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Abstract

Current literature suggests PFAS carbon chain length may be a predictive variable of toxicity. 

If so, statistical modeling may be used to help predict toxicity, thus improving the efficiency 

of PFAS regulation development. Data were analyzed using one-way ANOVAs, Tukey’s HSD 

post hoc tests, and simple linear regressions. A dataset was predicted using modeling from this 

data. Analysis indicated that 11 of 15 health outcomes showed significant differences in mean 

values. Two of 15 health outcomes were analyzed using simple linear regressions, with statistically 

significant results. After predictive modeling generated a theoretical dataset, unpaired t-tests 

comparing the results of an actual dataset indicated no significant differences among the mean 

values of the two health outcomes. Therefore, predictive statistical modeling may be used to 

predict health outcomes for PFAS exposure.
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Introduction

Perfluoroalkyl and polyfluoroalkyl substances (PFAS) are a class of chemicals exhibiting 

similar molecular structures (i.e., at least with one aliphatic per-fluorocarbon moiety), 

environmental properties, and biological hazards (Kwiatkowski et al. 2020). The exact 

number of PFAS is unknown, although 4,730 have currently been identified (Organisation 

for Economic Co-operation and Development 2018). PFAS can be described as either 

“long-chained” or “short-chained”, although these descriptions vary by type of PFAS and 

the individual chemical structure. For example, perfluoroalkyl carboxylic acids with at least 

seven carbon atoms and perfluoroalkane sulfonic acids with at least six carbon atoms are 
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considered long-chained (Buck et al. 2011; Wang et al. 2017). Used mainly as industrial 

chemicals, flame retardants, and in food packaging, PFAS are ubiquitous (Ding et al. 2020; 

Pelch et al. 2019). Due to their strong carbon-fluorine bonds, they pose a concern to the 

environment (Cousins et al. 2020; Death et al. 2021) and for potential toxicity to humans 

(Ding et al. 2020; Cousins et al. 2020; Pelch et al. 2019; Fenton et al. 2020).

Human health threats associated with PFAS exposure have been found from both 

epidemiological and toxicological studies. Some detrimental health effects associated with 

PFAS exposure include impaired immune function, impaired thyroid function, including 

thyroid disease and increased thyroid stimulating hormone (TSH), liver disease and cancer, 

insulin dysregulation, kidney disease and cancer, impaired sperm mobility, testicular cancer, 

and developmental effects, including reduced birth weight and neurodevelopmental effects 

(Fenton et al. 2020). Furthermore, PFAS are associated with endocrine disturbing effects and 

may affect female fertility and reproductive health outcomes (Ding et al. 2020).

Although they are a chemical class, currently, PFAS have historically been often regulated 

on a substance-by-substance basis (Kwiatkowski et al. 2020). There is much debate 

surrounding the current approaches to PFAS regulation, with arguments favoring a 

regulatory model in which PFAS are evaluated as a chemical class, or possible subclasses 

(Kwiatkowski et al. 2020). Due to the high quantity of PFAS in existence and their potential 

to cause detrimental effects on the environment and humans, there is a demonstrated need 

for fast and accurate methods to produce data to assist in the regulation of PFAS.

In advocacy towards the need for a class-based regulatory model, in December 2019, a 

document, ‘Elements for an EU-Strategy for PFASs’, was published by the European Union. 

The document highlights the premises that there are far too many PFAS to implement a 

substance-by-substance regulatory model that is both temporally and fiscally effective, most 

PFAS lack a Chemical Abstract Service (CAS) number and have unclear composition, and 

there is insufficient information about their chemical properties. While it is suggested that 

some PFAS may be less toxic than others, because many PFAS exhibit toxicity and the full 

extent and scope of potential effects on human health from the combination of exposure 

to multiple PFAS are unknown, the entire chemical class is of concern. Based on these 

premises, the EU argues that regulation as a class avoids regrettable substitution and favors 

the protection of human health (European Union 2019).

Although, others argue that regulation of PFAS as a chemical class or chemical subclasses 

may not be feasible. For example, the Vermont General Assembly instructed the Vermont 

Department of Environmental Conservation to complete an assessment of the feasibility of 

regulating PFAS as a class of chemicals in public water systems. This action was based on 

the following alleged issues: 1) a purportedly inadequate amount of toxicological research, 

which is needed to create a framework for developing a class-based regulatory standard; 

2) the existence of thousands of PFAS , while the ability of current laboratory methods 

purportedly to can only reliably identify ≈30 of the thousands of PFAS , leading to the 

inability to comprehensively quantify PFAS in drinking water; 3) the concern that treatment 

options to remove PFAS from drinking water could present new health risks; and 4) lack 

of regional and national coordination (Vermont Official State 2021). The Vermont General 
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Assembly ultimately decided that it is not feasible for them to regulate PFAS as a chemical 

class at this time. (Vermont Official State 2021).

As such, it is vital to consider alternative approaches that enhance the ability to regulate 

these compounds. One such approach includes building statistical models to predict 

health outcomes from PFAS exposure. The number and structure of elements in chemical 

compounds are frequently used to predict many physical characteristics, such as boiling 

point, melting point, environmental fate, and toxicity (Wu and Wang, 2018).

Quantitative Structure-Activity Relationships (QSAR) use chemical structure parameters 

to predict several chemical properties (including toxicity) of families of compounds. The 

earliest of these QSAR methods, the Hansch approach (proposed in 1962) used linear 

regressions as its main statistical approach to create a predictive model (Wu and Wang 

2018). The Free-Wilson method (1964) used the molecular structure as a predictive variable 

for regression analysis of physiological activity (Wu and Wang 2018).

While international regulatory bodies have typically relied upon in vivo and in vitro 

data, there is a recent movement towards the use of QSAR in regulation. The United 

States Environmental Protection Agency (USEPA) has released documentation detailing 

the consideration and possible advancements of the use of QSAR for pesticide regulation 

(Manibusan, et al. 2012). Furthermore, the EU’s European Chemical Agency (ECHA) 

welcomes the use of QSAR and other computational techniques, under strict restrictions 

including the scientific validity, reliability, and quality of the model (ECHA 2016).

The toxicity of PFAS is a result of their chemical structure. PFAS are organic fluorine 

compounds, which are characterized by the carbon-fluorine bond, the strongest bond found 

in organic chemistry, due largely to the high electronegativity of fluorine, (Cousins, et al. 

2020). Additionally, in general, the longer the length of the carbon-chain, the less water-

soluble is the PFAS (Gagliano et al. 2020). These properties result in PFAS demonstrating 

extreme persistence. Importantly, because the longer-chained PFAS have an increased 

number of these persistent C-F bonds, and lower rates of water solubility, they exhibit longer 

half-lives in living organisms (Chambers et al. 2021).

Due to these properties, there is a widely held belief that longer chained PFAS are more 

toxic (Cousins et al. 2020; Chambers et al. 2021). Using the concept of QSAR, there may 

be a mathematical basis between PFAS carbon chain length and toxicity. This basis could 

be used to build statistical models to predict adverse health outcomes, information that 

could supplement toxicological and epidemiological data in the evaluation and regulation 

of new and existing PFAS . This additional approach could increase the speed, reliability, 

and accuracy of future PFAS regulation. The present study describes an attempt to develop 

and test one such statistical model using the number of carbon atoms in PFAS to predict 

adverse health outcomes. The development and use of statistical modeling and QSAR in 

the advancement of the understanding of PFAS toxicity and their regulation is not yet well 

understood, making this a novel and important analysis.

The current analysis compares mean values of health outcomes between groups in exposed 

laboratory rats, with the hypothesis that mean values will differ significantly between 
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groups. To advance the understanding of statistical modeling as a means of supplementing 

current methods of regulation, a predictive model is used to generate a dataset predicting 

health outcomes in rats exposed to a theoretical PFAS. The mean values of this generated 

dataset will be compared to mean values of an observed dataset of health outcomes of rats 

exposed to a PFAS of the same carbon chain length. The hypothesis is that the generated 

dataset will not statistically significantly differ between mean values of health outcomes, 

when compared to the observed dataset. These analyses will help provide evidence for the 

use of statistical modeling based on the chemical structure in the regulation of PFAS.

Clinical chemistry health outcomes serve as the health outcomes which will be used 

as the dependent variables in these analyzes. Clinical chemistry health outcomes are 

measured by analyzing bodily fluids, such as urine or blood. These measures are useful 

in epidemiological research, as they are continuous variables and often associated with 

adverse health outcomes (NTP 2022 a). Many clinical chemistry health outcomes are used 

to monitor and diagnosis adverse health outcomes. For example, cholesterol levels in the 

blood may be used to monitor risk of cardiovascular disease (Gjuladin-Hellon 2018), and 

total protein in urine may be used as a means to help diagnosis kidney disease (Bökenkamp 

2020). Effects of PFAS exposure have been associated with changes in clinical chemistry 

levels in humans (NTP 2022 a).

Methods & Materials

Materials

Datasets sourced from the National Toxicology Program (NTP) contain data from 28-day 

long rat toxicity studies. Studies include TOX-96 of Perfluoroalkyl Sulfonates, which 

include (PFBS) and (PFOS) (NTP 2002 b). As well as TOX-97 of Perfluoroalkyl 

Carboxylates, which include (PFHxA), (PFOA), (PFNA, and (PFDA) (NTP 2022 c). 

Additional datasets from the TOX-96 study concerning PFHSKslt were used in the analyses 

(NTP 2022 b).

The rat species used for these experiments were Harlan Sprague Dawley rats. The animals 

were exposed to the substances by gavage, at five separate doses. Only the first three doses 

were used in this analysis, due to the excessive deaths leading to missing data in doses four 

and five. Rats were exposed to the substances for 28 days and then sacrificed and health 

outcomes were measured. 10 rats were included in each study at each dose. Only male rats 

were included in this analysis.

Health outcomes that were assessed in male rats during the initial study and included in 

the secondary analysis include alanine aminotransferase levels in IU/L, albumin levels in 

g/dL, alkaline phosphatase levels in IU/L, aspartate aminotransferase levels in IU/L, bile 

salts/acids levels in μmol/L, cholesterol levels in mg/dL, creatine kinase levels in IU/L, 

creatinine levels in mg/dL, direct bilirubin levels in mg/dL, serum glucose levels in mg/dL, 

sorbitol dehydrogenase levels in IU/L, total bilirubin levels in mg/dL, total protein levels in 

g/dL, triglycerides levels in mg/dL and urea nitrogen levels in mg/dL.

Bellia et al. Page 4

Toxicol Mech Methods. Author manuscript; available in PMC 2024 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Methods

The analysis began with the use of one-way ANOVAs to compare group mean values 

between PFAS. Here type of PFAS is the independent variable, and clinical chemistry health 

outcome is the dependent variable. One-Way ANOVA was chosen as the hypothesis test 

because there is one categorical independent variable, one numeric dependent variable, there 

were more than 2 (6) groups, and data were normally distributed. A test was completed for 

each dose and each health outcome.

The statistical significance threshold, alpha, was set to .05 (5%). Bonferroni correction 

was applied to the .05 threshold as a multiple hypothesis correction. 45 ANOVAs were 

completed. .05/45= .001, therefore if p<.001 between all three doses for a health outcome, 

the difference between the mean values was considered statistically significant and a post 

hoc analysis was conducted. The post hoc analysis used for this analysis was Tukey’s 

Honestly Significant Difference (HSD) test. Tukey’s HSD post hoc test was completed to 

assess which pairs of PFAS have statistically significantly different mean values from one 

another. Results were considered statistically significant at p<.001. One test was completed 

for each statistically significant health outcome for each dose.

Furthermore, simple linear regression analyses were conducted to form a predictive model 

for health outcomes. A simple linear regression approach was used because the number 

of carbon atoms per PFAS served as the only predictor variable for these models, due to 

issues of multicollinearity in other variables considered as covariates. Additionally, both 

the response and predictor variables are quantitative. The statistical significance threshold, 

alpha, for simple linear regression models is set to <.05.

Linear regression is the most used model for identifying possible relationships between 

a response variable and predicator variables, as it is a simple model (Degregory et al. 

2018). Therefore, the simple linear regression serves as a reliable starting point for the 

generation of a predictive model. There are a few assumptions that must be met before the 

implementing the use of a linear regression analysis including:

Linearity: The relationship between the independent variable and the mean of the dependent 

variable is linear.

Homoscedasticity: The variance of residual is the same for any value of the independent 

variable

Independence: The dependent variable has no relationship with the residuals.

Normality: The residuals must be approximately normally distributed..

Linearity of the variables were tested by calculating the correlation coefficient in R. This 

study held a requirement of at least a moderate linear relationship between variables at all 

doses, which is defined as a correlation coefficient of .40. Three of the 15 health outcomes 

met this assumption: alanine aminotransferase, creatine kinase, and sorbitol dehydrogenase. 

Homoscedasticity was tested by applying a Breusch-Pagan test to the three remaining 

health outcomes, with p<.05 indicating heteroscedasticity. Homoscedasticity was seen in 
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two of the three health outcomes: creatine kinase and sorbitol hydrogenase. Values for these 

variables were normally distributed and it is assumed that there is no relationship between 

observations.

If statistical significance was found in all three doses for a health outcome, a dataset for 

a theoretical C6 PFAS was predicted. This was done by using the ‘predict’ function in 

R. The predict function is “a generic function for predictions from the results of various 

model fitting functions” (RStudio Team 2021). The function implements data previously 

inputted to produce predictive results. For linear regression models, the function uses the 

Y-intercept and coefficient to create predicted values for an unmeasured dependent value. 

In this case, linear regressions were conducted with clinical chemistry health outcomes as 

the response variable, and the number of carbon atoms per PFAS as the predictive variable. 

These analyzes produce a y-intercept and coefficient for each health outcome. Therefore, the 

model uses the value of the response variable at the y-intercept, the value of the coefficient, 

and a value for the predictive variable for which a prediction is to be made. In this case, 6 is 

used for the predictive variable, which is the carbon chain length of the theoretical PFAS , to 

project a value for the health outcome.

Linear regression formula:

Y = a + bX .

Unpaired T-Tests were used to compare the mean values of the predicted health outcomes 

from the generated datasets to the mean values of health outcomes from existing datasets. 

The existing datasets came from experiments exposing rats to an actual C6 PFAS , 

PFHSKslt, sourced from the National Toxicology Program (NTP 2022 b).

Under the Safe Drinking Water Act, every five years, the United States Environmental 

Protection Agency (USEPA), releases a document, ‘Unregulated Contaminant Monitoring 

Rule (UCMR)’, which contains a list of unregulated drinking water contaminants that are to 

be monitored closely by public water systems. The fifth and most recent UCMR contained 

a list of 29 PFAS . Based on current technologies, this list purportedly contains each and 

every PFAS the USEPA is able to detect in drinking water (USEPA 2021; USEPA 2019; 

USEPA 2020). PFHSKslt is currently not listed on the UCMR because the USEPA claims 

to not have the technology to detect PFHSKslt in drinking water. Therefore, this molecule 

was chosen as the PFAS to be compared to a predicted value, as this purportedly cannot be 

detected in drinking water with current methods.

If the T-Test resulted in a p-value of more than .05, in all three doses, there was no 

statistically significant difference in the mean values, indicating the statistical model was 

successful at predicting a health outcome. An unpaired t-test was used because variables 

were continuous, data were normally distributed, and the mean values were collected from 

two independent groups. R software was used for every analysis.
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Results

45 one-way ANOVAs were conducted to compare the effects of different PFAS on 15 male 

clinical chemistry health outcomes at three doses among laboratory rats. Differences in the 

mean values were observed in all three doses in male rats for the following health outcomes: 

alanine aminotransferase levels; albumin levels; alkaline phosphatase levels; aspartate 

aminotransferase levels; bile salts/acids levels; cholesterol levels; creatine kinase levels; 

direct bilirubin levels; sorbitol dehydrogenase levels; total protein levels; and urea nitrogen 

levels. Statistically significant differences were found in over 70% of the tested health 

outcomes. Given this information, the null hypothesis that there will be no statistically 

significant differences can be rejected.

The one-way ANOVAs revealed that at dose 1 results were not statistically significant for 

creatine levels (F (5, 54) = [1.75], p= [.14]), glucose levels (F (5, 54) = [2.54], p= [.04]), and 

total bilirubin levels (F (5, 54) = [1.87], p= [.12]), and at dose 2 for creatine levels (F (5, 53) 

= [4.54], p= [.002]), glucose levels (F (5, 53) = [4.24], p= [.002]), and triglycerides levels (F 

(5, 53) = [4.07], p= [.003]).

Moreover, one-way ANOVAs indicated that results were statistically significant at dose 1 for 

triglycerides levels (F (5, 54) = [6.88], p= [<.001]), dose 2 for total bilirubin levels (F (5, 53) 

= [11.36], p= [<.01]). Results at dose 3 for statistically significant for creatine levels (F (5, 

54) = [10.06], p= [<.01]), glucose levels (F (5, 54) = [9.41], p= [<.001]), triglycerides levels 

(F (5, 54) = [7.91], p= [<.001]) and total bilirubin levels (F (5, 54) = [40.54], p= [<.01]).

A Tukey’s HSD post hoc test was conducted for each health outcome indicating statistically 

significant results between all 3 doses. Results of the post hoc analyses can be found in 

Table 5.

Furthermore, simple linear regressions were conducted for 2 clinical chemistry health 

outcomes, creatine kinase levels and sorbitol dehydrogenase levels at all three doses. Results 

were statistically significant at all three doses for both creatine kinase levels and sorbitol 

dehydrogenase levels.

Results were not significant for both creatine kinase levels and sorbitol dehydrogenase 

levels, indicating that the statistical models were successful in predicting these health 

outcomes.

There was no statistically significant difference t (68) =0.92, p=.36 between the mean values 

of creatine kinase levels of the rats exposed to PFHSKslt at dose 1, (M =111.20, SD = 

15.52) compared to the predicted value (M = 107.52, SD = 11.06).

There was no statistically significant difference t (67) =0.60, p=.55 between the mean values 

of creatine kinase levels of the rats exposed to PFHSKslt at dose 2, (M = 108.50, SD = 

16.32) compared to the predicted value (M = 105.47, SD = 14.60).
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There was no statistically significant difference t (10.30) =−0.18, p=.86 between the mean 

values of creatine kinase levels of the rats exposed to PFHSKslt at dose 3, (M = 104.00, SD 

= 25.16) compared to the predicted value (M = 105.52, SD = 16.35).

There was no statistically significant difference t (68) =1.62, p=.11 between the mean values 

of sorbitol dehydrogenase levels of the rats exposed to PFHSKslt at dose 1, (M =9.80, SD = 

2.04) compared to the predicted value (M = 8.30, SD = 2.80).

There was no statistically significant difference t (67) =0.21, p=.84 between the mean values 

of sorbitol dehydrogenase levels of the rats exposed to PFHSKslt at dose 2, (M = 10.10, SD 

= 2.33) compared to the predicted value (M = 9.85, SD = 3.72).

There was no statistically significant difference t (68) =0.87, p=.39 between the mean values 

of sorbitol dehydrogenase levels of the rats exposed to PFHSKslt at dose 3, (M = 9.80, SD = 

2.44) compared to the predicted value (M = 9.23, SD = 1.81).

Discussion

The findings of the one-way ANOVAs indicate that there are statistically significant 

differences in the mean values of several PFAS pairs, among several health outcomes. 

Tukey’s HSD post hoc test serves the purpose of comparing every possible pair of mean 

values that were originally compared in the one-way ANOVA, to determine which pairs 

are statistically significantly different from one another. Surprisingly, there were the highest 

difference (proportionately) in means among pair groups with two long chained PFAS, 

compared to paired groups of one short chained PFAS or two short chained PFAS. This may 

be because, as PFAS increase in chain length, they become more toxic (Chambers et al. 

2021), thus resulting in more extreme mean values and larger differences among the means. 

This is further supported by the fact that there are highest frequencies of differences between 

paired groups involving the PFAS PFNA (C9) and PFDA (C10), and the longest chained 

PFAS included in the analysis.

Predictive models were developed for two of 15 clinical chemistry health outcomes in 

this study: creatine kinase and sorbitol dehydrogenase. Increased levels of serum creatine 

kinase levels are associated with thyroid (Hekimsoy and Oktem 2005) and musculoskeletal 

conditions (Johannsen et al. 2013) and increased levels of sorbitol dehydrogenase levels 

are associated with diabetes (Harvey et al. 2011). Models were useful in predicating the 

theorical health outcomes, indicating the models can be successful. These models are 

certainly not perfect and need refinement before being utilized as regulatory tools. As more 

data is inputted into these models, they may become more accurate. Therefore, statistical 

modeling should not be considered as the sole basis for regulation, but rather to supplement 

both toxicological and epidemiological data as they become more accurate.

To ensure the most comprehensive analysis of toxicity, epidemiological studies will continue 

to be important to identify PFAS of particular concern, sites of contamination, and 

specific health outcomes of concern (Bartlett and Judge 1997). It is impossible to collect 

experimental data for every PFAS , and therefore these epidemiological studies serve as 

crucial guidance to toxicological studies. They help to inform which PFAS to test, for what 

Bellia et al. Page 8

Toxicol Mech Methods. Author manuscript; available in PMC 2024 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



health outcomes, and for how long of an exposure. From toxicological studies, experimental 

data is acquired. Experimental data is crucial for toxicity assessment, as it helps to eliminate 

confounding variables and establish causal inferences (Adami et al. 2011). This data can 

then be used to refine statistical modeling and to predict health outcomes, which is crucial 

for chemical classes such as PFAS, where there is simply not enough time or resources to 

test every chemical. Together, data from epidemiological and toxicological studies, as well 

as modeling techniques should be considered when making important decisions regarding 

the regulation of PFAS , whether as a class, a subclass, or as a substance-by-substance basis.

Limitations

Like all studies, this study has limitations. First, the National Toxicology Program currently 

has data available for only seven PFAS . Of these seven PFAS , only six were used in 

the one-way ANOVAs, the post hoc tests, and the simple linear regression analyses. There 

are thousands of PFAS in global circulation (Organization for Economic Co-operation and 

Development 2018). Six PFAS may, therefore, not be enough to form a fully accurate, 

comprehensive, predictive model for toxicity health outcomes. More data will help to 

produce more accurate models in the future.

Furthermore, each of the datasets analyzed, contained data from only 10 rats. This is not 

a large enough sample size. The rats used in these models also are assumed to be healthy, 

adult rats. This is not necessarily representative of the total human population in which there 

are infants, the elderly, and people with pre-existing health conditions which may worsen 

health outcomes when exposed to PFAS. Although, toxicological research relies heavily on 

the 3r principles, which enforce the rule that only the smallest number of animals may be 

used for research involving animals. Statistically, larger sample sizes are desirable, but on 

the grounds of animal welfare, researchers must rely on smaller sizes, and a sample size of 

10 rats is not unique to this study (DFG, 2019). Therefore, any statistical modelling utilizing 

animal data from toxicological studies will inevitably face the reality of small sample sizing 

and lack of statical power.

Additionally, animal modeling will have certain limitations when attempting to demonstrate 

toxicological effects in humans. We cannot be sure that the effects seen in rat models will 

always be seen in humans. At present, however, it is crucial to use animal models, as it 

is unethical to conduct these experiments on humans. Furthermore, dose adjustments are 

always applied to animal toxicity models, to account for these issues (Nair and Jacob 2016).

An additional limitation is that the health outcomes selected for analysis in this study were 

arbitrary. It was not determined in this analysis whether the health outcomes were either 

positive or negative to overall health. Only the numerical value of health outcomes was 

considered when analyzing differences in health outcomes, not what these numerical values 

mean for health. The question being explored here was whether the numerical value is 

different, regardless of the real-life applicable value.

This study utilized data from male rats only. While the use of data from both sexes is 

crucial to health research, it was not feasible to use data from female rats in this study. 

Male and female rats differ significantly in their height, weights and production of hormones 
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(NTP 2022 a). Due to this reasoning, toxicological data from male and female rats should 

not be combined to one sample. For the purpose of brevity and to reduce complexity, 

researchers from this study choose to analyze data from one sex only. Reviewing data from 

multiple studies on multiple health outcomes conducted at the NTP, indicted male rats were 

more significantly affected by exposure to PFAS, compared to female rats, across several 

health outcomes (NTP 2022 a). Therefore, male rats were chosen for this study. This is a 

limitation, as health research should be inclusive to all sexes and genders. Future studies 

should consider this, and more research is needed to account for these discrepancies.

Furthermore, the only aspect of chemical structure considered in this study was the 

number of carbon atoms per PFAS . All PFAS have fluorine, which are contained in the 

carbon-fluorine bonds making up PFAS chains (Kwiatkowski et al. 2020). However, the 

number of fluorine atoms per PFAS was not considered during this analysis, due to the 

issue of multicollinearity. It is plausible that the number of fluorine atoms in PFAS is 

a predictive factor of health outcomes. Consideration of this variable in future models 

may help to produce more accurate predictions. Additionally, many PFAS contain a wide 

range of other elements such as nitrogen, oxygen, sulfur etc., and it is not known whether 

these elements may also affect health outcomes. Several other chemical properties, such 

as branching, terminal moiety, chemical weight, chemical density, and pKa value, may 

affect PFAS toxicity and effects of exposure on health outcomes. There are several types of 

models which can consider multiple independent covariates such as multilinear regressions, 

random forest, extreme gradient boosting, and neural networks. Future research seeking to 

understand the relationship between chemical structures and properties of PFAS and health 

outcomes will have to implement these models.

For example, in the instances of number of carbon atoms per PFAS, number of fluorine 

atoms per PFAS, and molecular weight, these properties cannot be analyzed together 

utilizing multilinear regressions, due to high levels of multicollinearity. It may be useful in 

the future to utilize a random forest model, as this model is not affected by multicollinearity 

(Yilmazerab and Kocamana 2020). As research into QSAR and modelling for regulation 

advances and there is more experimental toxicological data available for PFAS, it is 

expected that a variety of different models will be utilized. This study did not capacity 

for these advanced models, which is a limitation that we predict will be addressed in future 

research.

In addition to PFAS having several chemical structures not considered, the subclasses of 

PFAS were not considered in this analysis. This analysis included both carboxylic acids and 

sulfonic acid PFAS , but they were treated the same and data was combined to develop the 

model. It is likely that health outcomes differ by subclass, and analyzing them separately 

will produce different results, which may be important to consider in future research.

Conclusions

This study helps to provide evidence to suggest that there may be differences in the health 

outcomes of short chained versus long chained PFAS . This study also provides evidence 

that by using the number of carbon atoms per PFAS as a predictive variable, it may 
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be possible to generate datasets predicting health outcomes of PFAS exposure. Based on 

current legislation, knowledge, technology, time constraints and resources, the possibly 

of efficiently regulating PFAS based on epidemiology and toxicology studies does not 

seem feasible. There are not enough resources to regulate PFAS on either a molecule-by-

molecule basis or using a class-based approach. Development of new approaches to predict 

PFAS adverse health outcomes are important to address the problems in current regulatory 

approaches. Our study shows that statistical approaches may be able to predict some, but 

not all, of the adverse health outcomes associated with PFAS exposure. The approach taken 

in this study was rudimentary, implementing carbon chain length as a predictive factor. 

There are many other important features in PFAS such as fluorine, acid moiety, chemical 

structure, chemical weight, etc. which can be used in these models. We are hoping our 

positive, yet preliminary results can motivate other investigators to apply similar approaches 

using different variables to develop more advances and accurate models for the use of PFAS 

toxicity predication.
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Figure 1. 
Linear Regression Best Fit Lines, creatine kinase. (A) Dose 1 creatine kinase, (B) Dose 2 

creatine kinase, (C) Dose 3 creatine kinase.
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Figure 2. 
Linear Regression Best Fit Lines, sorbitol dehydrogenase. (A) Dose 1 sorbitol 

dehydrogenase, (B) Dose 2 sorbitol dehydrogenase, (C) Dose 3 sorbitol dehydrogenase
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Table 1.

PFAS Physical Characteristics and Classifications

PFAS Name Molecular Formula Molecular Weight Classification

Perfluorobutanesulfonic Acid (PFBS) C4HF9O3S 300.01 Short Chained, C4

Perfluorooctanesulfonic Acid (PFOS) C8HF17O3S 500.13 Long chained, C8

Perfluorononanoic Acid (PFNA) C9HF17O2 464.08 Long chained, C9

Perfluorohexanoic Acid (PFHxA) C6HF11O2 314.05 Short Chained, C6

Perfluorodecanoic Acid (PFDA) C10HF19O2 514.08 Long Chained, C10

Perfluorooctanoic Acid (PFOA) C8HF15O2 414.07 Long Chained, C8

Perfluorohexanesulfonic acid (PFHSKslt) C6HF13O3S 400.12 Long chained, C6
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Table 2.

Dose per PFAS in mg/kg/day

PFAS Dose 1 Dose 2 Dose 3

PFBS 62.6 125 250

PFOS 0.312 0.625 1.25

PFDA 0.156 0.312 0.625

PFHxA 62.6 125 250

PFNA 0.625 1.25 2.5

PFOA 0.625 1.25 2.5

PFHSKslt 0.625 1.25 2.5
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Table 3.

Correlation Coefficient for Strength of Linear Relationship and Breusch-Pagan test for Homoscedasticity

Health Outcome R Strength R Strength r Strength Breusch-Pagan p-value

AA .42 moderate .61 strong .31 weak

A .42 moderate .27 weak −.20 weak

AK .25 weak .38 weak .16 weak

AsA .40 moderate .55 moderate .45 moderate .44 <.01 .16

B .07 weak .34 weak .35 weak

C .66 moderate .54 moderate .07 weak

CK .45 moderate .57 moderate .40 moderate .39 .05 .17

Cr −.18 weak −.04 weak −.47 moderate

DB .12 weak .29 weak .30 weak

G .26 weak .27 weak −.10 weak

SD .63 moderate .62 moderate .41 moderate .24 .16 .71

TB −.30 weak −.10 weak .28 weak

TP −.33 weak −.38 weak −.41 moderate

Tg −.24 weak −.30 weak −.33 weak

U .07 weak .10 weak .23 weak

Note: Parameters measured included alanine aminotransferase (AA), albumin (A), alkaline phosphatase (Ak), aspartate aminotransferase (AsA), 
bile salts/acids (B), cholesterol (C), creatinine kinase (CK), direct bilirubin (DB), sorbitol dehydrogenase (SD), total protein (TP), and urea nitrogen 
(U). Abbreviations indicate the parameter in which a difference (p<.001) was identified and the dose levels (1, 2 and/or 3, shown as superscript) at 
which a difference occurred.
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