
Machine Learning Offers Exciting Potential for Predicting 
Postprocedural Outcomes: A Framework for Developing 
Random Forest Models in IR

Ishan Sinha, BS,

Dilum P. Aluthge, BS,

Elizabeth S. Chen, PhD,

Indra Neil Sarkar, PhD, MLIS,

Sun Ho Ahn, MD, FSIR

Division of Interventional Radiology (S.H.A.), Department of Diagnostic Imaging, Warren Alpert 
Medical School of Brown University (I.S., D.P.A.), Providence, Rhode Island; and Brown Center 
for Biomedical Informatics (I.S., D.P.A., E.S.C., I.N.S.), Brown University, 233 Richmond Street, 
Box G-R, Providence, RI 02912.

Abstract

Purpose: To demonstrate that random forest models trained on a large national sample can 

accurately predict relevant outcomes and may ultimately contribute to future clinical decision 

support tools in IR.

Materials and Methods: Patient data from years 2012–2014 of the National Inpatient Sample 

were used to develop random forest machine learning models to predict iatrogenic pneumothorax 

after computed tomography–guided transthoracic biopsy (TTB), in-hospital mortality after 

transjugular intrahepatic portosystemic shunt (TIPS), and length of stay > 3 days after uterine 

artery embolization (UAE). Model performance was evaluated with area under the receiver 

operating characteristic curve (AUROC) and maximum F1 score. The threshold for AUROC 

significance was set at 0.75.

Results: AUROC was 0.913 for the TTB model, 0.788 for the TIPS model, and 0.879 for the 

UAE model. Maximum F1 score was 0.532 for the TTB model, 0.357 for the TIPS model, and 

0.700 for the UAE model. The TTB model had the highest AUROC, while the UAE model had the 

highest F1 score. All models met the criteria for AUROC significance.

Conclusions: This study demonstrates that machine learning models may suitably predict 

a variety of different clinically relevant outcomes, including procedure-specific complications, 

mortality, and length of stay. Performance of these models will improve as more high-quality IR 

data become available.
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As more data become available with the widespread adoption of electronic health records 

(EHRs) and multi-institution registries, the development of robust machine learning 

algorithms for clinical outcome prediction becomes increasingly feasible. Furthermore, the 

continuing standardization of EHR interfaces is making it possible to efficiently integrate 

third-party artificial intelligence (AI) applications for point-of-care decision support (1). 

Traditionally, clinical risk calculators have been developed outside of the EHR using scoring 

systems or linear models validated on a limited sample of patients. Modern risk calculators 

using machine learning offer the potential to uncover nonlinear associations missed by 

these older models. They can be tailored to individual patient populations and can adapt 

automatically with access to new data.

In clinical medicine, the focus of many new AI applications has been on computer 

vision using deep learning, a tool that has broad implications in fields that rely on the 

identification of images, such as radiology, pathology, dermatology, and ophthalmology 

(2,3). However, the literature suggests that AI can also be harnessed to forecast outcomes, 

such as mortality, length of stay (LOS), and readmission, to help clinicians provide patients 

with accurate prognoses and plan for anticipated complications (4–6). Random forests are a 

type of supervised machine learning model used for binary classification problems. Recently 

published work has demonstrated that it is possible to develop random forests with data 

from a single institution to predict outcomes after procedures in interventional radiology 

(IR). One study presented a model developed to predict survival following yttrium-90 

radio-embolization using only baseline factors obtained before treatment (7). Another group 

used random forests to classify treatment response after transarterial chemoembolization 

(8). AI solutions, if properly integrated into the clinical workflow, may help interventional 

radiologists with planning before the procedure by providing predictions for a wide variety 

of procedures. The purpose of this study was to demonstrate that random forest models 

trained on a large national sample can accurately predict these outcomes and may ultimately 

contribute to future clinical decision support tools in IR.

MATERIALS AND METHODS

This was a retrospective study using de-identified data from a national database. The data 

did not contain any of the 18 personal health identifiers designated by the Health Insurance 

Portability and Accountability Act, and therefore this study did not qualify as human 

subjects research as defined by the institutional review board.

Materials

The National Inpatient Sample (NIS) is the “largest publicly available all-payer inpatient 

health care database in the United States,” compiled annually by the Agency for Healthcare 

Research and Quality as part of the Healthcare Cost and Utilization Project (HCUP) (9). The 

sample of hospitals participating in the Healthcare Cost and Utilization Project encompasses 

> 95% of the US population. This study examined patients from the NIS presenting in 

2012–2014.
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Inclusion and Exclusion Criteria

This study used machine learning to predict outcomes after 3 different procedures that have 

varying incidence in the available data. The following outcomes were investigated:

1. Iatrogenic pneumothorax from a computed tomography–guided transthoracic 

biopsy (TTB)

2. In-hospital mortality after transjugular intrahepatic portosystemic shunt (TIPS)

3. LOS > 3 days after uterine artery embolization (UAE)

All patients undergoing each of the 3 selected procedures were queried using the associated 

International Classification of Diseases, 9th Revision, Clinical Modification procedure 

codes: 3326 (TTB), 39.1 (TIPS), 68.24 (UAE with coils), and 68.25 (UAE without coils). 

Features used as inputs for all 3 of the models are listed in Tables E1–E3 (available online 

on the article’s Supplemental Material page at www.jvir.org). Features corresponding to 

historical clinical diagnoses were selected separately for each model; features with missing 

data in > 1% of rows were excluded. For the TTB model, 84 binary features indicating 

history of a previously diagnosed medical condition met the inclusion criteria. For the TIPS 

model, 68 such features were included, and 46 were included for the UAE model. The 

outcome of interest for each model was extracted from the original dataset and stored as a 

reference. Subsequently, patients were excluded from analysis if a data element for any of 

the selected features or outcomes was absent.

Patient Characteristics

Following application of the inclusion and exclusion criteria to the original data, 12,046 

patients who underwent TTB, 2,263 patients who underwent TIPS, and 826 patients who 

underwent UAE were identified. Of the patients who underwent TTB, 937 (7.78%) had a 

reported iatrogenic pneumothorax. Of the TIPS patients who underwent TIPS, 184 (8.13%) 

died during their admission. Of the UAE patients who underwent UAE, 231 (28.0%) had an 

LOS > 3 days. Patient demographic information is presented in Table 1.

Data Partitioning and Resampling

Before analysis, the data were randomly partitioned into training (50%), tuning (25%), and 

testing (25%) sets. Final counts are included in Table E4 (available online on the article’s 

Supplemental Material page at www.jvir.org). It is known that classification using machine 

learning may suffer when the outcome frequency in the training set is imbalanced (10). To 

address this issue, the training set was resampled using the Synthetic Minority Oversampling 

Technique (SMOTE) (11), which has been validated for clinical outcome prediction (12).

Random Forest Model

Random forests rely on an ensemble of decision trees to classify inputs. This is generally 

done to improve the performance of the random forest model compared with individual 

decision trees, which are prone to overfitting on the training data. In this study, 3 different 

random forest classifiers were developed from the training sets following the use of SMOTE. 

The models were then evaluated on the tuning set so that hyperparameters could be adjusted 

for optimal performance.
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Each decision tree within a random forest is trained on a random sample of the original data 

using a random subset of features. At every branching point, the feature that minimizes the 

entropy (maximizes information gain) of the resulting nodes is selected (13). In essence, the 

decision tree attempts to separate the data into groups that have the least heterogeneity of 

outcomes (Fig 1 shows an example). The branching continues until all of the features have 

been used or all of the tree’s terminal nodes have reached maximum internal concordance. 

During model evaluation, outputs across all of the decision trees are averaged to calculate 

a final probability of the outcome; the threshold probability can then be set to generate a 

prediction.

Model Evaluation

The trained TTB, TIPS, and UAE models were used to generate predictions on the testing 

data for iatrogenic pneumothorax, mortality, and extended LOS, respectively. Predictions 

from the models were then compared against the reference outcomes. Receiver operating 

characteristic (ROC) curves and probability histograms were plotted for each of the 

models. Performance was evaluated using area under the receiver operating characteristic 

curve (AUROC) and maximum F1 score. The following standard guidelines for AUROC 

interpretation were used: < 0.70, poor; 0.70–0.80, acceptable; 0.80–0.90, excellent; > 0.90, 

outstanding (14). The associated threshold and specificity for a 90% fixed sensitivity were 

determined. Additionally, precision and recall corresponding to the maximum F1 score were 

calculated. Training and evaluation speeds were recorded for each model.

Software

Data preprocessing and analysis were conducted using Version 0.6.2 of the Julia 

programming language (15). Resampling, model development, and plotting were 

implemented using (PredictMD), an open-source machine learning toolkit, designed by the 

authors to provide a uniform interface for developing and testing clinical prediction tools 

("BenchmarkTools.jl"). Runtimes were assessed using the BenchmarkTools.jl package (16). 

All computations were performed on a consumer-grade laptop computer (2 GHz Intel Core 

i5, 8 GB DDR3 RAM, 256 GB SSD; Intel Corp, Santa Clara, California).

RESULTS

The final hyperparameters for each random forest model are shown in Table 2. The number 

of trees was 1,000 for all models. SMOTE oversampling percentage was hand-tuned to 

generate sufficient data to train the models. For each forest, the number of features per tree 

was set to integer value closest to the square root of the total number of features.

The performance of the models on the testing set is shown in Table 3. AUROC was 0.913 

for the TTB model, 0.788 for the TIPS model, and 0.879 for the UAE model. Maximum 

F1 score was 0.532 for the TTB model, 0.357 for the TIPS model, and 0.700 for the UAE 

model. The TTB model had the highest AUROC, while the UAE model had the highest F1 

score. Based on the established guidelines for AUROC interpretation, the TTB model was 

“outstanding,” the TIPS model was “acceptable,” and the UAE model was “excellent” (14). 
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Model training and evaluation speeds are presented in Table 4. Additional features per tree 

was related to longer training times and slower evaluation speeds.

The distribution of probability outputs by each model were plotted as classifier histograms 

(Fig E1a–c [available online on the article’s Supplemental Material page at www.jvir.org]). 

These figures demonstrate that, among the 3 models, the TTB model does the best job of 

separating the positive classes from the negative classes. This is consistent with the fact that 

it has the highest AUROC value. For each model, an ROC curve was plotted (Fig 2a–c). 

Comparison of the 3 ROC curves shows that the ROC curve of the TTB model is closest to 

the theoretical ideal classifier, which again is consistent with the result that it has the highest 

AUROC.

DISCUSSION

This study presents a framework for developing and evaluating random forest models for the 

prediction of outcomes after IR procedures. The results demonstrate that these models may 

be effective at predicting outcomes after procedures when trained on a large national dataset. 

This is particularly exciting considering that all of the model inputs are features that were 

available before admission. Based on AUROC, the TTB model is the most accurate (0.913), 

which may be due in part to the fact that it was trained on substantially more data than the 

other 2 models. F1 scores provide an indication of how well a model predicts instances of 

a minority class; the high F1 score (0.700) (and corresponding precision and recall) of the 

UAE model is likely a result of less class imbalance in the original dataset.

For the TTB, TIPS, and UAE models, it is possible to achieve a high sensitivity for the 

predicted outcome without completely sacrificing specificity, albeit with vastly different 

results (specificities of 82.4%, 45.3%, and 68.0%, respectively). In these examples, 

sensitivity was fixed at 90% because importance was given to identifying patients at high 

risk for developing the studied outcomes. Users seeking to identify low-risk patients (eg, 

to screen for appropriate outpatient candidates) would adjust the predictive threshold to 

maximize specificity. All the possible pairs of sensitivity and specificity for each model are 

represented by points on the ROC curves (Fig 2a–c).

The use of the SMOTE algorithm was essential in addressing the problem that arises from 

training a classification model on imbalanced data. When predicting negative outcomes with 

low incidence, models tend to be biased toward the majority outcome, thus underpredicting 

instances of the minority outcome. Although using SMOTE can decrease the effect of this 

bias, the classifier’s ability to predict minority outcomes may still be limited when applied 

to imbalanced testing data, as demonstrated by the variation in maximum F1 score between 

models.

Prior work in identifying patients at high risk for pneumothorax following TTB focused 

on determining individual risk factors, such as age, emphysema, lesion depth and size, 

and needle passes, as independent predictors for developing a pneumothorax (17–19). The 

only published application of machine learning to this problem has been directed toward 

automatically detecting pneumothoraces on chest radiographs after biopsy using artificial 
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neural networks (3). The results demonstrate that a machine learning model does not require 

technical, procedure-specific information to accurately predict this outcome, as suggested in 

previous studies; however, integration of these features into the TTB model may improve its 

already “outstanding” performance.

Several popular tools currently exist for predicting outcomes in patients with cirrhosis, 

such as the Model for End-Stage Liver Disease (MELD) score and the Child-Pugh score. 

These have also been repurposed to predict 30-day mortality following TIPS (AUROC of 

0.878 and 0.822, respectively) (20) as well as in-hospital mortality in the setting of acute 

upper gastrointestinal bleeding (AUROC of 0.810 and 0.796, respectively) (21). However, 

both MELD and Child-Pugh scores suffer from an absence of demographic factors and 

medical comorbidities and have not been optimized specifically for patients with TIPS. 

The random forests in this study do not perform as well as MELD or Child-Pugh score 

in predicting mortality, but they are still able to make predictions using only demographic 

factors and medical comorbidities. Trivedi et al (22) published an analysis of national trends 

and outcomes following TIPS using the years 2003–2012 of the NIS and concluded that 

demographic, socioeconomic, and clinical factors “may aid clinicians in better assessing 

preprocedural risk.” This study implements the insightful recommendation of the authors by 

providing a computerized clinical decision support tool based on those factors.

UAE is a safe and effective alternative to hysterectomy for the treatment of symptomatic 

fibroid disease as well as emergent uterine bleeding, especially in the setting of postpartum 

hemorrhage (23,24). It has been shown to decrease hospital LOS by > 4 days and results 

in fewer major complications compared with hysterectomy (23). Despite these advantages, 

in some cases UAE is not curative, and surgical intervention becomes necessary. One study 

showed that classification of patients undergoing UAE for postpartum hemorrhage based 

on uterine artery staining on angiography can help identify patients at increased risk for 

UAE failure (24), but otherwise there has been a dearth of information published regarding 

patient selection for UAE in both the gynecology and the radiology literature. This study 

presents a methodology for developing models for patient selection and risk prediction in 

UAE. Identification of patients at high risk for extended LOS before the procedure can be 

used to improve patient selection, inform shared decision making, and anticipate utilization 

of hospital resources.

Random forests are well-studied machine learning models with multiple areas of strength. 

As demonstrated in Table 4, random forests offer competitive speeds during both the training 

and the evaluation phases. Additionally, the ensemble structure of random forests allows 

the training phase to be parallelized over multiple central processing unit cores or even 

distributed over multiple computers, making them suitable for use in a real-time setting (eg, 

an EHR) where performance is prioritized (13). Random forests also excel at processing 

high-dimensional data with a large number of input features (25). To increase the portability 

of these models, clinical applications of machine learning can be programmed as web-based 

calculators that allow providers to access the tools from any computer, tablet, or mobile 

device. As computerized clinical decision support becomes more common, these tools will 

be developed into applications that use open interoperability standards to integrate directly 
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into commercial EHR systems and automatically display outcome predictions in the patient 

chart (1).

Random forests discover and exploit nonlinear relationships among the input variables. 

These nonlinearities help make random forests more accurate than linear models. However, 

there is no intuitive method for visualizing these relationships and thereby understand 

the relative importance of contributing features, which has led some authors to describe 

random forests as black boxes (26). This is a limitation of random forests that is shared 

by other nonlinear models, such as the widely used pooled cohort equations for predicting 

atherosclerotic cardiovascular disease (27).

The incidence of pneumothorax is lower in the NIS sample (7.78%) compared with 

published figures (9%–54%) (17). This may be due in part to providers not documenting 

clinically negligible pneumothoraces or miscoding them as noniatrogenic. This highlights 

the importance of consistent documentation when mining large national databases and 

suggests that the TTB model is effective only at predicting a documented iatrogenic 

pneumothorax. Fortunately, this outcome likely represents a clinically relevant event that 

can impact patient management (eg, longer observation, additional imaging, chest tube 

placement).

One salient limitation of using the NIS database for TIPS outcome prediction is the lack 

of laboratory data, which are included in the aforementioned scoring tools (MELD and 

Child-Pugh). Ultimately, any model that attempts to predict mortality after TIPS should 

integrate demographic, clinical, and laboratory data. If trained on a sample that includes 

laboratory values, it is expected that the performance of this machine learning model would 

increase substantially and surpass the predictive capabilities of linear scoring tools alone for 

mortality after TIPS.

The analysis here is limited owing to its inclusion of patients undergoing UAE for all causes. 

Machine learning algorithms require a sufficiently large sample to accurately train models; 

the low volume of reported UAEs in the NIS necessitated the inclusion of both elective 

and nonelective procedures. Performance may be biased by differences in demographics and 

comorbidities between patients from elective and nonelective groups. Decision support tools 

must be developed using specific data related to their population of interest before they can 

be integrated into clinical workflow.

The features and sample sizes in these models were limited owing to the use of a general 

national database of inpatient admissions. This underscores the underlying need to develop 

a multicenter registry of IR procedures, which can be leveraged to enhance clinical decision 

support. The methodology in this study may then be applied to the multicenter registry to 

develop more powerful random forest models.

In conclusion, this study showed that random forest models may be used to predict a 

variety of different clinically relevant, postprocedural outcomes. Accuracy of these models 

is influenced by multiple factors, including dataset size, imbalance in outcome incidence, 

available features, and proportion of missing data. Ultimately, results from this investigation 
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encourage the application of machine learning methods to IR decision support tools through 

the use of high-quality data.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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ABBREVIATIONS

AI artificial intelligence

AUROC area under the receiver operating characteristic curve

EHR electronic health record

LOS length of stay

MELD Model for End-Stage Liver Disease

NIS National Inpatient Sample

ROC receiver operating characteristic

SMOTE Synthetic Minority Oversampling Technique

TIPS transjugular intrahepatic portosystemic shunt

TTB transthoracic biopsy

UAE uterine artery embolization
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Figure 1. 
Decision tree example. Pictured is a hypothetical example of training a single decision tree 

within a random forest model for predicting myocardial infarction (MI). CAD = coronary 

artery disease; EtOH = alcohol.
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Figure 2. 
(a–c) ROC curves. The true positive rate (sensitivity) is plotted against the false positive 

rate (1 – specificity) over various thresholds. The theoretical ideal classifier corresponds to 

a point in the top left corner (sensitivity 100%, specificity 100%). (a) TTB ROC curve. (b) 
TIPS ROC curve. (c) UAE ROC curve.
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Table 1.

Patient Demographic and Clinical Information

Data Element TTB TIPS UAE

Age, y, median 69 (1–90) 57 (0–89) 44 (17–90)

(range)

Medical comorbidities, median (range) 6(0–22) 6 (0–19) 2 (0–17)

Sex

 Female 5,761 (47.8%) 807 (35.7%) 826 (100%)

 Male 6,285 (52.2%) 1,455 (64.3%) 0 (0%)

Race

 White 8,954 (74.3%) 1,674 (74.0%) 270 (32.7%)

 Black 1,643 (13.6%) 121 (5.3%) 368 (44.5%)

 Hispanic 791 (6.6%) 309 (13.7%) 105 (12.7%)

 Asian/Pacific Islander 275 (2.3%) 32 (1.4%) 36 (4.4%)

 Native American 69 (0.6%) 31 (1.4%) 4 (0.5%)

 Other 314 (2.6%) 95 (4.2%) 43 (5.2%)

National ZIP income quartile*

1 3,816 (31.7%) 710 (31.4%) 226 (27.4%)

2 3,289 (27.3%) 623 (27.5%) 154 (18.6%)

3 2,764 (22.9%) 536 (23.7%) 205 (24.8%)

4 2,177 (18.1%) 393 (17.4%) 241 (29.2%)

No. patients with outcome of interest† 937 (7.78%) 184 (8.13%) 231 (28.0%)

No. patients 12,046 2263 826

Note–Demographic and comorbidity information for the patients in each of the 3 clinical problems.

TIPS = transjugular intrahepatic portosystemic shunt; TTB = transthoracic biopsy; UAE = uterine artery embolization.

*
Quartile 1 is the highest (richest) national income quartile by ZIP code, and quartile 4 is the lowest (poorest) quartile.

†
Iatrogenic pneumothorax, death, and long length of stay, respectively.
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Table 2.

Model Hyperparameters

TTB TIPS UAE

SMOTE oversampling percentage 300% 1,000% 800%

Total number of features in random forest 95 81 58

Total number of trees in random forest 1,000 1,000 1,000

Number of features per individual tree 10 9 8

Note–Hyperparameters for each of the 3 random forest models. Hyperparameters describe the process used for constructing the random forest 
models. The SMOTE oversampling percentage describes how many synthetic data points were created from the original dataset. For example, 
a SMOTE oversampling percentage of 300% (respectively, 1,000% and 800%) means that for each patient in the original dataset who had the 
outcome of interest, 3 (respectively, 10 and 8) synthetic data points were created. Each random forest consisted of 1,000 trees. Each individual 
tree was trained on a subset of features (selected randomly) and a subset of patients (70% of the total patients, selected randomly). There was no 
maximum node depth (ie, there was no limit to the size of any individual tree).

SMOTE = Synthetic Minority Oversampling Technique; TIPS = transjugular intrahepatic portosystemic shunt; TTB transthoracic biopsy; UAE = 
uterine artery embolization.
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Table 3.

Model Performance Metrics

TTB TIPS UAE

AUROC 0.913 0.788 0.879

Maximum F1 score 0.532 0.376 0.700

Precision (at maximum F1 score) 0.426 0.279 0.563

Recall (at maximum F1 score) 0.709 0.576 0.915

Sensitivity 90.0% 90.0% 90.0%

Specificity (at sensitivity of 90%) 82.4% 45.3% 68.0%

Threshold (at sensitivity of 90%) 0.209 0.103 0.195

Note–Performance metrics for each of the random forest models when evaluated on the testing set. AUROC is a good overall summary of each 
model’s performance. The maximum F1 score is useful for evaluating the performance of each model on imbalanced data (ie, when there are 
far more patients without the outcome of interest than with the outcome of interest). The F1 score is defined as the harmonic mean of precision 
(positive predictive value) and recall (sensitivity). Precision and recall values corresponding to the maximum F1 score have also been provided. 
Threshold refers to the classifier value that fixed sensitivity at 90%. The corresponding specificity was computed and is reported.

AUROC = area under the receiver operating characteristic curve; TIPS = transjugular intrahepatic portosystemic shunt; TTB = transthoracic biopsy; 
UAE = uterine artery embolization.
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Table 4.

Model Training and Evaluation Speeds

TTB TIPS UAE

Time to train random forest, s 8.667 5.435 3.340

Time to run random forest 0.0126 0.0124 0.0077

Note–Time required to train the random forests and to evaluate them on a new patient. Smaller values correspond to faster speeds.

TIPS = transjugular intrahepatic portosystemic shunt; TTB = transthoracic biopsy; UAE = uterine artery embolization
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