SARS-CoV-2 included FGA, BMP4, PRPF40A, and IFI16.
Conclusion We also introduced seven new repurposed candidate drugs based on the drug-gene network analysis for the 
identified crucial molecules. Therefore, we suggest that our newly recommended repurposed drugs be further investigated 
in Vitro and in Vivo against COVID-19.
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Introduction

Disease pandemics usually spread to humans due to the 
human-to-human infection transition. To date, several lethal 
outbreaks have been recorded in the human medical history 
of human societies. They usually have left bitter memories 

of deaths and organ injuries, including Ebola, Zika, SARS, 
H7N9, Spanish Flu, and Hong Kong Flu [1, 2]. The recent 
outbreak of COVID-19 has had a devastating impact on 
health systems worldwide, affecting almost all aspects of 
human life. A vial agent called SARS-CoV-2 causes the 
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disease (Severe Acute Respiratory Syndrome Coronavirus 
type 2) [3].

Coronaviruses (CoVs) are an extended family of viruses 
leading to various diseases ranging from the common cold 
to severe respiratory tract infections [4]. Viral sequencing 
projects have shown that SARS‐CoV‐2 belongs to the beta-
coronavirus (βCoV) as SARS‐CoV and MERS‐CoV do. 
SARS‐CoV‐2, in particular, shares a highly similar sequence 
to SARS‐CoV [5]. SARS-CoV-2 genome analysis has indi-
cated that it has about ninety percent sequence proximity 
with the SARS-CoV [6]. Given the high phylogenetic simi-
larity, identifying the underlying molecular mechanisms 
of each of these two evolutionary relatives may contribute 
to predicting the unknown mechanisms of the other virus. 
However, compared to COVID-19, more high-throughput 
information is available for the SARS-CoV molecular mech-
anisms in omics databases.

Systems biology science has recently boosted our knowl-
edge of the protein interactions mediating many illnesses 
[7]. Different biological networks are used to decipher the 
molecular pathology of diseases and drug side effects [8, 
9]. Various protein–protein interaction networks (PPI) have 
contributed to predicting the molecular mechanisms under-
lying different diseases and even repurposing drugs and their 
side effects [9–12]

Some researchers have applied PPI networks to elucidate 
underlying molecular mechanisms of diverse human dis-
eases. New omics techniques have provided high-throughput 
genomics and proteomics data. The high output data have 
contributed to gaining insight into various molecular mech-
anisms mediated in the pathogenesis of illnesses. Shared 
proteins among some related diseases have recently been 
applied to heighten our perception and insights into the dis-
ease's molecular mechanisms in more detail [13]. The new 
insights may clarify the crucial proteins that may presumably 
be applied to identify new prophylactic treatments, diagnosis 
methods, and even new drug designs. To gain a better insight 
into the biochemical pathways and molecular mechanisms 
altered by SARS-CoV-2 in human host cells, we analyze the 
host response molecular mechanism to SARS-CoV through 
PPINs. Construction and analysis of Protein − protein Inter-
action Networks (PPINs) are usually considered valuable 
tools to map out biological processes, biochemical pathways, 
and molecular functions that can be considered biological 
functions of the intermediating protein complexes of the dis-
ease [14]. PPI networks could be applied in deciphering the 
molecular pathology underlying diseases [15].

Drug design methods employ a variety of in silico tech-
niques to facilitate and expedite the discovery of effective 
treatments. Applying docking techniques (global energy 
scores (Kcal/mol)) and molecular dynamics is a typical 
strategy. In the relatively short period since SARS-CoV-2 
first emerged, some research has sought to offer therapeutic 

candidates against its essential proteins, such as focusing on 
SARS-CoV-2 3Clpro and RdRp [16] or the affinity of spike 
protein and its receptor [17]. Drug-gene network analysis is 
another in silico strategy for introducing drug candidates, 
and various researchers have used it to suggest drug candi-
dates for disorders [17, 18].

In the present study, we attempt to achieve two principal 
goals. First, we focus on analyzing the molecular mechanism 
of the host response in SARS and COVID-19 diseases. We 
first focus on determining the SARS host response molecu-
lar mechanisms by deciphering SARS and COVID-19 pro-
tein–protein interaction clusters. Considering the varieties 
of clinical manifestations between the two Coronaviruses 
(SARS-CoV and SARS-CoV-2) as the second goal, we then 
evaluate the significance of the relationships between both 
networks of SARS and COVID-19 using comparative statis-
tical methods. Based on the shared proteins between clusters 
of each disease network and the other disease, we will pre-
dict the shared molecular mechanisms that are probably the 
essential elements of the molecular pathogenesis in the two 
infections. Applying the novel approach will likely benefit 
us in gaining a more in-depth insight into the biological pro-
cesses and molecular mechanisms mediating the two viral 
pathogenesis. We will also focus on the non-shared crucial 
molecules and their functions to predict the molecular mech-
anisms only specific to each infection. |Using this method, 
we will identify the molecular mechanisms responsible for 
partially different manifestations of the two infections. Deci-
phering the molecules and shared signaling underlying both 
viral infections may also help other researchers repurpose 
new drug candidates or design new drugs against the newly 
identified targets of COVID-19 or its symptoms. Therefore, 
based on the crucial genes, we will repurpose some new 
medications to possibly prevent the severe consequences of 
the host response to SARS-CoV-2 in some patients.

Methods

Three separate microarray datasets for respiratory cell lines 
infected with SARS-CoV were initially identified to identify 
differentially expressed genes (DEGs). The collected RNA-
Seq data from two separate respiratory cell lines were used 
for COVID-19 data. P-value and fold change (p-value < 0.05 
and |Log FC|> 0.5) filtered the up-and-down-regulated 
DEGs.

Data gathering for COVID‑19

Because COVID-19 is a relatively novel infection, omics 
data on it is still scarce in omics databases. Daniel Blanco-
Melo et al.'s released research on respiratory infections 
was used to extract the COVID-19 data evaluated. This 
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investigation used two epithelial cell lines from the respira-
tory system of the lungs (NHBE and A549) as in-vitro study 
models [19].

SARS-CoV-2 was infected into A549 cells at a multiplic-
ity of infection (MOI) of 0.2 virus particles per cell for 24 h. 
Furthermore, NHBE cells were infected with SARS-CoV-2 
at an MOI 2 for 24 h. The TruSeq RNA Library Prep Kit 
v2 was used to extract total RNA from infected and mock 
cells and create RNAseq poly-adenylated RNA libraries 
(Illumina).

The Illumina NextSeq 500 platform was used to sequence 
the cDNA libraries (www. illum ina. com). Each cell line's raw 
data was examined independently to identify differentially 
expressed genes (DEGs), then sorted up and down. The 
filtering criteria in this study were p-value 0.05 and |Log 
FC|> 0.5. The findings of our research concern respiratory 
epithelial cells, not immune cells.

Data gathering for SARS

We searched the NCBI Gene Expression Omnibus (GEO) 
and the European Array Express databank for differentially 
expressed gene data (DEGs). Compared to data acces-
sible for other illnesses, SARS omics data was scarce in 
databanks.

One probable explanation is that, compared to other epi-
demics, the SARS disease was quickly contained and did not 
last long in communities. Three datasets were discovered 
and chosen for further analysis (GSE33267, GSE37827, and 
GSE47960) [20–22].

Calu-3 cells (a lung cancer cell line) were infected with 
icSARS-CoV in GSE33267 and GSE37827 (Mitchell et al., 
2013). In addition, HAE cells (human airway epithelium 
cell line) were infected with SARS-CoV in GSE47960 [20].

Analysis of differentially expressed genes 
for SARS

The 60-h early post-infection time point was studied, which 
was common throughout the three SARS datasets. The ge-
Workbench 2.6.0 software was used to filter, standardize, 
and analyze (t-Test) the three datasets. P-value and fold 
change criteria (p-value 0.05 and |Log FC|> 0.5) were used 
to filter DEGs. We then used the online Venn diagram tool 
(http:// bioin forma tics. psb. ugent. be) to find the DEGs shared 
among the three dataset outcomes for the early time-point 
(60 h post-infection).

Here, We identified the DEGs related to 24 h post-infec-
tion, comparing the infected state (24 h post-infection) and 
control situation (mock-infected 24 h post-infection), and 
determined the Up downregulated DEGs in both diseases. 

Since the number of shared DEGs between the diseases 
was low and insufficient to construct the network for 24 h 
post-infection, we used raw data from the early 60 h after 
infection, which was shared among the SARS datasets. We 
chose the 60-h post-infection data since it was available in 
all three SARS-related datasets, and it also showed the most 
significant infection impact (among the shared time points 
of the available datasets) and had the highest pick in Sims 
et al. graph.'s curves [20].

Note that, among the three hypothetical stages, the 60-h 
and 24-h post-infection time points are both considered 
very early in viral infection with SARS-CoV-2. Moreover, 
patients may show clinical manifestations even after 14 days 
post-infection and continue in the first stage for around five 
days [16, 23]

PPI network data sources

The protein–protein interaction maps were retrieved from 
three protein interaction databases and then merged. We 
only mapped the proteins available within our lists. First, our 
protein lists were mapped using the STRING tool (https:// 
string- db. org/) [24]. The Human Integrated Protein–Protein 
Interaction rEference database (HIPPIE) (http:// cbdm. uni- 
mainz. de/ hippie/) was used to map the interactions. The 
interactions with confidence scores of more than 0.7 were 
selected to ensure the reliability of interactions between pro-
teins [25]. BisoGenet, the Cytoscape plugin, was also used 
(http:// bio. cigb. edu. cu/ bisog enet- cytos cape/) to retrieve the 
protein interactions available in the Human Protein Refer-
ence Database (HPRD) for the list [26].

PPI network construction

To construct the PPI networks, up and down-regulated data 
for each disease were merged to construct the SARS and 
COVID-19 PPIs separately. The three mapped interactions 
(integrated scores > 0.7 in STRING and HIPPIE) were vis-
ualized using Cytoscape (version 3.8.0) and then merged 
using Cytoscape [27]. The edges representing associations 
(without direction) were considered interactions between 
different proteins in both PPI networks.

Topological analysis

Cytoscape 3.8.0 was used to obtain degree and between-
ness scores for each disease. The top 10% of nodes with the 
highest degree were nominated as hubs, and the top 10% 
with the highest betweenness centrality were considered 
bottlenecks for each disease. We used the Venn diagram 

http://www.illumina.com
http://bioinformatics.psb.ugent.be
https://string-db.org/
https://string-db.org/
http://cbdm.uni-mainz.de/hippie/
http://cbdm.uni-mainz.de/hippie/
http://bio.cigb.edu.cu/bisogenet-cytoscape/
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tool (http:// bioin forma tics. psb. ugent. be/ webto ols/ Venn/) 
to identify the shared and non-shared nodes between the 
two sets of hubs-bottlenecks in SARS-CoV and COVID-19. 
The shared proteins probably play essential roles in both 
infections' pathogenesis since they are considered hubs or 
bottlenecks in both PPIs. Further functional analysis and 
studies of the non-shared hub bottlenecks can probably help 
us predict the molecular mechanisms that are only specific 
to each infection. It will probably contribute to identifying 
the molecular mechanisms responsible for partially different 
manifestations of the two infections.

PPI molecular complex detection (MCODE)

The MCODE algorithm with default parameters (node score 
cut-off = 0.2, degree cut-off = 2, k-core = 2, maximum depth 
set at 100) [28] was applied to identify highly connected 
regions in both disease PPIs. The MCODE algorithm helps 
find densely interconnected regions of a network. Each 
region density is the ratio between the number of edges 
(|E|) and the possible uppermost edges in that region. (|E| 
max =|n| *(|n|- 1)/2, n is the number of nodes in the region). 
The product of the number of nodes is considered the 
MCODE score and is used to detect the dense subnetworks 
of the network called MCODE clusters. (Score = density * 
number of nodes) [29].

Enrichment analysis for MCODE clusters

Two different tools were used to perform the functional 
analysis for MCODE clusters deciphered from SARS and 
COVID-19 PPI networks, including the DAVID tool [30] 
and the STRING tool functional analyzer [24]. They were 
used to enrich the nodes participating in each MCODE clus-
ter separately. We conducted the enrichment analysis for 
each cluster of nodes separately for GO terms (Gene Ontol-
ogy terms, including biological process (BP) and KEGG 
biochemical pathways.

PPI network relations identification 
between SARS and COVID‑19

To decode the shared essential mechanisms underly-
ing both diseases, we first implemented the Chi-square/
Fischer exact test analysis [31] between each disease's 
MCODE cluster and the other disease's PPI separately. 
The chi-squared test (considering the prerequisites of 
the Chi-square test) or the alternative Fisher's exact test 
were applied to detect significant relations between the 
COVID-19 and the SARS PPI MOCDE subnetworks 

(p-value < 0.05) and vice versa. The chi-square test only 
works when the variable under study is categorical. More-
over, in more than 80% of the variables, the expected value 
of the number of sample observations should be at least 5. 
(Zero is not permitted for any variable when applying chi-
square). Fisher's exact test was applied as an alternative 
test if the chi-square prerequisites were not met.

A workflow representing data analysis, PPIN construc-
tion, and further survey steps are depicted in Fig. 1.

Drug–target interaction network 
construction

Nodes of the three COVID-19 MCODE clusters (signifi-
cantly) related to SARS shared between the COVID-19 
clusters and the SARS network were selected to con-
struct the drug-target interaction network for further drug 
screenings. Besides, the top 10% of hub bottlenecks shared 
between SARS and COVID-19 were also selected as drug 
targets for constructing the drug-gene network. We then 
used the DGidb database to retrieve the medications with 
possible interactions with the selected genes [32]. After-
ward, the Cytoscape (3.8.0) was used for network visu-
alization. The network was analyzed, and the drugs with 
higher Degrees were nominated to construct a new drug-
gene sub-network. The new repurposed drug candidates 
were then validated using the ClinicalTrials.gov databank 
for COVID-19 clinical trials.

Results

This study's primary purpose was to investigate the critical 
respiratory system genes responsible for host response to 
the SARS-CoV and SARS-CoV-2 viruses in vitro. We also 
attempted to determine the shared and non-shared crucial 
genes and molecular mechanisms between them. Besides, 
we have repurposed some new medications for further 
investigations to prevent the severe consequences of the 
host response to SARS-CoV-2 in some patients based on 
the identified crucial genes.

Data gathering for COVID‑19 and SARS

We studied the SARS data for 24 h post-infection to com-
pare the two disease networks in the 24 h because the 
omics data for SARS-CoV-2 was only available for 24 h 
post-infection. First, we used ge-Workbench software to 

http://bioinformatics.psb.ugent.be/webtools/Venn/
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filter, standardize, and analyze the raw data from three 
SARS-related datasets in the two available shared early 
time points (24 h and also 60 h, as mentioned in the tech-
nique section) (p-value 0.05 and |Log FC|> 0.5).

We looked for DEGs shared between the three data analy-
sis outcomes and identified them as DEGs associated with 
the SARS-CoV host response in vitro for the distinct time 
points. Twenty-four hours after infection, we identified seven 
up-regulated DEGs as SARS-related DEGs. Furthermore, no 
DEG was identified as a down-regulated DEG in any of the 

three SARS-related datasets after 24 h. (See Fig. S1 in the 
Supplementary Materials).

We compared the two disease networks in the two avail-
able early time points using SARS data from 60 h after infec-
tion (the available shared early point data). First, we used 
ge-Workbench software to filter, normalize, and analyze the 
raw data from three SARS-related datasets (p-value < 0.05 
and |Log FC|> 0.5). We looked for DEGs shared between the 
three data analysis outcomes and identified them as DEGs 
associated with the SARS-CoV host response in vitro for the 
distinct time points. In 60 h, we found 329 up-regulated and 

Fig. 1  Represents a graphical 
workflow of the study
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228 down-regulated DEGs that were SARS-related (data in 
Supplementary Fig. S1 and Supplementary Table S1). We 
identified 572 up-regulated and 291 down-regulated genes as 
COVID-19-related DEGs for two COVID-19 datasets (data 
is shown in Supplementary Table S2).

We looked for DEGs that were common to both illnesses. 
We also looked for shared DEGs between COVID-19 and 
DEGs associated with 60 h SARS-related networks. The 
findings were limited to respiratory epithelial cells, not 
immune cells.

Results of topological analysis

To construct the PPI networks, up and down-regulated data for 
each disease were merged to construct the SARS and COVID-
19 PPIs separately. The top 10% node with the highest degree 
and betweenness centrality was considered hub bottlenecks for 
SARS and COVID-19 separately (Supplementary Table S3). 

SARS

33 9

NFKBIA

TNF

IL6           
STAT1

ICAM1

DDX58

IFIH1

IRF7

COVID-19

Fig. 2  Represents the Venn diagram of the shared DEGs between the 
top 10% of hubs and bottlenecks of the SARS and COVID-19 PPI 
networks

Fig. 3  MCODE clusters. A represents the significantly scored 
MCODE clusters in SARS PPI. B represents the significantly scored 
MCODE clusters in COVID-19 PPI. Nodes with the highest degree 

score (seeds) are represented in triangle form in each cluster, and 
nodes with a dual role (TF/Gene) are in green color
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Table 1  Top 10% of the COVID-19 and SARS PPIN nodes with the highest degree/betweenness were considered hub bottlenecks

The shared hub bottlenecks between the COVID-19 and SARS PPI networks were enriched using two different WEB Tools for Biological Pro-
cesses. (DAVID and STRING). The table describes the top 10 shared biological terms reported by both analyzer tools. (P-values are retrieved 
from STRING)

No Term (Biological Process) False discovery rate Matching proteins in the network

1 response to other organism 3.03E-21 ADAR,B2M,C3,CXCL1,CXCL8,DDX58,DDX60,EIF2AK2,HERC5,HERC6,
ICAM1,IFI44,IFIH1,IFIT1,IFIT3,IL1B,IL6,IRF7,NFKB2,NFKBIA,PTGS2,
STAT1,TNF,TRIM25

2 defense response 6.21E-18 ADAR,B2M,C3,CXCL1,CXCL8,DDX58,DDX60,EIF2AK2,HERC5,ICAM1,I
FIH1,IFIT1,IFIT3,IL1A,IL1B,IL6,IRF7,ITGB2,NFKB2,PTGS2,SP100,STA
T1,TNF,TRIM25

3 multi-organism process 2.12E-17 ADAR,B2M,C3,CDH1,CXCL1,CXCL8,DDX58,DDX60,EIF2AK2,FBXW7,
HERC5,HERC6,ICAM1,IFI44,IFIH1,IFIT1,IFIT3,IL1B,IL6,IRF7,NFKB2,N
FKBIA,PSMB9,PTGS2,SP100,STAT1,TNF,TRIM25

4 immune response 3.74E-17 ADAR,B2M,C3,CEP290,CXCL1,CXCL8,DDX58,DDX60,EIF2AK2,HERC5,
ICAM1,IFIH1,IFIT1,IFIT3,IL1A,IL1B,IL6,IRF7,ITGB2,NFKB2,PLAUR,S
P100,STAT1,TNF,TRIM25

5 immune system process 8.52E-17 ADAR,B2M,C3,CEP290,CXCL1,CXCL8,DDX58,DDX60,EIF2AK2,HERC5,
HERC6,ICAM1,IFIH1,IFIT1,IFIT3,IL1A,IL1B,IL6,IRF7,ITGB2,NFKB2,N
FKBIA,PLAUR,PSMB9,SP100,STAT1,TNF,TRIM25

6 response to external stimulus 8.52E-17 ADAR,B2M,C3,CXCL1,CXCL8,DDX58,DDX60,EIF2AK2,HERC5,HERC6,I
CAM1,IFI44,IFIH1,IFIT1,IFIT3,IL1B,IL6,IRF7,ITGB2,NFKB2,NFKBIA,P
LAUR,PTGS2,STAT1,TNF,TRIM25

7 cytokine-mediated signaling pathway 1.45E-16 ADAR,B2M,CXCL1,CXCL8,ICAM1,IFIT1,IFIT3,IL1A,IL1B,IL6,IRF7,ITG
B2,NFKBIA,PTGS2,SOCS3,SP100,STAT1,TNF,TRIM25

8 response to cytokine 1.05E-15 ADAR,B2M,CXCL1,CXCL8,EIF2AK2,ICAM1,IFIT1,IFIT3,IL1A,IL1B,IL6,I
RF7,ITGB2,NFKB2,NFKBIA,PTGS2,SOCS3,SP100,STAT1,TNF,TRIM25

9 response to virus 7.32E-15 ADAR,DDX58,DDX60,EIF2AK2,HERC5,IFI44,IFIH1,IFIT1,IFIT3,IL6,IRF7
,STAT1,TNF,TRIM25

10 response to stress 1.39E-14 ADAR,B2M,C3,CXCL1,CXCL8,DDX58,DDX60,EIF2AK2,FBXW7,HERC5
,ICAM1,IFIH1,IFIT1,IFIT3,IL1A,IL1B,IL6,IRF7,ITGB2,NFKB2,NFKBIA,
PLAUR,PTGS2,SP100,STAT1,TNF,TRIM25,UBE2L6,UBE2V2

Table 2  The shared hub bottlenecks between the COVID-19 and SARS PPI networks were enriched using two different WEB Tools for KEGG 
Biochemical Pathways

(DAVID and STRING) The table describes the top 10 shared Biochemical Pathways reported by both analyzer tools. (P-values are retrieved 
from STRING)

No Term (KEGG pathway) False discovery rate Matching proteins in the network

1 Influenza A 1.14E-19 ADAR,CXCL8,DDX58,EIF2AK2,ICAM1,IFIH1,IL1A,IL1B,IL6,IRF7,NFK
BIA,SOCS3,STAT1,TNF,TRIM25

2 Herpes simplex infection 6.73E-16 C3,DDX58,EIF2AK2,IFIH1,IFIT1,IL1B,IL6,IRF7,NFKBIA,SOCS3,SP100
,STAT1,TNF

3 Legionellosis 7.21E-14 C3,CXCL1,CXCL8,IL1B,IL6,ITGB2,NFKB2,NFKBIA,TNF
4 Measles 2.05E-12 ADAR,DDX58,EIF2AK2,IFIH1,IL1A,IL1B,IL6,IRF7,NFKBIA,STAT1
5 NF-kappa B signaling pathway 3.99E-12 CXCL8,DDX58,ICAM1,IL1B,NFKB2,NFKBIA,PTGS2,TNF,TRIM25
6 Leishmaniasis 2.44E-11 C3,IL1A,IL1B,ITGB2,NFKBIA,PTGS2,STAT1,TNF
7 Hepatitis C 4.55E-11 CXCL8,DDX58,EIF2AK2,IFIT1,IRF7,NFKBIA,SOCS3,STAT1,TNF
8 Rheumatoid arthritis 6.36E-11 CXCL1,CXCL8,ICAM1,IL1A,IL1B,IL6,ITGB2,TNF
9 TNF signaling pathway 3.79E-10 CXCL1,ICAM1,IL1B,IL6,NFKBIA,PTGS2,SOCS3,TNF
10 RIG-I-like receptor signaling pathway 9.23E-10 CXCL8,DDX58,IFIH1,IRF7,NFKBIA,TNF,TRIM25
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As visualized in Fig. 2, STAT1, TNF, IFIH1, DDX58, ICAM1, 
IRF7, IL6, and NFKBIA were the shared nodes between the top 
10% hub-bottleneck in SARS and COVIID-19 PPINs. Besides, 
as represented in S3, 52 nodes were identified exclusively in 
SARS, and 90 nodes were only related to COVID-19.

Detection of MCODE clusters and assessing 
the statistical relationship between diseases

We identified 13 and 25 PPI MCODE cluster subnetworks for 
SARS and COVID-19. As shown in Supplementary Table S4, 
to evaluate the relationships between each disease's MCODE 

clusters and the other disease's PPI, the Chi-square/Fischer exact 
test analysis was applied. Four clusters of the SARS PPI net-
work had significant statistical relations with COVID-19 PPIN 
(Fig. 3A). We also identified three COVID-19 clusters having 
a significant relationship with the SARS PPIN, as shown in 
Fig. 3B (Supplementary Table S5).

Hub‑bottleneck functional enrichment

STRING and DAVID Tools were applied to identify the Gene 
Ontology (GO—biological processes (BP)) and KEGG bio-
chemical pathways as functional enrichment analysis. Tables 1 

Table 5  Gene enrichment analysis for biological process (GO-BP) was performed separately in all three MCODE clusters of the COVID-19 PPI 
network

The top five terms of Biological processes for each cluster have been reported separately (sorted by P-values < 0.05)

Term (Biological Process) False discovery rate Matching proteins in the network

Cluster 1 1 type I interferon signaling pathway 2.85E-46 BST2,HLA-B,IFI27,IFI35,IFI6,IFIT1,IFIT2,IFIT3,I
FITM1,

IFITM2,IFITM3,
IRF7,IRF9,ISG15,MX1,OAS1,OAS2,OAS3,OASL,

STAT2
2 defense response to virus 2.63E-27 BST2,IFIT1,IFIT2,IFIT3,IFITM1,IFITM2,IFITM3,

IRF7,IRF9,ISG15,MX1,OAS1,OAS2,OAS3,OASL,
STAT2

3 response to other organism 2.71E-19 BST2,HLA-B,IFIT1,IFIT2,IFIT3,IFITM1,IFITM2,IF
ITM3,IRF7

,IRF9,
ISG15,MX1,OAS1,OAS2,OAS3,OASL,STAT2

4 negative regulation of viral genome replication 3.23E-19 BST2,IFIT1,IFITM1,IFITM2,IFITM3,ISG15,MX1,O
AS1,OAS3,

OASL
5 immune effector process 1.19E-18 BST2,HLA-B,IFIT1,IFIT2,IFIT3,IFITM1,IFITM2,I

FITM3,I
RF7,IRF9,ISG15,MX1,OAS1,OAS2,OAS3,OASL,S

TAT2
Cluster 2 1 defense response 2.80E-17 B2M,C3,C5,CCL20,CCL5,CXCL1,CXCL16,CXCL2

,CXCL3,CXCL5,
CXCL6,CXCL8,GBP3,GBP5,ICAM1,SAA1,SP100,T

RIM14,TRIM25
2 cell chemotaxis 2.62E-14 C5,CCL20,CCL5,CXCL1,CXCL16,CXCL2,CXCL3,

CXCL5,CXCL6,CXCL8,SAA1
3 immune response 4.02E-14 B2M,C3,C5,CCL20,CCL5,CXCL1,CXCL16,CXCL2,

CXCL3,CXCL5,CXCL6,CXCL8,GBP5,ICAM1,SA
A1,SP100,TRIM14,TRIM25

4 response to cytokine 7.03E-14 B2M,CCL20,CCL5,CXCL1,CXCL16,CXCL2,CXCL
3,CXCL5,CXCL6,CXCL8,GBP3,GBP5,ICAM1,SA
A1,SP100,TRIM25

5 inflammatory response 1.44E-13 C3,C5,CCL20,CCL5,CXCL1,CXCL2,CXCL3,CXCL
5,CXCL6,CXCL8,GBP5,ICAM1,SAA1

Cluster 3 1 response to virus 2.70E-07 DDX58,DDX60,HERC5,IFI44,IFIH1,STAT1
2 regulation of type I interferon production 2.70E-07 DDX58,HERC5,IFIH1,STAT1,UBE2L6
3 negative regulation of type I interferon production 5.43E-07 DDX58,HERC5,IFIH1,UBE2L6
4 defense response to virus 9.92E-07 DDX58,DDX60,HERC5,IFIH1,STAT1
5 response to other organism 9.92E-07 DDX58,DDX60,HERC5,HERC6,IFI44,IFIH1,STAT1
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and S7 show that responses to other organisms and defense 
responses were the two top biological processes. Besides, as 
available in Table 2 and S8, Influenza A, and Herpes simplex 
infections were determined as the two top biochemical pathways 
shared between SARS and COVID-19 by enriching the top 10% 
of genes in the PPI network in SARS and COVID-19. As avail-
able in S9, positive regulation of the biosynthetic process, bio-
logical regulation, and membrane depolarization regulation were 
SARS' top three biological processes. Also, as represented in 
Supplementary Table S10, we identified 24 exclusively SARS-
related pathways, of which Carbon metabolism, Glycine, serine 
and threonine metabolism, and Metabolic pathways were the 
top three.

As shown in S11, cell communication, signaling, and 
viral process regulation were the three top biological 

processes, and Complement and coagulation cascades, Plate-
let activation, and Staphylococcus aureus infection were 
the three top pathways that were exclusively related to the 
COVID-19 network (Supplementary Table S12).

Functional analysis of the significantly 
related MCODE clusters 
between the infections

As shown in Supplementary Table S13 and Table 3, the top 
five biological processes for cluster 1 were related to immune 
response. Also, as shown in Table 4, the top five KEGG path-
ways were related to the host response to a viral infection, such 
as Herpes simplex infection, Hepatitis C, and Influenza A. 
Enriching cluster No.2 of SARS showed that the chemokine-
mediated signaling pathway was this cluster's most significant 
biological process. The Chemokine signaling pathway was also 
the most significant biochemical pathway enriched in cluster 
No.2, shown in Table 4.

As available in Table 3, response to the virus and defense 
response to the virus are the top two significant biological 
processes, and besides, as illustrated in Table 4, Measles and 
Influenza A are the top two significant pathways. Table 3 
shows the cytokine response was the most significant 
BP in cluster No.4, and also, as demonstrated in Table 4, 
Rheumatoid arthritis and NF-kappa B signaling pathways 
were the top two significant pathways in cluster No.4. 

Table 6  Gene enrichment analysis for KEGG biochemical pathways was performed separately in all three MCODE clusters of the COVID-19 
PPI network

The top 5 terms of KEGG biochemical pathways for each cluster have been reported separately (sorted by P-values < 0.05)

Term (KEGG pathway) False discovery rate Matching proteins in the network

Cluster 1 1 Herpes simplex infection 2.29E-10 HLA-B,IFIT1,IRF7,IRF9,OAS1,OAS2,OAS3,STAT2
2 Hepatitis C 8.23E-10 IFIT1,IRF7,IRF9,OAS1,OAS2,OAS3,STAT2
3 Measles 8.23E-10 IRF7,IRF9,MX1,OAS1,OAS2,OAS3,STAT2
4 Influenza A 2.20E-09 IRF7,IRF9,MX1,OAS1,OAS2,OAS3,STAT2
5 NOD-like receptor signaling pathway 9.12E-08 IRF7,IRF9,OAS1,OAS2,OAS3,STAT2

Cluster 2 1 Chemokine signaling pathway 3.67E-15 ADCY1,ADCY5,CCL20,CCL5,CXCL1,CXCL16,CXCL2,
CXCL3,

CXCL5,CXCL6,CXCL8
2 Cytokine-cytokine receptor interaction 2.83E-10 CCL20,CCL5,CXCL1,CXCL16,CXCL2,CXCL3,CXCL5,C

XCL6,
CXCL8

3 IL-17 signaling pathway 2.83E-10 CCL20,CXCL1,CXCL2,CXCL3,CXCL5,CXCL6,CXCL8
4 Rheumatoid arthritis 2.83E-10 CCL20,CCL5,CXCL1,CXCL5,CXCL6,CXCL8,ICAM1
5 TNF signaling pathway 6.02E-10 CCL20,CCL5,CXCL1,CXCL2,CXCL3,CXCL5,ICAM1

Cluster 3 1 Hepatitis B 0.0008 DDX58,IFIH1,STAT1
2 Measles 0.0008 DDX58,IFIH1,STAT1
3 Influenza A 0.0008 DDX58,IFIH1,STAT1
4 Herpes simplex infection 0.0008 DDX58,IFIH1,STAT1
5 RIG-I-like receptor signaling pathway 0.0028 DDX58, IFIH1

Table 7  The table represents the top seven repurposed drugs interact-
ing with the identified crucial genes in the Drug-Gene interaction net-
work sorted by degree value

Drug name Gene target Degree

BCG vaccine TNF, CXCL2, HLA-B 3
Ribavirin HLA-B, IL6, OASL 3
Nafamostat ICAM1, TNF 2
Infliximab TNF, IL6 2
Alteplase CXCL2, TNF 2
Thalidomide TNF, HLA-B 2
Insulin TNF, IL6 2
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All of the identified significant BP and KEGG pathways 
(p-value < 0.05) for all the four significantly related clusters 
of SARS (to COVID-19) are available in Supplementary 
Table S13 and Supplementary Table S14, respectively.

Three clusters of COVID-19 related to SARS PPIN were 
identified as significantly related; hence, the biological pro-
cess enrichment for the three clusters of COVID-19 was also 
performed, illustrated in Tables 5 and S15. It shows that the 
type I interferon signaling pathway, defense response, and 
response to the virus was the most significant BPs in each 
cluster. Besides, as shown in Table 6 and S16, Herpes sim-
plex infection, Chemokine signaling pathway, and Hepatitis 
B were distinctly the top three in Cluster No.1, 2, and 3.

Figure 4 represents the genes shared between SARS and 
COVID-19 in the PPI network, and the shared pathways 

between each cluster and disease are represented. Kaposi's 
sarcoma-associated herpesvirus infection and NOD-like recep-
tor signaling pathway were two shared significant pathways 
between the SARS clusters and COVID-19. Influenza A was 
the pathway shared between the COVID-19 clusters and SARS. 
Furthermore, Herpes simplex infection was also the pathway 
shared between them.

Drug–target interaction network results

As available in Supplementary Table S6, 13 unique nodes 
were considered the selected genes, and 169 unique medi-
cines were nominated as the related drugs to the selected 
genes in the Drug–Target Interaction Network. Among the 

Fig. 4  Represents the shared 
DEGs that relate the MCODE 
clusters of each infection to the 
other infection PPI and their 
significantly enriched corre-
sponding biochemical pathways. 
DEGs are depicted in orange 
circles, pathways in triangles, 
and diseases with purple circles. 
Edges related to SARS are 
shown with continuous lines, 
and COVID-19 with dashed 
lines. Clusters are labeled 
distinctly

Fig. 5  Represents the Drug-
Gene interaction network. Pur-
ple diamonds show the crucial 
identified Genes, and circles 
depict our repurposed medica-
tions. The medicines previously 
registered for clinical trials 
against COVID-19 are distinct, 
using orange color
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169 drugs, 22 drugs with a Degree between three and two 
were selected to create a new sub-network, as visualized in 
Fig. 5. To validate the new repurposed drugs, we have shown 
in Table 7 that seven of the drugs were previously registered 
in ClinicalTrrials.gov to be evaluated as possible treatments 
for COVID-19 (Table 7).

Discussion

Altered gene expression is essential to COVID-19 and 
SARS pathogenesis, affecting proteins in various func-
tional classes. Thus, identifying the host response critical 
molecular mechanisms to SARS-CoV-2 and SARS-CoV is 
essential for developing effective management and treatment 
strategies.

Biological networks probably consist of several sub-
network or functional modules contributing to different 
biological processes. A node may have little effect on the 
global network or global properties, but it does affect a sub-
network with a specific function [33]. Thus, in the present 
study, we constructed two PPI networks for each disease 
separately to examine the crucial molecular mechanisms 
of the host response in respiratory cells in COVID-19 and 
SARS. Afterward, the MCODE algorithm was used to create 
cluster sub-networks for each PPI network. Each disease's 
MCODE clusters were then evaluated for their possible 
significant relation with the other disease using chi-square/
Fisher's exact test. Four SARS MCODE Clusters and three 
COVID-19 Clusters were significantly related to COVID-
19 and SARS PPI networks. We first discuss the molecu-
lar mechanisms and critical molecules rooted in the seven 
clusters to clarify the pathogenesis of the two diseases and 
their shared molecular mechanisms. Then we will discuss 
the critical mechanisms which were predicted to be specific 
to only one of the two diseases.

Functional analysis for pathways in the first significantly 
related cluster of SARS to COVID-19 (SARS cluster No.1) 
showed that Herpes simplex infection, Hepatitis C and Influ-
enza A were the top three significant pathways. The Type I 
interferon signaling pathway and innate immune response 
were the most significant biological processes that confirm 
the innate immune system's essential role and interferon in 
the host response to viral infections [34]. IFITM2 had the 
highest degree score among SARS cluster No.1 nodes and 
was considered the seed in this cluster. Previous studies 
have reported that IFITM2 is vital in different enveloped 
virus entry, especially in the SARS-CoV entrance medi-
ated by the SARS-CoV spike (S) protein [35]. Furthermore, 
IFITM2 is also considered a significant node in one of the 
COVID-19 clusters; hence, it could be hypothesized that this 
protein also may play a role in SARS-CoV-2 entry into the 
host cell, similar to SARS-CoV. Besides, IFI27 (interferon 

Alpha Inducible Protein 27) was nominated as the seed in 
COVID-19 cluster No.1, which has already been introduced 
to have antiviral activity in other viruses like hepatitis C 
[36]. It can inhibit virus replication and potentiate the anti-
HCV activity of IFN-α through induced production of type 
I IFNs and activation of the Jak/STAT signaling pathway 
independent of autophagy and cell apoptosis [37]. Since 
HCV is a positive-sense single-stranded RNA virus similar 
to SARS-CoV-2, we can presume that IFI27 may activate 
the innate immune system in COVID-19. However, further 
experimental investigations seem necessary to confirm the 
hypothesis fully.

CXCL2 (C-X-C Motif Chemokine Ligand 2) is another 
node in cluster No.3 of SARS-CoV considered a seed and 
a significant node in COVID-19 cluster No.2. This protein 
is produced by activated monocytes and neutrophils and 
expressed at sites of inflammation [38]. Our results indicate 
that two drugs, BCG Vaccine, and ALTEPLASE, can target 
this gene. Some previous studies have reported that the BCG 
Vaccine can reduce the initial virus spread in cells, leading 
to less severe symptoms [39, 40]. The BCG vaccination, pri-
marily used to prevent tuberculosis, has demonstrated some 
promise for enhancing the immune response against several 
diseases, including COVID-19. According to several studies, 
the BCG vaccine may offer some protection against severe 
symptoms or lower the risk of infection. To establish its 
effectiveness, however, more research is necessary [41, 42].

Besides, some experimental and in-silico studies have 
shown the role of ALTEPLASE as an anticoagulant element 
[43–45]. The thrombolytic drug called alteplase dissolves 
blood clots, such as those associated with stroke or pulmo-
nary embolism. According to studies, alteplase medication 
may benefit COVID-19 individuals who exhibit significant 
respiratory distress and aberrant blood coagulation markers. 
It has demonstrated potential for increasing oxygenation and 
decreasing clot load in these patients. The available evidence 
is, however, limited [46, 47]

B2M in this COVID-19 cluster was considered a seed that 
could induce the expression of various interleukins, such as 
6 (IL-6), 8, and 10, in several cell types [48]. Several studies 
have shown the increase of IL-6 in COVID-19 as a driver of 
the inflammation that causes cytokine storm [49, 50]. The 
blockage of IL-6 can decrease cytokine storm symptoms 
[51, 52]. In our in-silico analysis, Insulin, Ribavirin, and Inf-
liximab were three drugs interacting with IL-6 in the drug-
target interaction network. Therefore their possible effects on 
cytokine storms are recommended for further experimental 
investigations.

Insulin has been investigated for its potential role in 
COVID-19 treatment. According to studies, administering 
insulin to COVID-19 individuals who already have diabetes 
may improve results. However, others contend that people 
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with COVID-19 and diabetes who use insulin may see a rise 
in severe/critical consequences [53–55].

A variety of viral infections are treated with ribavirin, an 
antiviral medication. Some research has looked into its pos-
sible effectiveness against COVID-19. While some studies 
point to a potential advantage, others report no appreciable 
clinical improvement. It might play some part in antiviral 
combination therapy with other medications [56, 57].

An immunosuppressant medication called infliximab is 
prescribed to treat autoimmune diseases like rheumatoid 
arthritis and Crohn's disease. Mixed outcomes have been 
seen in studies looking at its use in severe COVID-19 cases. 
While some claim there may be advantages in lowering 
inflammation and enhancing respiratory function, others 
claim no appreciable clinical improvement exists. Inflixi-
mab may modify the immunological response, although 
whether it can be used to treat COVID-19 is still controver-
sial [58–60].

The pathway enrichment analysis of COVID-19 and 
SARS clusters demonstrated four shared pathways, includ-
ing the NOD-like receptor signaling pathway, Kaposi's 
sarcoma-associated herpesvirus infection, Influenza A, and 
Herpes simplex infection pathway, which contain 26 shared 
proteins between COVID-19 and SARS networks. Among 
these 26 proteins, DDX58, IFIH1, STAT1, IRF7, ICAM1, 
and TNF are among the top 10% shared hub and bottlenecks 
between SARS and COVID-19 PPI networks. Among these 
genes, TNF and ICAM1 were significant in our drug-target 
network. ICAM1 and TNF interacted with Nafamostat. One 
previous study has indicated the role of Nafamostat in the 
blockage of MERS-CoV infection [61]. Besides, various 
research has confirmed the role of Nafamostat as an antico-
agulant in COVID-19 patients [62, 63]. The serine protease 
inhibitor, Nafamostat, is primarily used as an anticoagulant. 
Nafamostat may prevent the SARS-CoV-2 virus from enter-
ing and infecting human cells. Recent research suggests that 
it might prevent the SARS-CoV-2 virus from replicating and 
lessen inflammation, thereby improving COVID-19 patient 
outcomes. More research is necessary to determine its clini-
cal efficacy against COVID-19 [64, 65]. The present study 
showed that TNF and ICAM1 are two crucial network nodes 
interacting with this drug. Some studies have shown that 
increased TNF levels in COVID-19 patients correlate with 
or even lead to ARDS [66]. We hypothesize that Nafamostat 
could play a role as an anti-inflammatory agent in COVID-
19 patients.

TNF and HLA-B were the two target genes interacting 
with Thalidomide. Thalidomide is registered in two clinical 
trial experiments against COVID-19 [67, 68]. It has been 
investigated for its immunomodulatory qualities and poten-
tial antiviral and anti-inflammatory actions against COVID-
19, while it was commonly used to treat several malignan-
cies and skin diseases. According to recent research, it could 

lessen lung harm in serious situations and modify immune 
responses. It might enhance clinical results in severe 
COVID-19 instances. More study is needed, nevertheless, 
to prove its efficacy and safety [69, 70].

Thalidomide acts as an anti-inflammatory element due 
to its ability to accelerate the degradation of messenger 
RNAs in blood cells and reduce the tumor necrosis factor α 
(TNFα). It could be an anti-inflammatory drug in COVID-19 
patients and is recommended as a repurposed drug candidate 
to be investigated in alleviating the inflammatory phase in 
COVID-19 patients. It has been discovered that Thalido-
mide boosts the production of natural killer, T, and B cells, 
which in turn stimulates the immunological response [71] 
Since it has been proposed to suppress the generation of pro-
inflammatory cytokines responsible for the cytokine storm 
seen in severe instances of COVID-19, it may also inhibit the 
cytokine storm [71, 72]. Additionally, in COVID-19 patients 
at high risk for thrombotic events, Thalidomide may have 
anti-thrombotic effects and lower the risk of blood clots [73]. 
Interestingly, Thalidomide has been demonstrated to prevent 
SARS-CoV-2 replication [74].

Thalidomide seems a promising candidate medication 
for treating COVID-19 since it may have numerous posi-
tive benefits for COVID-19 patients. Also, the interaction of 
Thalidomide with the HLA-B gene in our drug-gene network 
suggests the hypothesis that maybe the effect of it on the 
treatment of COVID-19 patients is affected by the subtype of 
this gene; however, additional clinical studies are required to 
ascertain the hypothesis and also its security and effective-
ness in treating COVID-19.

DDX58 (DExD/H-Box Helicase 58) encodes RIG-I, a 
vital commencer protein in the immune system. RIG-I is 
reported to be responsible for responding to some negative-
strand RNA viruses, such as influenza viruses, and positive-
strand RNA viruses, like the Coronaviridae family [75–77]. 
Coronaviruses are giant RNA viruses containing the RNA 
genome that encodes for various proteins interacting with 
different factors in the innate immune signaling pathway, 
such as the 5'cap segment to block RIG-I recognition of 
RNA [77]. For example, in SARS-CoV, deubiquitination of 
RIG-I, STING, TRAF, and TBK1 are reported to cause inhi-
bition of IRF3 activation through encoding a Papin-like pro-
tease (PLpro) [78, 79]. In this in-silico study, DDX58 was 
nominated as a shared hub and bottleneck protein between 
SARS and COVID-19, which explains that it might also 
have an essential role in the pathogenesis of SARS-CoV-2 
infection.

Another shared hub-bottleneck protein was IFIH1 (Inter-
feron Induced with Helicase C Domain 1), which encodes 
MDA5 (Melanoma Differentiation-Associated protein 5) 
[80]. Other studies have reported that infection by various 
positive-strand RNA viruses, such as picornaviruses [81], 
arteriviruses [82], and also Kaposi sarcoma-associated 
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herpesvirus (KSHV) [83], trigger MDA5 activation [84]. 
Indeed, MDA5 activation causes different immune cascades 
in the cell, leading to the expression of type 1 interferon 
genes (IFN1: IFNα and IFNβ). Production of IFN1 causes 
the recruitment of macrophages, neutrophils, and dendritic 
cells to the infection site with chemokine gradients aid [85]. 
Therefore, it seems logical that it probably also has an essen-
tial role in the pathogenesis of COVID-19 entry. However, 
further experimental assays are required to confirm the con-
clusion fully.

One of the other well-known players of the innate 
immune response against viral infections is IRF7 (Interferon 
Regulatory Factor 7), induced by type I interferon (INF) in 
many cell types. Type 1 interferon (IFNs) seem to act as a 
human first defense line against viral infections and could 
sometimes be considered the starting point of innate immu-
nity and an essential inducer of adaptive immune responses 
[86, 87]. Some mouse studies have shown that the lack of 
IRF-7 in IRF-7 knockout mice could impair the induction 
of antigen-specific CD8 + T cell responses [86]. In line with 
them, we hypothesize that IRF7 also plays a critical role in 
the host response to both SARS and COVID-19.

In conclusion, this in-silico study utilized the phylo-
genic similarity of SARS-CoV-2 and SARS to predict the 
molecular mechanisms behind SARS-CoV-2 pathogenesis 
and the host response against it. Using a systems biology 
approach and network analysis, we revealed the shared 
crucial molecules behind the host response to both dis-
ease and specific mechanisms of each disease. We recom-
mended some repurposed drug candidates against COVID-
19 using the identified target seeds. We revealed that Cell 
communication, Signaling, and Regulation of the viral 
process were the top three significant BPs. Complement/
coagulation cascades and Platelet activation were the top 
two significant pathways mediating COVID-19 pathogen-
esis. The top three crucial molecules specific to the host 
response against SARS-CoV-2 included FGA, BMP4, and 
PRPF40A. We have suggested BCG VACCINE, RIBAVI-
RIN, NAFAMOSTAT, INFLIXIMAB, ALTEPLASE, and 
THALIDOMIDE as new repurposed candidates drugs by 
the drug-gene network analysis for further investigations 
against COVID-19 or its symptoms.
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Acknowledgements This study is related to project NO. 1400/65279 
from the Student Research Committee, Shahid Beheshti University 
of Medical Sciences, Tehran, Iran. We also appreciate the Student 
Research Committee and Research & Technology Chancellor at 
Shahid Beheshti University of Medical Sciences for their financial sup-
port of this study.

Data availability Readers may have access to the raw data, details of 
the analyzed data, and issues in the represented supplementary files.

Code availability The software used was free (Cytoscape).

Declarations 

Ethics approval The approval was issued by the ethical committee of 
the SBMU (project NO. 1400/65279).

Consent to participate Not applicable.

Consent for publication Not applicable.

Conflicts of interest/competing interests Authors declare that they 
have no conflict of interest.

References

 1. Rewar S, Mirdha D, Rewar P. Treatment and prevention of pan-
demic H1N1 influenza. Ann Glob Health. 2015;81(5):645–53.

 2. Maurice J. Cost of protection against pandemics is small. Lan-
cet. 2016;387(10016):e12.

 3. Sohrabi C, et al. World Health Organization declares global 
emergency: A review of the 2019 novel coronavirus (COVID-
19). Int J Surg. 2020;76:71–6.

 4. Corman VM, Lienau J, Witzenrath M. Coronaviruses 
as the cause of respiratory infections. Internist (Berl). 
2019;60(11):1136–45.

 5. Yu F, et al. Measures for diagnosing and treating infections by a 
novel coronavirus responsible for a pneumonia outbreak originat-
ing in Wuhan, China. Microbes Infect. 2020;22(2):74–9.

 6. Zhou P, et al. A pneumonia outbreak associated with a new coro-
navirus of probable bat origin. Nature. 2020;579(7798):270–3.

 7. Nguyen TP, Liu WC, Jordan F. Inferring pleiotropy by network 
analysis: linked diseases in the human PPI network. BMC Syst 
Biol. 2011;5:179.

 8. Farahani M, et al. Deciphering the transcription factor-microRNA-
target gene regulatory network associated with graphene oxide 
cytotoxicity. Nanotoxicology. 2018;12(9):1014–26.

 9. Ghani S, et al. Specific regulatory motifs network in SARS-CoV-
2-Infected Caco-2 Cell Line, as a model of gastrointestinal infec-
tions. Cell Reprogram. 2022;24(1):26–37.

 10. Ma J, et al. A comparative study of cluster detection algorithms 
in protein-protein interaction for drug target discovery and drug 
repurposing. Front Pharmacol. 2019;10:109.

 11 Sameni M, et al. Deciphering molecular mechanisms of SARS-
CoV-2 pathogenesis and drug repurposing through GRN motifs: a 
comprehensive systems biology study. 3 Biotech. 2023;13(4):117.

 12. Dehghan Z, et al. A motif-based network analysis of regulatory 
patterns in Doxorubicin effects on treating breast cancer, a systems 
biology study. Avicenna J Med Biotechnol. 2022;14(2):137.

 13. Ramly B, Afiqah-Aleng N, Mohamed-Hussein Z-A. Protein–pro-
tein interaction network analysis reveals several diseases highly 
associated with polycystic ovarian syndrome. Int J Mol Sci. 
2019;20(12):2959.

 14. King AD, Przulj N, Jurisica I. Protein complex prediction via 
cost-based clustering. Bioinformatics. 2004;20(17):3013–20.

 15. Dadashkhan S, et al. Deciphering crucial genes in multiple scle-
rosis pathogenesis and drug repurposing: A systems biology 
approach. J Proteomics. 2023;280:104890.

 16. Molavi Z, et al. Identification of FDA approved drugs against 
SARS-CoV-2 RNA dependent RNA polymerase (RdRp) and 
3-chymotrypsin-like protease (3CLpro), drug repurposing 
approach. Biomed Pharmacother. 2021;138:111544.

https://doi.org/10.1007/s40199-023-00471-1


170 DARU Journal of Pharmaceutical Sciences (2023) 31:155–171

1 3

 17. Solo P. Potential inhibitors of SARS-CoV-2 (COVID 19) spike 
protein of the delta and delta plus variant: in silico studies of 
medicinal plants of North-East India. Curr Res Pharmacol Drug 
Discov. 2021;2:100065.

 18. Dehghan Z, et al. Repurposing new drug candidates and identify-
ing crucial molecules underlying PCOS Pathogenesis Based On 
Bioinformatics Analysis. DARU J Pharm Sci. 2021;29:353–66.

 19. Blanco-Melo D, et al. Imbalanced Host Response to SARS-CoV-2 
Drives Development of COVID-19. Cell. 2020;181(5):1036–45.

 20. Sims AC, et al. Release of severe acute respiratory syndrome coro-
navirus nuclear import block enhances host transcription in human 
lung cells. J Virol. 2013;87(7):3885–902.

 21. Aevermann BD, et al. A comprehensive collection of systems 
biology data characterizing the host response to viral infection. 
Sci Data. 2014;1:140033.

 22. Mitchell HD, et al. A network integration approach to predict 
conserved regulators related to pathogenicity of influenza and 
SARS-CoV respiratory viruses. PLoS ONE. 2013;8(7):e69374.

 23. Romagnoli S, et al. SARS-CoV-2 and COVID-19: from the bench 
to the bedside. Physiol Rev. 2020;100(4):1455–66.

 24. Szklarczyk D, et al. STRING v11: protein-protein association 
networks with increased coverage, supporting functional discov-
ery in genome-wide experimental datasets. Nucleic Acids Res. 
2019;47(D1):D607–13.

 25 Alanis-Lobato G, Andrade-Navarro MA, Schaefer MH. HIPPIE 
v2.0: enhancing meaningfulness and reliability of protein-protein 
interaction networks. Nucleic Acids Res. 2017;45(D1):D408–14.

 26. Martin A, et al. BisoGenet: a new tool for gene network building, 
visualization and analysis. BMC Bioinformatics. 2010;11:91.

 27. Shannon P, et al. Cytoscape: a software environment for inte-
grated models of biomolecular interaction networks. Genome Res. 
2003;13(11):2498–504.

 28. Bader GD, Hogue CW. An automated method for finding molecu-
lar complexes in large protein interaction networks. BMC Bioin-
formatics. 2003;4:2.

 29. Brohee S, van Helden J. Evaluation of clustering algorithms 
for protein-protein interaction networks. BMC Bioinformatics. 
2006;7:488.

 30. Jiao X, et al. DAVID-WS: a stateful web service to facilitate 
gene/protein list analysis. Bioinformatics. 2012;28(13):1805–6.

 31. Ludbrook J. Analysis of 2 x 2 tables of frequencies: matching 
test to experimental design. Int J Epidemiol. 2008;37(6):1430–5.

 32 Cotto KC, et  al. DGIdb 3.0: a redesign and expansion of 
the drug-gene interaction database. Nucleic Acids Res. 
2018;46(D1):D1068–73.

 33. Barabasi AL, Oltvai ZN. Network biology: understand-
ing the cell’s functional organization. Nat Rev Genet. 
2004;5(2):101–13.

 34. Platanias LC. Mechanisms of type-I- and type-II-interferon-medi-
ated signalling. Nat Rev Immunol. 2005;5(5):375–86.

 35. Huang IC, et al. Distinct patterns of IFITM-mediated restriction 
of filoviruses, SARS coronavirus, and influenza A virus. PLoS 
Pathog. 2011;7(1):e1001258.

 36. Xue B, et al. ISG12a restricts hepatitis C virus infection through 
the ubiquitination-dependent degradation pathway. J Virol. 
2016;90(15):6832–45.

 37. Chen Y, et al. ISG12a inhibits HCV replication and potentiates 
the anti-HCV activity of IFN-alpha through activation of the Jak/
STAT signaling pathway independent of autophagy and apoptosis. 
Virus Res. 2017;227:231–9.

 38. King AG, et al. Identification of unique truncated KC/GRO beta 
chemokines with potent hematopoietic and anti-infective activi-
ties. J Immunol. 2000;164(7):3774–82.

 39. Escobar LE, Molina-Cruz A, Barillas-Mury C. BCG vaccine pro-
tection from severe coronavirus disease 2019 (COVID-19). Proc 
Natl Acad Sci U S A. 2020;117(30):17720–6.

 40. Curtis N, et al. Considering BCG vaccination to reduce the impact 
of COVID-19. Lancet. 2020;395(10236):1545–6.

 41. Gong W, et al. BCG vaccination: a potential tool against COVID-
19 and COVID-19-like Black Swan incidents. Int Immunophar-
macol. 2022;108:108870.

 42. Parmar K, Siddiqui A, Nugent K. Bacillus Calmette-
Guerin vaccine and nonspecific immunity. Am J Med Sci. 
2021;361(6):683–9.

 43. Moore HB, et al. STudy of alteplase for respiratory failure in 
SARS-Cov2/COVID-19: study design of the phase IIa STARS 
trial. Res Pract Thromb Haemost. 2020;4(6):984–96.

 44. Loi M, et al. COVID-19 anticoagulation recommendations in chil-
dren. Pediatr Blood Cancer. 2020;67(9).

 45. Wang J, et  al. Tissue plasminogen activator (tPA) treatment 
for COVID-19 associated acute respiratory distress syndrome 
(ARDS): A case series. J Thromb Haemost. 2020;18(7):1752–5.

 46. Yaffe MB. Study of alteplase for respiratory failure in SARS-
Cov2/COVID-19: study design of the phase IIa STARS Trial. 
2020;161(3):710–727.

 47. Price LC, et al. Rescue therapy with thrombolysis in patients with 
severe COVID-19 ARDS. 2020;10(4):1–5.

 48. Tsai CY, et al. Increased excretions of beta2-microglobulin, IL-6, 
and IL-8 and decreased excretion of Tamm-Horsfall glycopro-
tein in urine of patients with active lupus nephritis. Nephron. 
2000;85(3):207–14.

 49. Chen X, et al. Detectable serum severe acute respiratory syn-
drome Coronavirus 2 Viral Load (RNAemia) is closely corre-
lated with drastically elevated Interleukin 6 Level in Critically 
Ill patients with coronavirus disease 2019. Clin Infect Dis. 
2020;71(8):1937–42.

 50. Aziz M, Fatima R, Assaly R. Elevated interleukin-6 and severe 
COVID-19: A meta-analysis. J Med Virol. 2020;92(11):2283.

 51. Liu B, et al. Can we use interleukin-6 (IL-6) blockade for coro-
navirus disease 2019 (COVID-19)-induced cytokine release syn-
drome (CRS)? J Autoimmun. 2020;111:102452.

 52. Crisafulli S, et al. Potential role of Anti-interleukin (IL)-6 drugs in 
the treatment of COVID-19: rationale. Clin Evid Risks BioDrugs. 
2020;34(4):415–22.

 53. Hartmann-Boyce J, et al. Diabetes and COVID-19: risks, manage-
ment, and learnings from other national disasters. Diabetes Care. 
2020;43(8):1695–703.

 54. Gupta R, Hussain A, Misra A. Diabetes and COVID-19: evidence, 
current status and unanswered research questions. Eur J Clin Nutr. 
2020;74(6):864–70.

 55. Riahi S, et al. Insulin use, diabetes control, and outcomes in 
patients with COVID-19. Endocr Res. 2021;46(2):45–50.

 56. Chu C, et al. Role of lopinavir/ritonavir in the treatment of SARS: 
initial virological and clinical findings Thorax. 2004;59(3):252–6.

 57. Gong W-J, et al. A retrospective analysis of clinical efficacy of 
ribavirin in adults hospitalized with severe COVID-19. J Infect 
Chemother. 2021;27(6):876–81.

 58. Farrokhpour M, et al. Infliximab and intravenous gammaglobulin 
in hospitalized severe COVID-19 patients in intensive care unit. 
Arch Iran Med. 2021;24(2):139–43.

 59. Velez MP, McCarthy MW. Infliximab as a potential treatment for 
COVID-19. Expert Rev Anti Infect Ther. 2023;21(1):1–5.

 60. Honore PM, et al. Infliximab can reduce mortality from 35 to 14% 
in critically ill patients with COVID-19: perhaps some potential 
confounders to consider. Crit Care. 2020;24:1–2.

 61. Yamamoto M, et al. Identification of Nafamostat as a potent inhib-
itor of Middle East respiratory syndrome Coronavirus S Protein-
Mediated membrane fusion using the split-protein-based cell-cell 
fusion assay. Antimicrob Agents Chemother. 2016;60(11):6532–9.

 62. Takahashi W, et al. Potential mechanisms of nafamostat therapy 
for severe COVID-19 pneumonia with disseminated intravascular 
coagulation. Int J Infect Dis. 2020;102:529–31.



171DARU Journal of Pharmaceutical Sciences (2023) 31:155–171 

1 3

 63. Osawa I, et al. Dynamic changes in fibrinogen and D-dimer levels 
in COVID-19 patients on nafamostat mesylate. J Thromb Throm-
bolysis. 2020;51:649–56.

 64. Briand S, et al. Managing epidemics: key facts about major deadly 
diseases. World health organization; 2018.

 65. Takahashi W, et al. Potential mechanisms of nafamostat therapy 
for severe COVID-19 pneumonia with disseminated intravascular 
coagulation. Int J Infect Dis. 2021;102:529–31.

 66. Perlin DS, et al. Levels of the TNF-Related cytokine LIGHT 
increase in hospitalized COVID-19 patients with cytokine release 
syndrome and ARDS. mSphere. 2020;5(4):10–128.

 67. Tabebordbar M, et al. In vivo gene editing in dystrophic mouse 
muscle and muscle stem cells. Science. 2016;351(6271):407–11.

 68. Park SH, et al. Highly efficient editing of the β-globin gene in 
patient-derived hematopoietic stem and progenitor cells to treat 
sickle cell disease. Nucleic Acids Res. 2019;47(15):7955–72.

 69. Li Y, et al. Thalidomide combined with short-term low-dose 
glucocorticoid therapy for the treatment of severe COVID-19: A 
case-series study. Int J Infect Dis. 2021;103:507–13.

 70. Dastan F, et al. Thalidomide against coronavirus disease 2019 
(COVID-19): a medicine with a thousand faces. Iran J Pharm Res: 
IJPR. 2020;19(1):1–2.

 71. Morgulchik N, et  al. Potential therapeutic approaches for 
targeted inhibition of inflammatory cytokines following 
COVID-19 infection-induced cytokine storm. Interface Focus. 
2021;12(1):20210006.

 72. Elkhodary MSM. Treatment of COVID-19 by controlling the 
activity of the nuclear factor-kappa B. CellBio. 2020;9(2):109–21.

 73. Hermans C, Lambert C. Impact of the COVID-19 pandemic on 
therapeutic choices in thrombosis-hemostasis. J Thromb Haemost. 
2020;18(7):1794–5.

 74. Sundaresan L, et al. Repurposing of thalidomide and its deriva-
tives for the treatment of SARS-coV-2 infections: Hints on molec-
ular action. Br J Clin Pharmacol. 2021;87(10):3835–50.

 75. Kato H, et al. Differential roles of MDA5 and RIG-I helicases in 
the recognition of RNA viruses. Nature. 2006;441(7089):101–5.

 76. Weber-Gerlach M, Weber F. Standing on three legs: antiviral 
activities of RIG-I against influenza viruses. Curr Opin Immunol. 
2016;42:71–5.

 77. Kell AM, Gale M Jr. RIG-I in RNA virus recognition. Virology. 
2015;479–480:110–21.

 78. Chen X, et al. SARS coronavirus papain-like protease inhib-
its the type I interferon signaling pathway through interac-
tion with the STING-TRAF3-TBK1 complex. Protein Cell. 
2014;5(5):369–81.

 79. Sun L, et al. Coronavirus papain-like proteases negatively regulate 
antiviral innate immune response through disruption of STING-
mediated signaling. PLoS ONE. 2012;7(2):e30802.

 80. Kang DC, et al. mda-5: An interferon-inducible putative RNA 
helicase with double-stranded RNA-dependent ATPase activity 
and melanoma growth-suppressive properties. Proc Natl Acad Sci 
U S A. 2002;99(2):637–42.

 81. Deddouche S, et al. Identification of an LGP2-associated MDA5 
agonist in picornavirus-infected cells. Elife. 2014;3:e01535.

 82. van Kasteren PB, et al. Arterivirus and nairovirus ovarian tumor 
domain-containing Deubiquitinases target activated RIG-I to con-
trol innate immune signaling. J Virol. 2012;86(2):773–85.

 83. Zhao Y, et al. RIG-I like receptor sensing of host RNAs facilitates 
the cell-intrinsic immune response to KSHV infection. Nat Com-
mun. 2018;9(1):4841.

 84. Loo YM, et al. Distinct RIG-I and MDA5 signaling by RNA 
viruses in innate immunity. J Virol. 2008;82(1):335–45.

 85. Newton K, Dixit VM. Signaling in innate immunity and inflam-
mation. Cold Spring Harb Perspect Biol. 2012;4(3):a006049.

 86. Honda K, et al. IRF-7 is the master regulator of type-I interferon-
dependent immune responses. Nature. 2005;434(7034):772–7.

 87. Honda K, et al. Regulation of the type I IFN induction: a current 
view. Int Immunol. 2005;17(11):1367–78.

Publisher's note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds 
exclusive rights to this article under a publishing agreement with the 
author(s) or other rightsholder(s); author self-archiving of the accepted 
manuscript version of this article is solely governed by the terms of 
such publishing agreement and applicable law.


	COVID-19: A novel holistic systems biology approach to predict its molecular mechanisms (in vitro) and repurpose drugs
	Abstract
	Purpose 
	Methods 
	Results 
	Conclusion 

	Introduction
	Methods
	Data gathering for COVID-19

	Data gathering for SARS
	Analysis of differentially expressed genes for SARS
	PPI network data sources
	PPI network construction
	Topological analysis
	PPI molecular complex detection (MCODE)
	Enrichment analysis for MCODE clusters
	PPI network relations identification between SARS and COVID-19
	Drug–target interaction network construction
	Results
	Data gathering for COVID-19 and SARS
	Results of topological analysis
	Detection of MCODE clusters and assessing the statistical relationship between diseases
	Hub-bottleneck functional enrichment
	Functional analysis of the significantly related MCODE clusters between the infections
	Drug–target interaction network results
	Discussion
	Anchor 27
	Acknowledgements 
	References


