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Abstract

When eradication is impossible, cancer treatment aims to delay the emergence of resistance while 

minimizing cancer burden and treatment. Adaptive therapies may achieve these aims, with success 

based on three assumptions: resistance is costly, sensitive cells compete with resistant cells, and 

therapy reduces the population of sensitive cells. We use a range of mathematical models and 

treatment strategies to investigate the tradeoff between controlling cell populations and delaying 

the emergence of resistance. These models extend game theoretic and competition models with 

four additional components: 1) an Allee effect where cell populations grow more slowly at 

low population sizes, 2) healthy cells that compete with cancer cells, 3) immune cells that 

suppress cancer cells, and 4) resource competition for a growth factor like androgen. In comparing 

maximum tolerable dose, intermittent treatment, and adaptive therapy strategies, no therapeutic 

choice robustly breaks the three-way tradeoff among the three therapeutic aims. Almost all models 

show a tight tradeoff between time to emergence of resistant cells and cancer cell burden, with 

intermittent and adaptive therapies following identical curves. For most models, some adaptive 

therapies delay overall tumor growth more than intermittent therapies, but at the cost of higher cell 

populations. The Allee effect breaks these relationships, with some adaptive therapies performing 

poorly due to their failure to treat sufficiently to drive populations below the threshold. When 

eradication is impossible, no treatment can simultaneously delay emergence of resistance, limit 

total cancer cell numbers, and minimize treatment. Simple mathematical models can play a role in 

designing the next generation of therapies that balance these competing objectives.
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1. Introduction

Treatment that delays or prevents the emergence of resistance can control cancers, 

potentially indefinitely, and provides a suitable strategy when eradication is impossible 

[1]. As with bacterial resistance to antibiotics or herbivore resistance to pesticides, high 

levels of treatment can lead to emergence of resistant strains that had been controlled by 

a combination of costs of resistance and competition with susceptible strains [2]. Adaptive 

therapies, where cessation of treatment precedes loss of efficacy, have been proposed as a 

way to delay emergence of resistance, an approach supported by mathematical modeling, 

laboratory experiments, and some preliminary results of clinical trials [3–5]. Modeling has 

played a key role in evaluating therapeutic timing, often providing evidence that reduced 

doses with treatment holidays can provide longer-term control [6].

The effectiveness of adaptive therapy depends on three assumptions: resistance is costly, 

resistant cells can be suppressed by competition with sensitive cells, and therapy reduces the 

population of sensitive cells. Under these assumptions, mathematical models have provided 

some support for adaptive therapy [5, 7]. Our goal here is to investigate a wider range of 

mathematical models to better understand the role of these assumptions and of particular 

modeling choices in shaping the tradeoff between controlling cell populations and delaying 

the emergence of resistance. However, even for a relatively simple and well-understood 

cancer like prostate cancer, the mechanisms delaying resistance are not fully known. In 

particular, neither the role of costs nor that of competition with susceptible cell lineages has 

been clearly established.

For our range of models, we compare three strategies:

1. Maximum Tolerable Dose (MTD): a constant high dose determined by side 

effects.

2. Intermittent: a periodic scheduled dose with treatment holidays [8]. We here 

follow more common usage, rather than metronomic therapy, as recently 

reviewed [9].

3. Adaptive: initiation and termination of treatment based on the status of individual 

patient biomarkers, often with much earlier cessation of treatment than in 

intermittent strategies.

We begin by examining the original model by Zhang et al (2017) in more depth, and looking 

at a wider range of therapy strategies. Our central result is that all therapies follow the same 

tradeoff between total cancer cell burden and time to emergence of resistance.
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To investigate a wider range of models, we first place the original model into a broader 

framework of game theoretic and competition models. We extend these in four ways that 

could alter responses to therapy.

• Allee effect: Control of resistance solely by competition with susceptible cell 

populations leads logically to the tradeoff between cancer cell burden and time 

to emergence of resistance. Inclusion of an Allee effect, where cell populations 

grow more slowly at low population sizes [10], could break that tradeoff.

• Healthy cells: Cancer cells compete both with each other and with unmutated 

cells [11] that respond differently to therapy and could alter the response to 

different therapeutic regimes.

• Immune response: Apparent competition, whereby species interact not through 

competition for space or resources, but as mediated by predators [12] or an 

immune response, could alter responses to therapy by introducing a delay and 

through their own responses to treatment [13, 14].

• Resource competition: Like competition mediated through the immune system, 

explicit resource competition models introduce delays mediated through the 

dynamics of depletable factors. Models include consumer-resource dynamics 

[15–17] and more mechanistic models of androgen dynamics [18–20].

After summarizing the original model from [5], we present the alternative models, provide 

parameter values that scale dynamics to be comparable to the original, derive analytical 

results on the simplest of these to illustrate tradeoffs, and test the three treatment strategies. 

We hypothesize that intermittent and adaptive therapy will produce similar results in all 

cases, with the exception of the Allee effect where the rapid cessation of treatment could 

allow cancers to escape.

2. Materials and methods

2.1. The basic Zhang model (Zh)

We begin with the model published by Zhang et al (2017). This Lotka-Volterra model 

has three competing cell types, which we reletter for consistency with our later models: S
represents the population of androgen-dependent cells that are sensitive to treatment, P  the 

population of androgen-producing cells and R the population of androgen-independent cells 

that are resistant to treatment x1, x2 and x3 respectively in the original).

dS
dt = rS 1 − aSSS + aSPP + aSRR

KS
S

dP
dt = rP 1 − aPSS + aPPP + aPRR

KP
P

dR
dt = rR 1 − aRSS + aRPP + aRRR

KR
R .

(2.1)

Each cell type has an intrinsic per cell growth rate r and carrying capacity K. The carrying 

capacity for S cells is assumed to be proportional to P . The competition coefficients a
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represent pairwise competitive effects between cells. Adaptive therapy is based on prostate 

specific antigen (PSA) dynamics described by

dPSA
dt = S + P + R − 0.5PSA (2.2)

where 0.5 represents the rate of PSA decay. This is much faster than the other time scales in 

the model, making PSA almost exactly proportional to total cell numbers.

This model simulates therapy by reducing the carrying capacity of S and P . More 

specifically, KP is reduced by a factor of 100, and the carrying capacity of S is changed from 

1.5P  to 0.5P . Treatment thus results in an extremely rapid drop in these two populations. 

Treatment has no effect on R cells which are thus released from the competitive suppression 

created by their smaller carrying capacity, and grow quickly until therapy is stopped. 

The full set of parameter values for our main simulations are given in Table 1 based on 

representative patient #1 [5].

This model includes the complexity of testosterone-producing P  cells in addition to 

competition of sensitive and resistant cells. To test whether P  cells are essential to the result, 

we build a simpler version of the model (Zs) with two cell types, and implement therapy by 

directly reducing the carrying capacity of the sensitive cells, with equations

dS
dt = rS 1 − aSSS + aSRR

KS
S

dR
dt = rR 1 − aRSS + aRRR

KR
R .

(2.3)

We use the same parameters as for the full model, except that KS = 1.5 × 104 in the absence 

of therapy and 50 with therapy.

2.2. General model framework

To capture the key assumptions of this model and examine the conditions that lead to 

success of adaptive therapy, we consider the following general framework of interaction 

between sensitive cells S and resistant cells R, and an additional variable or variables X:

dS
dt = rS S, R, X, u S − δS u S
dR
dt = rR S, R, X, u R − δRR
dX
dt = f S, R, X, u .

(2.4)

The additional dimension X represents androgen-producing cells in the Zhang model, but 

could also be healthy cells, androgen, another resource or growth factor, or an immune 

response. The variable u represents treatment, which will be a function of time for 

intermittent and adaptive therapy. The functions rR and rS describe growth as functions of 

population size to model competition, of X to capture the tumor microenvironment via use 

of resources or immune attack, and of u to represent the effects of treatment. The death terms 
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δS and δR are included to separate births and deaths, and as a place for treatment effects u, 

here restricted to sensitive cells.

As outputs, we solve for the time of two types of treatment failure:

• The time TC when the total cancer cell population exceeds some threshold Ccrit,

• The time TR when the population of resistant cells exceeds some threshold Rcrit .

As the costs, we also track two outputs:

• Mean cancer cell numbers,

• The fraction of time being treated.

We use mean cancer cell numbers, which effectively assumes that costs are linear in the 

number of cells, both for simplicity and because risks of mutation and metastasis will be 

proportional to the number of cells. We do not attempt optimal control analysis [21], and 

present as results tradeoffs between the times, treatment, and cancer burden, looking for 

conditions where maximizing time to emergence reduces both treatment and cancer burden.

2.2.1. Game theoretic model (GT)—The simplest version of this framework uses 

game theoretic models that focus on how strategy frequencies depend on frequency-

dependent fitness. A basic model with density dependence is given by

dS
dt = rS u 1 − S + R

K S − δSS
dR
dt = rR 1 − S + R

K R − δRR .
(2.5)

where C = S + R. We place treatment costs in the growth rate of S cells, and give both cell 

types the same carrying capacity and symmetric competitive effects.

2.2.2. Lotka-Volterra model (LV)—Equation 2.5 is a the special case of a Lotka-

Volterra model with equal competition coefficients. We here generalize to a model similar to 

equation 2.1, but with a more realistic approach to the effects of therapy and consequences 

of resistance.

dS
dt = rS 1 − S + aSRR

KS
S − δS u S

dR
dt = rR 1 − aRSS + R

KR
R − δRR .

(2.6)

Treatment increases the death rate δS. We scale the competition coefficients describing the 

effect of each type on itself to 1, but can have asymmetric competitive effects and different 

carrying capacities for the two cell types.

2.2.3. Allee Effect (AL)—The next model complements this framework with an Allee 

effect, whereby cancer cells grow more quickly when the population is above some 

threshold. We use the form
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dS
dt = rS

S + R
ka + S + R 1 − b + b 1 − S + aSRR

KS
S − δS u S

dR
dt = rR

S + R
ka + S + R 1 − b + b 1 − aRSS + R

KR
R − δRR .

(2.7)

The parameter b scales the strength of the effect, with b = 1 reducing to equation 2.6. Values 

of 0 < b < 1 create a weak Allee effect where populations grow more slowly when rare, and 

b < 0 generate a strong Allee effect where populations decline when rare. The parameter ka

scales the critical population size below which the Allee effect is strongest.

2.2.4. Healthy Cells (HC)—As our first example of an additional dimension X, we 

consider interactions with healthy cells, denoted by H.

dS
dt   = rS 1 − S + aSRR + aSHH

KS
S − δS u S

dR
dt = rR 1 − aRSS + R + aRHH

KR
R − δRR

dH
dt = rH 1 − aHSS + aHRR + H

KH
H − δHH .

(2.8)

In this simple model, healthy cells are distinguished by their reduced growth and lack of 

sensitivity to treatment.

2.2.5. Lottery model with cancer growth (LM)—Our other models include carrying 

capacities, which is unrealistic for cancers. To address this, we create an extended lottery 

model of competition for sites with healthy cells [22]. Assume that healthy tissue has K
sites, with H occupied by healthy cells and the rest E empty. The healthy cells turn over at 

rate δH, and replicate at rate rH but only into empty locations. Then

dE
dt = δHH − rH

E
E + H H (2.9)

dH
dt = − δHH + rH

E
E + H H . (2.10)

This model maintains a constant number of sites E + H = K, and we think of the equilibrium 

healthy cell population as corresponding to a physiological optimum.

Cancer cells can differ from healthy cells in several ways: they may replicate more quickly, 

reproduce into sites occupied by healthy cells, and reproduce into sites occupied by other 

cancer cells and increase the total cell population. With two cancer cell types S and R, we 

have a total cell population of N = H + S + R and assume that E = K − N if N < K and 

E = 0 otherwise. The cells follow the equations
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dH
dt   = − δHH + rH

E
N H − η H

N aSHrSS + aRHrRR
dS
dt   = − δS u S + rS

S
N E + aSHH + aSSS + aSRR

dR
dt = − δRR + rR

R
N E + aRHH + aRSS + aRRR .

(2.11)

The competition coefficients a describe the probability that a cancer cell reproduces into 

an occupied site. If that site is occupied by a cancer cell, we assume that the total cell 

population will increase, and the parameter η represents the probability that a cancer cell 

kills a healthy cell that it overgrows.

2.2.6. Immune response (IC)—A simple model of the immune system obeys

dS
dt = rS 1 − S + aSRR

KS
S − δS u S − ηSIS

dR
dt = rR 1 − aRSS + R

KR
R − δRR − ηRIR

dI
dt = rI βSS + βRR 1 − I

KI
I − δII .

(2.12)

We assume that immune cells are induced to replicate by presence of cancer cells, and with 

growth limited by a carrying capacity. Immune cells directly kill cancer cells at rates ηS

and ηR. The replication and death rates of immune cells could be altered by treatment or by 

the effect of treatment in priming the immune response, although we do not address these 

factors here.

2.3. Models with androgen dynamics

We consider a range of models that include androgen-dependent growth by sensitive cells, 

and study androgen deprivation therapies that reduce the supply of this resource.

2.3.1. Resource competition (RC)—We adapt the basic resource competition model 

from population biology [23] by treating androgen as a resource. Upon activation, androgen 

receptor is translocated to the nucleus, and we take the subsequent chemical transformations 

that occur within the cell to mean that any androgen that is used is destroyed in the process 

[24, 25]. The model tracks the two cell types and the androgen level A with the equations

dS
dt   = rS A S 1 − S + R

KS
− δSS

dR
dt   = rR A R 1 − S + R

KR
− δRR

dA
dt   = σA u − δAA − cSAS − cRAR

(2.13)

where we model competition as in the basic game theory model (GT). Growth rates depend 

on androgen levels, and androgen is supplied externally at rate σA that is reduced by 

treatment, and used by other cells at rate δA. For simplicity, we assume non-saturating per 

cell absorption rates, but saturating growth
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rS A = ϵS
cSA

kS + cSA ,  rR A = ϵR
cRA

kR + cRA .

The parameters ϵS and ϵR describe growth efficiency of the two types, and kS and kR the 

half-saturation constants of growth as a function of androgen uptake. Androgen deprivation 

treatment reduces the supply rate of androgen, and has a larger effect on susceptible cells if 

kS > kR or cS < cR.

2.3.2. Androgen Dynamics (A3)—These more detailed models include androgen-

dependent S , androgen-producing P , and androgen-independent cells R  along with 

explicit dynamics of production and use. The dynamics follow

dS
dt   = rS AS 1 − S + P + R

KS
S

dP
dt = rP AP 1 − S + P + R

KP
P

dR
dt   = rR 1 − S + P + R

KR
R

(2.14)

where the division rates of S and P  cells depend on their intracellular androgen 

concentrations AS and AP respectively.

The androgen concentrations derive from an accounting of androgen production and 

diffusion

dAS

dt = η AE − AS − μAS

dAP

dt = ρ + η AE − AP − μAP

dAE

dt = σ + ηP AP − AE + ηS AS − AE − δAAE .

(2.15)

AE is the external androgen concentration, η is diffusion into and out of cells, μ is androgen 

use by cells, ρ is production by P , and σ is residual production outside the prostate. The 

equilibrium of the androgen system is

AE =
σ + ρP η

η + μ
η P + S μ

η + μ + δA

AS = η
η + μAE

AP = ρ
η + μ + AS .

(2.16)

We assume that the dynamics of equation 2.15 are sufficiently fast to use these equilibrium 

values in equation 2.14.
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2.3.3. Androgen model without androgen-producing cells (A2)—For 

comparison with the two-dimensional models, we simplify the system to exclude 

testosterone-producing cells by setting P = 0 in equation 2.14.

2.4. Parameter values

We choose parameter values to hit three targets.

1. Resistant cells do not invade without therapy

2. Sensitive cells grow to about 10,000 without therapy

3. Resistant cells invade with MTD therapy

We set initial conditions to S 0 = 1000 and R 0 = 1.0 × 10−10. The threshold for R cell 

invasion is set to Rcrit = 1.0 × 10−4 and for total cell numbers to Ccrit = 0.5Mmax where Mmax

is the maximum PSA level (equal to the total cancer cell population) that occurs in 10,000 

days in the absence of treatment. We assume that treatment increases the death rate of 

sensitive cells by a factor of 50 for the models without resources to match the strong effect 

of treatment in the original model [5] except for the Allee effect model where we use a 

factor of 10 to avoid driving the population below the threshold too quickly. For the models 

with explicit resources (RC, A2 and A3) we reduce resource availability by 90% as an upper 

bound of observed effects [26, 27]. For treatment, we run a range of intermittent therapies 

with periods tP ranging from 100 to 1000 days and treatment duration tD running from 10 

to 400 days, constrained to tD < tP. Treatment begins at time tP − tD. To implement adaptive 

therapy, we compare the levels of PSA to two critical levels. Therapy turns on when the total 

cell population increases above a fraction Mℎi of Mmax ranging from 0.2 to 0.9, and turns off 

when the total cell population decreases below a fraction Mlo of Mmax ranging from 0.1 to 0.8.

2.5. Derivation of the tradeoff curve

Consider the basic model with two competing types,

dS
dt = rS 1 − aSSS + aSRR

KS u S
dR
dt = rR 1 − aRSS + aRRR

KR
R

(2.17)

where u represents the level of drug. If R is rare, then it will have a negligible effect on S
which will follow its own dynamics with solution S t . R will obey the linear equation

dR
dt = rR 1 − aRSS

KR
R,

Integrating,

R t = R 0 erRt 1 − aRSS‾ /KR

where S‾  is the mean of S from time 0 to t. We solve for TR with R TR = Rcrit , or
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TR = 1
rR

ln Rcrit

R 0 / 1 − aRSS‾
KR

. (2.18)

Because the models differ in their details, we include this relationship by fitting the 

parameters a and b to the predicted linear relationship of S‾  with 1/TR,

S‾ = a + b
TR

. (2.19)

2.6. Computational methods

We solve models with the package deSolve in R [28] as written with one exception. In 

equation 2.14, there are two regulation terms based on androgen and carrying capacity, 

and the models behave pathologically when both are negative. In this case, we use only 

the androgen-based growth term. To simulate adaptive therapy, we include the auxiliary 

equation

dU
dt = rU M > MℎiMmax 1 − U − rU M < MloMmax U +

0.1rU M < MℎiMmax M > MloMmax (U > 0) U < 10Ucrit U − Ucrit

(2.20)

where M represents the level of the marker, like PSA, which is set equal to the total 

number of cancer cells. Therapy is on when U > ϵ and off when U < ϵ. Uincreases when the 

marker M is above the threshold to turn on (the fraction Mℎi of the maximum value Mmax) 

and decreases otherwise. We adjusted the parameter values to rU = 20.0, ϵ = 1.0 × 10−8 and 

Ucrit = 10ϵ in order to have therapy remain on until the value of U decreases below a fraction 

Mlo of Mmax.

3. Results

We simulate adaptive and intermittent therapy, including as special cases MTD and No 

Therapy, and record TR, the time when R cells emerge R t > Rcrit  and TC, the time when the 

total cancer cell population exceeds its threshold of Ccrit. At each of these times, we record 

the average cell population until that time, and the fraction of time under treatment.

Intermittent therapy and adaptive therapy each have two hyperparameters that control the 

timing of treatment. For intermittent therapy, they are treatment period and duration, while 

for adaptive therapy they are Mℎi and Mlo, the fractions of the maximum PSA where 

treatment turns on and off respectively. By varying these hyperparameters, we obtain the 

tradeoff curves relating time to escape, cell burden, and treatment burden.

To illustrate the dynamics, we show solutions of the equations for three of the models 

with representative parameters (Figure 1). In both the full and simplified Zhang models 

(Zh and Zs), MTD leads to the most rapid decline of sensitive cells and escape of resistant 

cells (blue curves), No Therapy leads to rapid increase of sensitive cells with no escape of 

resistant cells (red curves), and the greatest delay in emergence of resistance depending on 
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the parameter choices. For the full range of hyperparameters, both intermittent and adaptive 

therapy generate repeated oscillations of sensitive cells that are eventually invaded and 

replaced by resistant cells. However, with Allee effect, the results are nearly the opposite. 

MTD drives the cancer cell population below the threshold and eliminates both sensitive and 

resistant cells. Resistance emerges most quickly with this choice of adaptive therapy, and 

intermittent therapy maintains both cell populations in a long-term oscillation.

To summarize across the hyperparameters, we illustrate the relationships of time to escape 

of resistant and total cancer cells with mean cancer cell burden and mean tumor burden until 

that time beginning with the Zh model (Figure 2). Due to the simple linear dynamics of 

resistant cells when rare, intermittent and adaptive therapy follow the same tradeoff curves 

in relation to the time of escape of resistant cells (equation 2.19). MTD gives the endpoint of 

this curve, with the most rapid escape time, minimum cell burden and maximum treatment. 

The time to escape of the total cell population follows a more complex relationship, with 

some intermittent therapies acting much like No Therapy, with rapid cell population escape 

and a relatively high tumor burden. Adaptive therapy deviates only slightly from intermittent 

therapies, with a slight benefit of delaying escape at the cost of higher cell populations.

The two-dimensional extensions follow similar dynamics with the exception of the Allee 

effect model AL (Figure 3). In the Zs, GT and LV models, the mean cancer cell burden 

follows the tradeoff curve (equation 2.19) for both intermittent and adaptive therapy. 

Overall, the two therapies behave similarly, although adaptive therapy can delay resistance 

at the cost of a slightly higher tumor burden. With the Allee effect, the results are quite 

different. MTD drives cells below the threshold, and prevents both resistant cells and total 

cells from reaching their thresholds. Adaptive therapy can behave quite poorly, leading to 

escape times nearly as short as those with No Therapy and with a high total cell burden.

In Figure 4, we illustrate the results of the HC, LM, and IC models for which total cells 

are comprised of an additional cell type: healthy (HC, LM) or immune (IC). Despite their 

greater complexity, the results from these models also closely follow the predicted tradeoff 

(equation 2.19), although with a greater deviation for the lottery model (LM) that lacks a 

carrying capacity. As before, adaptive therapy largely overlaps with intermittent therapy, 

deviating in producing longer times to total cell escape at the expense of greater tumor cell 

burden, which is quite large for LM and IC models.

The models with androgen dynamics, RC, A2, and A3, follow broadly similar patterns 

(Figure 5). The relationship of mean cancer burden with time to escape of resistant cells 

persists robustly. As before, adaptive therapy can deviate from intermittent therapy when 

considering time to escape of the total cancer cell number, with a more complex structure 

with two distinct branches evident with intermittent therapies that use a low level of 

treatment but not for any value of adaptive therapy.

With the exception of the success of MTD with a strong Allee effect, no universal therapy 

can achieve all three objectives of lowering mean treatment, delaying time to emergence 

of resistant cells, and reducing total tumor burden. All strategies follow the relationship of 

mean cancer burden with time to emergence of resistant cells, and the deviations between 
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intermittent and adaptive therapies are relatively minor for time to escape of total cancer 

cells. The inclusion of androgen dynamics has the largest effect on whether intermittent, 

adaptive or MTD therapy has higher tumor cell burden with an earlier time to emergence of 

resistant cells.

4. Discussion

Adaptive therapy is based on three key assumptions: resistance is costly, resistant cells 

can be suppressed by competition with sensitive cells, and therapy is effective in reducing 

the population of sensitive cells. Without additional interactions, the only factor impeding 

resistant cells is competition with sensitive cells, leading to a tradeoff between reducing 

overall cancer burden and delaying emergence of resistance. We use a suite of simple models 

to find whether any of three therapy strategies can break this tradeoff: 1) constant therapy 

with maximum tolerable dose (MTD), 2) intermittent therapy on a fixed schedule, and 3) 

adaptive therapy on a patient specific schedule. We seek to test whether adaptive therapy is a 

feasible way to reduce overtreatment.

We have three key results. First, with the exception of models that include a strong Allee 

effect, all models closely follow a tradeoff curve between cancer cell burden and time to 

emergence of resistant cells, due to their suppression by sensitive cells. The Allee effect, 

meaning that cancer cell populations decline if they fall below some threshold, adds an 

additional type of control of resistant cells, and breaks the relationship. Second, again with 

the exception of models with an Allee effect, the tradeoff among time to total cancer cell 

number escape, average cancer cell burden, and total treatment, is similar but not identical 

over a range of intermittent and adaptive therapies. In most cases, some adaptive therapies 

do delay tumor growth, but at the cost of higher cell populations. With the Allee effect, 

some adaptive therapies perform quite poorly because the threshold for stopping therapy 

(a fraction Mlo of Mmax) is above the Allee threshold. Third, and most importantly, no 

therapeutic choice robustly breaks the three-way tradeoff among delaying emergence of 

resistance, delaying cancer growth, and minimizing treatment.

These simple models leave out many factors known to shape response to therapy. Most 

clearly, these models use ordinary differential equations that neglect spatial interactions 

known to be critical in shaping cell interactions and response to therapy [29–31]. The 

stochasticity neglected by differential equations would have the strongest effects when cell 

numbers are low, such as during the initial invasion of resistant cells or when populations are 

close to the threshold created by the Allee effect.

In addition, if resistance is induced by therapy rather than arising from mutations, 

resistance may be much more difficult to suppress [32]. Reversibility of these responses 

can create complex responses to therapeutic timing [33]. Much cancer resistance derives 

from phenotypic plasticity [34] that leads to more rapid emergence of resistance than the 

dynamics used here, and would require a different set of objective functions to evaluate.

Heterogeneity of cells with more than two states [35] can alter responses [30], and these 

states can be induced by a variety of intracellular changes including ABC transporter 
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upregulation [36] and the evolution of mutation and genetic instability [37]. Androgen 

dynamic models begin to link intracellular with tissue-level models, but do not include 

specifics of pharmacokinetics and pharmacodynamics that generate differences among cells 

[36].

Our model of the immune system is highly simplified, and more realistic interactions could 

include the positive effects of the immune system on tumors [38], and additional thresholds, 

such as a lack of immune response to tumors below a particular size or an inability of the 

immune system to suppress tumors larger than some upper bound for control [39].

Use of multiple therapies, such as cytotoxic and cytostatic [40] can help create a double 

bind, such as between chemotherapeutic agents and those that attack glycolysis in hypoxic 

tumors [41] or force cancer into cycles of futile evolution [42]. The original paper [5] 

has been extended to include cells that are testosterone-independent and resistant to the 

chemotherapy docetaxel [43]. Oncolytic viruses interact with cells and the immune system 

with feedbacks that have only begun to be modeled [44]. Anti-angiogenic drugs have 

complex interaction with the dynamics of vasculature [14]. A modeling approach based on 

non-small cell lung cancer [45] that includes glycolytic cells and vascular overproducers, 

shows that adaptive therapy targeting glycolytic cells has potential to be effective [46].

We here examine only a few preset strategies, and optimization approaches could greatly 

refine these. The original model [5] itself has been studied this way [21]. Alternative models 

of prostate cancer [33] have been studied to retrospectively compute optimal treatments 

for 150 patients [47]. Using an alternative competitive framework with Gompertz growth, 

optimization of the dose and timing of treatment can maintain tumors below a tolerable size 

[48].

Optimization has been applied in many more complicated models, such as those including 

vasculature and the immune system and anti-angiogenic drugs and immunotherapy [49], and 

in models that include a continuum of internal resistance states and a population of healthy 

cells [40]. Building on this framework, a simplified two-state model identified strategies 

that give the full dose, then a smaller dose, and then a zero dose [50]. In a comparison of 

different treatment goals, a model of sensitive, damaged and resistant cells proposed to treat 

early to minimize integrated cell numbers, but early and late to minimize total cancer cell 

numbers at a fixed terminal time [51]. In a detailed model of colon cancer, [52] consider 

various dosing schedules to address the case where cancer cells can be in a quiescent state 

that is released by treatment of normal cells.

Any optimization requires choosing an objective function in a single ordered currency. 

Combining the measures used here (cancer cell burden, emergence of resistance, and costs 

of therapy) into a single currency would require sufficient clinical information to combine 

these into survivorship or quality-of-life adjusted years [53].

Applying even the simpler adaptive therapies here requires fitting to data on individual 

patients. A comparison of a simple model [33], a more complex model with basic androgen 

dynamics [20], and a detailed model of androgen dynamics [19] found that all fit data 

reasonably well, although with some exceptions [54]. Whether PSA dynamics alone are 
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sufficient to resolve differences across patients, in particular patients who have different 

types of emerging resistance, seems unlikely, and methods almost certainly will need to be 

complemented with sequencing data [55]. If the models can be fit to the dynamics, adaptive 

therapies may be more robust to patient variability than prescribed timing of intermittent 

therapy.

Our evaluation shows that different objectives, delaying emergence of resistance, limiting 

total cancer cell numbers, and minimizing treatment, are likely to be related, and that no 

treatment can achieve all three. To address this, the choice of treatment strategy must be 

based on an objective function that weights different outcomes and patient goals, some of 

which are typically not included explicitly in mechanistic models, such as side effects [36].

Future therapies will need more sophisticated approaches that take into account multiple 

drug effects, differences among patients including increased clearance under low doses [6], 

and thinking that anticipates cancer responses [56, 57]. However, given the limited and noisy 

data we have on patients, we argue that the simple models and principles presented here will 

remain useful as we move toward the next generation of cancer therapy.
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Appendix A: Parameter values and justification

Model Zh: These parameters are chosen to match those 

in Zhang et al [5], but with time in units of days. 

rS = 0.0278, rP = 0.0355, rR = 0.0665, KS = 1.5*P 0 , KP = 10000, KR = 10000, aSS = 1,  aSP = 0.7,
aSR = 0.8, aPS = 0.4, aPP = 1, aPR = 0.5, aRS = 0.6, aRP = 0.9, aRR = 1, P 0 = 300

. 

Effects of therapy: Reduce KP by 99% and reduce KS from 1.5KP to 0.5KP.

Model Zs: These match those of Model Zh without the P cells. 

rS = 0.0278, rR = 0.0665, KS = 15000, KR = 10000, aSS = 1, aSR = 0.8, aRS = 0.6, aRR = 1. Effects of 

therapy: Reduce KS by 99%.

Model GT:  rS = 0.05, rR = 0.04, δS = 0.01, δR = 0.01, K = 10000. Effects of therapy: Reduce 

growth of S cells to 0, with R cells unaffected.

Model LV: 

 rS = 0.0278, rR = 0.0278, KS = 12000, KR = 10000, aSS = 1, aSR = 0.8, aRS = 0.6,  aRR = 1, δS = 0.001,
δR = 0.001
. Effects of therapy: Increase death rate of S cells by a factor of 50.
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Model AL: 

 b = − 0.1, ka = 5000, rS = 0.015, rR = 0.015, KS = 12000, KR = 10000, aSS = 1,  aSR = 0.8, aRS = 0.6,
aRR = 1, δS = 0.001, δR = 0.001

. 

Effects of therapy: Increase death rate of S cells by a factor of 10.

Model HC: 

 rS = 0.0278, rH = 0.0139, rR = 0.0555, KS = 12000, kH = 10000, KR = 10000,  aSS = 1.0, aSH = 0.6,
aSR = 1.0, aHS = 0.6, aHH = 1.0, aHR = 0.6, aRS = 1.0, aRH = 0.6, aRR = 1.0,  δS = 0.001, δH = 0.001, δR
= 0.001, H 0 = 10000

. 

Effects of therapy: Increase death rate of S cells by a factor of 50.

Model LM: 

 rH = 0.0139, rS = 0.0278, rR = 0.05, K = 10000, H 0 = 10000, aSS = 0.008,  aSH = 0.008, aSR
= 0.008, aRS = 0.0, aRH = 0.008, aRR = 0.008δH = 0.001, δS = 0.001, δR = 0.001,  η = 0.3

. 

Effects of therapy: Increase death rate of S cells by a factor of 50.

Model IC: 

c = 0.4, rS = 0.0278, rI = rS, rR = rS, KS = 15000, KI = 1000, KR = 10000, aSS = 1,  aSR = 0.8, aRS
= 0.6, aRR = 1, δS = 0.001, δI = 0.001, δR = 0.001, βS = 2/KS, βR = 2/KS,  ηS = c* rS − δS /KI , ηR
= ηS, I 0 = 1000

. We 

give immune cells a carrying capacity of KI = 1000 for convenience. We set βS = βR = 2/KS so 

that the immune system is strongly primed when cancer cell populations are large. We pick

ηS = ηR = crS − δS
KI

where c determines the strength of the immune response. Effects of therapy: Increase death 

rate of S cells by a factor of 50.

Model RC: 

cS = 5e − 5, cR = cS, σA = 50, ϵS = 0.01, ϵR = 0.015, KS = 15000, KR = 10000, kS = 0.005, kR = 0.1*kS,
δS = 0.001, δR = 0.001, δA = 0.5, A 0 = 100
. Effects of therapy: Reduce the resource supply rate σA by 90%.

Model A3: 

r0 = 0.00208, sS = 0.0313, sP = 0.00581, rR = 0.00565, KS = 15000, KP = 10000, KR = 10000, δA
= 6000, ρ = 10, μ = 9, σ = 10000, η = 1, P 0 = 1.0

. 

Effects of therapy: Reduce the resource supply rate σ and resource production rate ρ by 

90%. We present the details of the derivation of these values in Appendix B.

Model A2: 

r0 = 0.00208, sS = 0.0313, rR = 0.00565, KS = 15000, KR = 10000, δA = 6000, ρ = 10, μ = 9, σ
= 10000, η = 1

. 

Effects of therapy: Reduce the androgen supply rate σ by 90%.

Appendix B: Calculation of parameter values for Model A3

To find the parameter values that roughly match our targets, we aim to have

• S and P  can coexist with total population of 1.0 × 104,
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• About 90% of androgen comes from P  cells, and is used internally and fairly 

quickly,

• With treatment that reduces σ and ρ by 90%, populations decline quickly.

The key idea is that the growth functions take the form

rS AS = − r0 + sSAS
rP AP = − r0 + sPAP

and must satisfy the conditions that rS AS
* = rS and rP AP

* = rP taken as the values from Model 

Zh. To find r0, we choose a value of AS,  crit  < AS
* which is point of zero growth. We then find

r0   = rS
AS,  crit 

AS
* − AS,  crit 

sS   = rS

AS
* − AS,  crit 

.

We can then find AP ,crit  by assuming that S and P  cells have the same value of r0 as

AP ,  crit   = AP
* r0

r0 + rP

sP  =
rP + r0

AP
*

The equilibrium equations for S and P  take the form

0 = −r0 + sSAS 1 − S + P
KS

0 = −r0 + sPAP 1 − S + P
KP

To coexist, we must have one type regulated by the carrying capacity and the other by 

androgen. Because KP < KS, P  must be regulated by carrying capacity, so S + P = KP. Then 

S will be regulated by androgen, meaning that AS = AS,  crit  at equilibrium. We have that

AS ≈
σ + ρP η

η + μ
μKP

= AS,  crit 

by setting δA = 0 and simplifying by using S + P = KP. This will have a positive root for P*
as long as AS,crit  is sufficiently large. Otherwise, P  will be excluded from the system because 

external production alone can maintain S at a high enough level to exclude it. The root is

P* = μKPAS,  crit  − σ
ρ η

η + μ
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We suppose η = 1.0 and μ = 9.0, meaning that most androgen is used internally and fairly 

quickly. Results are not sensitive to δA and we pick δA = 6000.0 for convenience. The value 

of ρ can be scaled out and we set ρ = 10.0 for convenience. For 90% of androgen to come 

from P  cells, σ = 0.1 ⋅ 0.1ρP . To find equilibrium androgen values, we need equilibrium 

values of S and P . In the Zhang model with aSP = aPS = 1, we have P* = 2KP /3 = 20000/3
and S* = KP /3 = 10000/3. By picking σ = 10000, and AE

* = 0.511, AS
* = 0.0511, AP

* = 1.0511. We 

assume that KS = 15000, and KP = KR = 10000.
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Figure 1. 
Dynamics of sensitive and resistant cells for three models (Zh, Zs, and AL) with the four 

treatments: MTD (blue), Adaptive (pink), Intermittent (green) and None (red). The adaptive 

therapy PSA bounds for each model are [0.6, 0.9], [0.8, 0.9], and [0.4, 0.5], respectively. The 

intermittent therapy treatment periods and treatment durations are [1000, 10], [1000, 10], 

and [400, 183.33].
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Figure 2. 
Summary of results with the Zhang model. The left column shows mean cancer cell burden 

and mean treatment burden as a function of the time of emergence TR of resistant cells 

above the critical value Rcrit . The right column shows the same outputs as a function of 

the time TC of escape of cancer cells above the critical value Ccrit. The blue dot indicates 

results with MTD and the red triangle results with No Therapy. The shades of green show 

intermittent therapy, with lighter shades indicating a higher fraction of time under treatment, 

the treatment duration divided by treatment period. The pink diamonds illustrate adaptive 

therapy, with darker shades indicating a lower value of Mlo, the threshold value for initiating 

therapy. The black line in the upper left panel is the curve in equation 2.19.
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Figure 3. 
Results for the four models with sensitive and resistant cells only. Notation as in Figure 2.
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Figure 4. 
Results for the three models with sensitive and resistant cells plus an additional dimension. 

Notation as in Figure 2.
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Figure 5. 
Results for the three models with androgen dynamics. Notation as in Figure 2.
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Table 1.

Parameter values used in the Zh model [5].

Parameter Meaning Value

rS, rP, rR Growth rates of three cell types 0.0278; 0.0355; 0.0665

KS, KP, KR Carrying capacities of cell types without treatment 1.5P; 1.0 × 104; 1.0 × 104

with treatment 0.5P; 100; 1.0 × 104

aS. Effect of cell type S, P and R on S cells 1.0; 0.7; 0.8

aP. Effect of cell type S, P and R on P cells 0.4; 1.0; 0.5

aR. Effect of cell type S, P and R on R cells 0.6; 0.9; 1.0
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Table 2.

Models used in the paper. Each includes sensitive cells S  and resistant cells R .

Tag Model Name Additional Variables

Zh Zhang model P (androgen-producing cells)

Zs Simplified Zhang model

GT Game theory

LV Lotka-Volterra

AL Allee effect

HC Healthy cells H (healthy cells)

LM Lottery model H (healthy cells)

IC Immune cells I (immune cells)

RC Resource competition P (androgen-producing cells)

A3 Androgen dynamics P (androgen-producing cells)

A2 Simplified androgen dynamics
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