Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1990 Jun;93(2):504–511. doi: 10.1104/pp.93.2.504

Response to Phosphate Deprivation in Brassica nigra Suspension Cells 1

Enhancement of Intracellular, Cell Surface, and Secreted Phosphatase Activities Compared to Increases in Pi-Absorption Rate

Daniel D Lefebvre 1, Stephen M G Duff 1, Cheryl A Fife 1, Colin Julien-Inalsingh 1, William C Plaxton 1
PMCID: PMC1062541  PMID: 16667495

Abstract

Suspension cells of Brassica nigra responded to Pi deprivation by increasing their potential for Pi influx and by raising the active levels of intracellular, cell surface, and secreted acid phosphatases. These responses, however, were temporally distinct. Phosphate influx capacity increased 15-fold in parallel to a 10-fold decrease in endogenous Pi during 7 days of culture in basal growth medium. In contrast, intracellular and cell surface phosphatase activities changed only after alterations in cellular phosphorus status had been in place for a number of days. Even in nutrient sufficient cells the secretion of phosphatase remained relatively high as did the activities of the other phosphatases. The cell surface acid phosphatase had a Km of approximately 10 times that of the influx process and molybdate was a much stronger inhibitor of this phosphatase activity. From these results it appears that Pi absorption and the production or activation of phosphatases are regulated in a distinct manner. In addition, Pi uptake into Brassica nigra cells does not appear to directly involve the cell surface phosphatase under Pi-deficient conditions.

Full text

PDF
504

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Boos W. Bacterial transport. Annu Rev Biochem. 1974;43(0):123–146. doi: 10.1146/annurev.bi.43.070174.001011. [DOI] [PubMed] [Google Scholar]
  2. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  3. DAVIS B. J. DISC ELECTROPHORESIS. II. METHOD AND APPLICATION TO HUMAN SERUM PROTEINS. Ann N Y Acad Sci. 1964 Dec 28;121:404–427. doi: 10.1111/j.1749-6632.1964.tb14213.x. [DOI] [PubMed] [Google Scholar]
  4. Duff S. M., Lefebvre D. D., Plaxton W. C. Purification and Characterization of a Phosphoenolpyruvate Phosphatase from Brassica nigra Suspension Cells. Plant Physiol. 1989 Jun;90(2):734–741. doi: 10.1104/pp.90.2.734. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Duff S. M., Moorhead G. B., Lefebvre D. D., Plaxton W. C. Phosphate Starvation Inducible ;Bypasses' of Adenylate and Phosphate Dependent Glycolytic Enzymes in Brassica nigra Suspension Cells. Plant Physiol. 1989 Aug;90(4):1275–1278. doi: 10.1104/pp.90.4.1275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Epstein E., Rains D. W., Elzam O. E. RESOLUTION OF DUAL MECHANISMS OF POTASSIUM ABSORPTION BY BARLEY ROOTS. Proc Natl Acad Sci U S A. 1963 May;49(5):684–692. doi: 10.1073/pnas.49.5.684. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Goldstein A. H., Baertlein D. A., McDaniel R. G. Phosphate Starvation Inducible Metabolism in Lycopersicon esculentum: I. Excretion of Acid Phosphatase by Tomato Plants and Suspension-Cultured Cells. Plant Physiol. 1988 Jul;87(3):711–715. doi: 10.1104/pp.87.3.711. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Goldstein A. H., Danon A., Baertlein D. A., McDaniel R. G. Phosphate Starvation Inducible Metabolism in Lycopersicon esculentum: II. Characterization of the Phosphate Starvation Inducible-Excreted Acid Phosphatase. Plant Physiol. 1988 Jul;87(3):716–720. doi: 10.1104/pp.87.3.716. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Job D., Cochet C., Dhien A., Chambaz E. M. A rapid method for screening inhibitor effects: determination of I50 and its standard deviation. Anal Biochem. 1978 Jan;84(1):68–77. doi: 10.1016/0003-2697(78)90484-0. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES