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Epithelial ovarian cancer (EOC) ranks third in the incidence of gynecological malignancies. m6Amethylation as RNAmodification
plays a crucial role in the evolution, migration, and invasion of various tumors. However, the role of m6A methylation in ovarian
cancer (OC) only recently has begun to be appreciated. Therefore, we used various bioinformatic methods to screen the public
GEO datasets of epithelial ovarian cancer (EOC) for m6A methylation-related regulators. We identified methyltransferase 16
(METTL16) that was dramatically downregulated in EOC as such a regulator. We also identified metastasis-associated lung
adenocarcinoma transcript 1 (MALAT1), a known target lncRNA of METTL16, in these five GEO datasets. RT-qPCR and
immunohistochemical staining confirmed that compared with the normal ovarian tissues and cells, METTL16 was significantly
downregulated, while lncRNA MALAT1 was significantly upregulated, in 30 EOC tissues of our own validation cohorts and EOC
cell lines, revealing a negative correlation between METTL16 and lncRNAMALAT1. Moreover, our analysis unveiled a correlation
between downregulated METTL16 and the known adverse prognostic factors of EOC patients in our own cohorts. The CCK-8,
EdU, scratch wound healing, and transwell invasion assays revealed that METTL16 significantly suppressed the proliferating,
migrating, and invading abilities of OC cells. The inhibitory effects of METTL16 on the in vivo tumor growth of EOC cells were
measured by subcutaneous tumor formation assay in mice. Furthermore, the RIP, RNA stability assay, western blotting, and
cytoimmunofluorescence staining showed that METTL16 hindered the growth of EOC cells through promoting the degradation
of MALAT1 by binding that, in turn, upregulates β-catenin protein and promotes nuclear transport of β-catenin protein in EOC
cells. This study suggests that METTL16 acts as a tumor suppressor gene of EOC by achieving its inhibitory function on the
malignant progression of EOC through the METTL16/MALAT1/β-catenin axis that are new targets for EOC diagnosis and
therapy.

1. Introduction

Among gynecologic malignancies, ovarian cancer (OC) exhi-
bits the highest fatality rate [1]. Many factors, such as incon-
spicuous early symptoms, easy metastasis and recurrence,
and the lack of effective long-term chemotherapy, are closely
associated with this outcome [2]. Epithelial ovarian cancer
(EOC) is the most aggressive form of ovarian malignancies
and exhibits a high propensity for abdominal metastasis,

frequently resulting in the development of severe ascites
and intestinal obstruction, ultimately leading to patient fatality.
The International Federation of Gynecology and Obstetrics
data show that the majority of EOC patients are already at
stages III–IVwhen diagnosed, with a 5-year survival rate below
30% [3]. Extensive genetic and epigenetic modifications play a
pivotal role in themalignant course of EOC. Therefore, further
exploration of genes involved in epigenetic modification in
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EOC will provide valuable insights for identifying potential
therapeutic targets and thus effectively improving the prognosis.

N6-methyladenosine (m6A) is the most common epige-
netic modification found in mammalian RNAs, exerting a
crucial function in the biological regulation of RNA activity
[4]. Many m6A methylases have recently been found to be
associated with the malignant progression of OC [5]. For
example, Nie et al. [6] discovered that the expression of
ALKBH5 was elevated in cisplatin-resistant EOC and exhib-
ited a substantial correlation with the resistance of EOC cells
to cisplatin, both in vivo and in vitro. Wang et al. [7] found
that WTAP might be an ideal prognostic biomarker or ther-
apeutic target in OC. Li et al. [8] developed a risk score model
based on three genes (VIRMA, IGF2BP1, and HNRNPA2B1)
related to m6A modification as potential prognostic biomar-
kers for OC. Recent evidence also suggested that FTO and
YTHDC2 were significantly associated with OC grade, while
ALKBH5, METTL3, METTL14, RBM15, and YTHDF1 were
also significantly associated with the OC stage [5]. Bi et al. [9]
demonstrated that METTL3 promoted the development as
well as the metastasis of OC through enhancing the matura-
tion of pri-miR-1246 and inhibiting CCNG2 expression. All
these studies show that m6A methylases and m6A modifica-
tion of the target RNAs by these methylases are involved
in OC.

Human methyltransferase-like protein (METTL) acts as
a “writer” of the m6A modification and adds the m6A mod-
ification to specific RNAs. METTL3 and METTL14 have
been found to modulate the activity of some oncogenes, thus
promoting the progression of a variety of cancers [10, 11].
Recently, METTL16 was also identified as an m6A methyl-
transferase, but its functional studies have only been limited to
the addition of m6A to MAT2A mRNA and several classes of
noncoding RNAs, such as U6 snRNA, MALAT1, and XIST
[12–14]. METTL16 is essential in the early stages of mouse
embryo development [15], but its biological function is still
not clear. Several reports have also implicated METTL16 in
certain types of cancers [16–19]. In colorectal cancer, muta-
tions in key residues of METTL16, such as R200Q or G110C,
were found, suggesting the association of METTL16 with the
disease [16]. In patients with soft tissue sarcoma, the copy
number variations of theMETTL16 gene are closely connected
to the overall survival [17]. Downregulation of METTL16 has
recently been related to cancer progression and poor overall
survival in patients with hepatocellular carcinoma and tumors
of the endocrine system [18, 19]. Although it is known that
METTL16 is involved in several types of cancers mentioned
above, its biological function in OC is not clear.

This study aimed to determine the biological function as
well as the downstream molecular mechanism of METTL16
in OC. First, we identified METTL16 as a differentially
expressed gene (DEG) in EOC using the public GEO datasets
and predicted lncRNA MALAT1 as a potential downstream
target of METTL16. Then, we observed an inverse relation-
ship between the expression levels of METTL16 and lncRNA
MALAT1 in the EOC tissues and cells of our cohorts. Fur-
ther mechanistic studies showed that METTL16 inhibited

the progression of EOC by binding to MALAT1 through
the lncRNA MALAT1/β-catenin axis. These discoveries
will provide novel targets for EOC diagnosis and treatment,
thereby potentially advancing EOC treatment strategies and
improving the prognosis of EOC patients.

2. Materials and Methods

2.1. Patient Samples. Thirty tissues of EOC, as well as their
adjacent noncancerous tissues, were obtained from the
patients who received cytoreductive surgery from February
2020 to February 2022 at the First Affiliated Hospital of
Wannan Medical College. The inclusion criteria for all
patients in this study were that the patients met the diagnos-
tic criteria for OC, had complete background data and never
received chemotherapy and radiotherapy before surgery, and
all underwent initial optimal tumor resection, as well as the
postoperative specimens were pathologically confirmed as
primary EOC or adjacent noncancerous tissues. Patients
with any of the subsequent conditions were excluded from
this study: other malignancies, severe blood-borne diseases,
severe heart, liver, kidney, and lung dysfunctions, immuno-
deficiency, coagulation dysfunction, diabetes, or other
chronic metabolic disorders. Based on the standard sche-
dules and doses, the postoperative adjuvant therapies were
administered. Staining of the paraffin sections of all the col-
lected samples was performed at the Department of Pathol-
ogy, the First Affiliated Hospital of Wannan Medical College.
The follow-up data of all these enrolled patients in this study
were also collected. The study protocol was approved by the
Ethics Committee of the First Affiliated Hospital of Wannan
Medical College.

2.2. Cell Lines, Cell Culture, and Transfection. Five OC cell
lines, namely OVCAR3, SKOV3, HO8910, ES-2, and A2780,
as well as the human epithelial ovarian cell line (IOSE80),
were procured from the Chinese Academy of Sciences.
Human A2780, SKOV3, and OVCAR3 OC cells were cul-
tured in RPMI 1640 medium (Gibco, Beijing, China) supple-
mented with 10% fetal bovine serum (FBS) and 1% penicillin/
streptomycin antibiotics. Cells in passage 3 were used in
all experiments. The small interfering RNAs (si-RNAs)
(for transient knockdown), sh-RNA constructs (for stable
knockdown), and overexpression constructs utilized for
transfection were custom-designed and produced by Gene-
Pharma (Shanghai, China). The stable knockdown con-
struct of sh-METTL16 was obtained by subcloning one of
siMETTL16 sequences into a lentiviral vector, LV3, from
GenePharma (Shanghai, China). Subsequently, SKOV3 and
OVCAR3 cells were transfected with sh-METTL16, fol-
lowed by the application of 2 μg/mL puromycin to select
stable METTL16-deficient cells. A2780 cells, on the other
hand, were transfected with an overexpressing plasmid for
METTL16 (oe-METTL16). To silence the expression of
MALAT1, specific si-RNA was used in SKOV3 and OVCAR3
cells. The transfection of lentiviral vectors, si-RNAs, and sh-
RNA constructs was carried out using GP-transfect-Mate
(GenePharma).
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2.3. Immunohistochemical Staining (IHC). The tissue sec-
tions were deparaffinized in an oven for 25min at 60°C,
followed by the incubation in xylene solution for an addi-
tional 20min. Next, a series of decreasing concentrations of
ethanol solutions (100%, 95%, 80%, and 60%) were used for
the rehydration of the tissue sections. Then, the slides were
covered with target retrieval solution and heated in a micro-
wave oven at medium power for 15min. To quench the activ-
ity of endogenous peroxidase in tissue sections, the slides were
incubated with a solution of 3% H2O2 for 15min at room
temperature. The peroxidase method was conducted for the
staining of all tissue samples. In short, following an overnight
incubation at 4°C with primary rabbit anti-METTL16 anti-
body (19924-1-AP, diluted 1 : 500, Proteintech), the tissue
sections were subsequently incubated with HRP-conjugated
secondary antibody (A0208, Beyotime Biotechnology) for
40min at room temperature. Visualization was achieved by
using diaminobenzidine for a duration of 3min. Subse-
quently, they were immersed in a hematoxylin bath for nuclei
staining for 2.5min at room temperature. All the tissue sec-
tions were evaluated under a light microscope, and five fields
of view were randomly chosen for photography at magnifica-
tions of 200x and 400x. Brownish-yellow granular staining in
tumor nuclei and cytoplasm was deemed as positive staining.
The tissue sections were assessed based on the intensity of
staining (0–3 for the absence of staining, faint yellow, light
brown, and dark brown staining, respectively) and the pro-
portion of positive staining (0%–3% for 0%–25%, 26%–50%,
51%–75%, and 76%–100%, respectively). An H-score was
obtained by combining the degree of staining and the extent
of positivity. A total H-score≤ 3 and ≧4 was defined as low-
and high-expression levels of METTL16, respectively. The
IHC results were evaluated separately by two experienced
pathologists who were unaware of the groupings. In case of
any disagreements in terms ofH-scoring, the third pathologist
was consulted for his or her input.

2.4. Quantitative Real-Time PCR (RT-qPCR). The TRIzol
reagent (TransGen Biotech, Beijing, China) was employed
to isolate total RNA from the indicated samples. The synthe-
sis of first-strand cDNA was performed using a reverse tran-
scription kit (TransGen Biotech, Beijing, China). The PCR
reaction was carried out by Bestar® SYBR Green qPCR Mas-
ter Mix on an ABI 7500 PCR system (Applied Biosystems
Inc.). The steps for the PCR reactions were as follows: initial
denaturation at 95°C for 5min, followed by 40 cycles
of amplification at 95°C for 5 s, 60°C for 10 s, and 72°C
for 15 s. The expression level of the GAPDH gene was used
as an internal control. Relative expression levels were
calculated according to Formula 2−ΔΔCt. The results of RT-
qPCR were further statistically analyzed and graphed using
GraphPad Prism 7.0 (GraphPad Software, USA). Primer
sequences were as follows: METTL16 (forward, 5′-ACA
GAAGACACTCCTGATGG-3′, reverse, 5′-TTAACAGAA
CTAGGCGGAGG-3′),MALAT1 (forward, 5′-GCTCTGTGG
TGTGGGATTGA-3′, reverse, 5′-GTGGCAAAATGGCGG
ACTTT-3′), and GAPDH (forward, 5′-AGCCTCAAGATCA

TCAGCAATG-3′, reverse, 5′-ATGGACTGTGGTCATGAG
TCCTT-3′).

2.5. Protein Extraction and Western Blotting. For the isola-
tion of the proteins from the indicated cells and tissues, the
RIPA lysis buffer (R0010, Solarbio, Beijing, China) was
applied. A BCA kit (Pierce Biochemicals, USA) was applied
to measure the total protein concentration of the samples.
For western blot assay, an equal amount of total proteins
(30–150 μg) was loaded and separated using sodium dodecyl
sulfate-polyacrylamide gel electrophoresis and subsequently
transferred the resolved proteins from gel to polyvinylidene
fluoride membranes. Following blocking using 5% fat-free
milk, membranes were then incubated with one of METTL16
(CAT17676, 1 : 1,000, Cell Signaling Technology, USA), β-
catenin (ab32572, 1 : 1,000, Abcam, UK), and GAPDH
(ab181602, 1 : 1,000, Abcam, UK) primary antibodies overnight
at 4°C. After being washed three times with phosphate-buffered
saline with Tween 20, the membranes were subsequently
incubated with a goat anti-rabbit HRP-conjugated secondary
antibody (ab205718, 1 : 25,000, Abcam, UK) for 1 hr at
room temperature. A chemiluminescent mixture (Millipore,
Massachusetts, USA) was utilized to detect the amount of the
target protein, followed by the utilization of ImageJ software to
quantitate the grayscale values of the band of each target protein.

2.6. Cell Proliferation Assay. Cell Counting Kit-8 (CCK-8)
(Beyotime Biotechnology, China), as well as 5-ethynyl-2′-
deoxyuridine (EdU) (Beyotime Biotechnology, China),
were used for the determination of cell proliferation. In sum-
mary, both control and transfected OC cells were plated in
96-well microplates at a concentration of 3,000 cells per well
with 100 μL of complete medium. Following incubation for
0, 24, 48, 72, and 96 hr, 10 μL of CCK-8 solution was intro-
duced to each well. CCK-8 is metabolized to produce a chro-
mogen that is detected at 450 nm using a microplate reader.
In the EdU assay, the aforementioned cells were plated in
96-well microplates at a concentration of 1× 105 per well,
and 100 μL of 50 μM EdU medium was introduced to each
well for a duration of 2 hr. After being washed with PBS, the
cells were fixed for 30min using 50 μL of 4% paraformalde-
hyde. Following the PBS wash, 100 μL of permeabilization
solution (PBS solution with 0.5% Triton X-100) was intro-
duced to each well and incubated on a destaining shaker for
10min. Subsequently, in a dark environment, 50 μL of click
reaction solution (Beyotime Biotechnology, China) was
added to each well and incubated for 30min. The cell nuclei
were then stained with Hoechst 33342 solution (Beyotime
Biotechnology, China) for 10min at room temperature while
keeping them in the dark.

2.7. Transwell Assay. Cell invasion was measured with a
transwell culture system. In summary, the matrigel (BD Bios-
ciences, San Jose, CA, USA) was diluted with serum-free
medium (1 : 9) and then applied to the inserts. The inserts
were then placed in an incubator at 37°C for 2 hr until the
matrigel was fully solidified. Subsequently, the number of
1× 105 suspended cells (200 μL) was seeded in the upper
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chamber, while a chemoattractant of 10% FBS-containing
culture medium (600 μL) was added to the lower chamber.
After a 12 hr incubation at 37°C, the cells that had invaded
the bottom surface of the inserts were fixed with 4% parafor-
maldehyde for 20min, stained with 0.1% crystal violet for
30min, and counted using a light microscope.

2.8. Wound Healing Assay. Cells were cultured in 6-well
plates and grown to 90% confluence at 37°C, and the cell
monolayer was scraped using a 200 μL micropipette tip to
form a wound. Detached and damaged cells were washed off
with PBS, and then cells were allowed to culture in a serum-
free medium for 0–48 hr at 37°C. Wounds were observed
and photographed at 0, 24, and 48 hr under an inverted
microscope. The wound area at each time point in each
group was quantified and compared to controls. The assays
were performed in triplicate.

2.9. RNA Immunoprecipitation (RIP) Assay. A Magna RIP™
RNA-binding protein immunoprecipitation kit (Millipore,
Massachusetts, USA) was used to perform the RIP assay.
Briefly, the cells were lyzed using RIP lysis buffer to obtain
RNA supernatants. After coupling of the beads with the anti-
METTL16 antibody or negative control IgG at 4°C for 2 hr,
the beads were added to the RNA supernatant and reacted at
4°C overnight. The relationships between target RNAs and
genes were validated by RT-qPCR.

2.10. RNA Stability Assay. To evaluate the stability of
lncRNA MALAT1, designated cells were cultured in six-
well plates and treated with actinomycin-D (5 μg/mL) for
0, 2, 4, 6, or 8 hr. Relative expression level of lncRNAMALAT1
was detected using RT-qPCR after total RNA extraction.

2.11. Cytoimmunofluorescence. Cells were seeded in 12-well
plates in which glass coverslips were placed, and immuno-
fluorescent staining was performed when cells grew to
approximately 90% confluency. After 20min fixation using
4% paraformaldehyde, the cell membrane was permeabilized
with PBS solution containing 0.5% Triton X-100 (Beyotime
Biotechnology, China) for 20min, and after 2 hr blocking
with 5% BSA, cells were incubated with one of the indicated
primary antibodies at 4°C overnight in a humidified cham-
ber. Then, following a triple wash, the cells were exposed to
the Alexa Fluor 488 conjugated secondary antibody for 1 hr
in a dark environment. The cell nuclei were then counter-
stained using Hoechst 33342 solution (Beyotime Biotechnol-
ogy, China) for a duration of 10min. Finally, images were
visualized and captured using fluorescence microscopy.

2.12. Animal Experiment. Twelve BALB/c nude mice (female,
4 weeks old) were kept at the Animal Model Experimental
Center of the First Affiliated Hospital of the Wannan Medi-
cal College. All the protocols of animal experiments were
approved by the Animal Model Center of the Laboratory
Animal Ethics Committee of the First Affiliated Hospital of
the Wannan Medical College. The number of 5× 106

OVCAR3 cells was injected subcutaneously into the right
flank of the mice and, tumor volumes were measured every
5 days. At the end of the experiment, mice were sacrificed,
and the weights of excised tumors were recorded.

2.13. Statistical Analysis. SPSS 26.0 software (SPSS, USA) and
GraphPad Prism 7.0 (GraphPad Software, USA) were used to
statistically analyze the experimental data. Qualitative vari-
ables were compared between the high and low METTL16
groups using Fisher’s exact test. ∗P<0:05, ∗∗P<0:01, and
∗∗∗P<0:001 were considered statistically significant.

3. Results

3.1. Differential Expression of METTL16 in EOC and Its
Relationship with Clinicopathological Parameters. First, we
screened the DEGs in EOC using the GSE190688 dataset
and found that ALKBH5, METTL16, METTL14, FTO, and
YTHDF1 were the DEGs in EOC among them6Amethylation-
related regulators identified, while obviously decreased expres-
sion level of METTL16 was observed in EOC tissues of the
GSE190688 dataset (Figures 1(a) and 1(b)). Next, the low
expression level of METTL16 in EOC was also validated in
the EOC datasets of the TCGA database (Figure 1(c)), and an
obvious association of the lowMETTL16 expression level with
the poor prognosis of EOC in the Kaplan–Meier database was
also observed (Figure 1(d)). Subsequently, we assessed the
expression level of METTL16 in EOC tissues and neighboring
noncancerous tissues of our own validation cohorts using
RT-qPCR and IHC techniques. The RT-qPCR and IHC results
showed that in comparison to the adjacent noncancerous tis-
sues, the EOC tissues exhibited obviously reduced METTL16
expression levels (Figures 1(e), 1(f), and 1(g)). IHC analysis
demonstrated the presence of METTL16 within the nucleus
and cytoplasm of OC cells (Figure 1(g)). Additionally,
according to the IHC H-score of the relative protein expres-
sion level of METTL16 in 30 EOC tissues, the samples were
categorized into low- and high-expression groups. Subse-
quently, we examined the associations between the expres-
sion level of METTL16 and various clinical outcomes,
including age, FIGO stage, tumor size, tumor grade, and
distant lymph node metastasis, in patients diagnosed with
EOC (Table 1). According to the data presented in Table 1,
we observed a significant correlation between METTL16
levels and each of the known adverse prognostic factors
of EOC, such as FIGO stage, tumor size, and lymph node
metastasis. These associations were consistent across differ-
ent age groups and tumor grades.

3.2. LowMETTL16 Expression Promotes Proliferation, Migration,
and Invasion of EOC. In order to choose suitable cell lines for
functional experiments, we evaluated the expression levels of
METTL16 in five OC cell lines (OVCAR3, SKOV3, HO8910,
ES-2, and A2780) as well as the human epithelial ovarian cell
line (IOSE80). Compared to the normal human epithelial ovar-
ian cell line, the three OC cell lines exhibited significantly
decreased mRNA expression levels of METTL16 (Figure 2(a)).
Among these five OC cell lines, SKOV3 and OVCAR3 had a
comparable,moderatemRNAexpression level ofMETTL16, but
A2780 had the lowest mRNA expression level of METTL16
(Figure 2(a)). Thus, three OC cell lines, SKOV3, OVCAR3,
and A2780, were selected for our further study. First of all, we
silenced the expression of METTL16 in SKOV3 and OVCAR3
OC cells (Figure 2(b)) and overexpressed METTL16 in A2780
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cells (Figure 2(b)). The results from the EdU assay and CCK-8
assay indicated that the silencing of the METTL16 significantly
promoted the cell proliferation rate of SKOV3 and OVCAR3
cells (Figures 2(c) and 2(d)), but theMETTL16 overexpression
in A2780 cells significantly reduced cell proliferation rate
(Figures 2(c) and 2(d)). Furthermore, the observations from
our transwell assay and scratch wound healing assay revealed
that silencing of METTL16 markedly enhanced the invasion
ability in SKOV3 and OVCAR3 cells (Figure 2(e)) and the
migration ability in SKOV3 cells (Figure 2(f)), compared to
their matched controls. These findings indicate thatMETTL16
may play a role of a tumor suppressor gene during the carci-
nogenesis of OC.

3.3. METTL16 Inhibits Tumor Growth in Nude Mice. To
investigate the role of METTL16 in the growth of EOC cells
in vivo, the METTL16 deficient (sh-METTL16-1) and nor-
mal (sh-NC) SKOV3 cells were subcutaneously injected into
the right flank of 12 nude mice (n= 6, each group). We
discovered thatMETTL16 knockdown dramatically increased
the tumor progression compared to that of control cells, as
shown by increased tumor weight and volume (Figures 3(a)
and 3(b)). These findings indicate that METTL16 may sup-
press tumor growth in vivo.

3.4. METTL16 Suppresses the Expression Level of lncRNA
MALAT1. To find out the potential mechanisms underlying
the oncogenic effect of downregulated METTL16 in EOC,
the downstream genes that are aberrantly expressed in EOC
and regulated by METTL16 were analyzed using datasets
from five GEO datasets of EOC (GSE182607, GSE156795,
GSE119056, GSE119168, and GSE181955). A differentially
expressed lncRNA, MALAT1, was identified from these five
GEO datasets (Figure 4(a)). Subsequently, we assessed the
expression profile of lncRNA MALAT1 in 30 EOC tissues
and adjacent noncancerous tissues from our independent

validation cohorts using RT-qPCR. The results revealed a
significant elevation in the expression of lncRNA MALAT1
in EOC tissues (Figure 4(b)). LncRNA MALAT1 expression
level was inversely correlated with METTL16 expression
level in these 30 EOC tissues (Figure 4(c)). In addition, the
expression level of lncRNA MALAT1 was significantly
increased in SKOV3 and OVCAR3 cells (Figure 4(d)). To
investigate the impact of lncRNA MALAT1 on OC cells,
we utilized si-RNA to downregulate the expression level of
lncRNAMALAT1 in SKOV3 andOVCAR3 cells (Figure 4(e)).
Subsequently, we conducted the EdU assays. The results dem-
onstrated that the knockdown of lncRNA MALAT1 signifi-
cantly suppressed cell proliferation rates in SKOV3 and
OVCAR3 cells (Figure 4(f)). Additionally, the EdU assay indi-
cated that the proliferation ability of SKOV3 cells was
enhanced following the downregulation of METTL16 by
sh-RNA but attenuated after the downregulation of lncRNA
MALAT1 by si-RNA (Figure 4(f)). Then, the modulation of
the lncRNA MALAT1 by METTL16 was evaluated using
RT-qPCR. The results showed that the expression level of
lncRNA MALAT1 was increased after METTL16 knockdown
in SKOV3 and OVCAR3 cells (Figure 4(g)), suggesting that
METTL16 may regulate MALAT1 by an interaction between
them. Next, we examined whether METTL16 may regulate
MALAT1 via an intermolecular interaction by RIP-qPCR
using METTL16 antibody. The RIP-qPCR data show that
enrichment of MALAT1 by METTL16 antibody, demonstrat-
ing that there exists an interaction between these twomolecules
and METTL16 may directly regulate MALAT1 (Figure 4(h)).
Therefore, we further evaluated the expression level of lncRNA
MALAT1 in SKOV3 and OVCAR3 cells transfected with
siMETTL16 by RT-qPCR after blocking the de novo synthesis
of lncRNA MALAT1 using actinomycin D. The data showed
that the silencing of METTL16 delayed the degradation of
lncRNA MALAT1 (Figure 4(i)). Thus, these findings indicate
that METTL16 binds to lncRNA MALAT1 and decreases its
stability, thereby inhibiting the proliferative capacity of OC
cells.

3.5. METTL16 Inhibits the Malignant Progression of EOC
through the lncRNA MALAT1/β-Catenin Axis. To further
explore the possible mechanism underlying the promoting
effects of downregulated METTL16 and upregulated lncRNA
MALAT1 on the malignant progression of EOC, the Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathways
were investigated for these genes that were significantly
associated with the expression of METTL16 and lncRNA
MALAT1 on the bioinformatic analysis website, DAVID
(the Database for Annotation, Visualization and Integrated
Discovery). The results of KEGG suggested that the majority
of the genes that were significantly associated with the
expression of METTL16 and lncRNA MALAT1 were enriched
in the Wnt/β-catenin pathway (Figure 5(a)), clarifying that
METTL16 possibly plays its tumor suppressive role through
inhibiting theWnt/β-catenin pathway. Furthermore,Western
blotting assay verified β-catenin upregulation after METTL16
knockdown in SKOV3 cells (Figure 5(b)). Significantly
decreased β-catenin expression level was also observed after

TABLE 1: Correlation between clinicopathologic parameters and
expression level of METTL16.

Clinicopathological parameters
METTL16 expression level

High (4) Low (26) P-value

Age (years)
<50 3 14
≥50 1 12 0.6129

FIGO stage
Ⅰ+Ⅱ 4 4
Ⅲ+Ⅳ 0 22 0:0026∗∗

Tumor size (cm)
<5 4 3
≥5 0 23 0:0013∗∗

Lymph node metastasis
Yes 1 23
No 3 3 0:0181∗

Grade
G1 2 7
G2+G3 2 19 0.5632

∗P<0:05; ∗∗P<0:01.
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lncRNA MALAT1 was also downregulated by si-RNA in
METTL16-deficient SKOV3 cells (Figure 5(c)). Additionally,
in cytoimmunofluorescence staining experiments, we found
that loss of METTL16 prompted more β-catenin protein to be
translocated to the cell nucleus, whereas this phenomenon
disappeared after lncRNA MALAT1 was downregulated by si-
RNA (Figure 5(d)). In light of the above results, we demonstrate
thatMETTL16 can ultimately inhibit themalignant progression
of EOC cells by promoting the degradation of lncRNA
MALAT1, which in turn leads to β-catenin downregulation
and reduced intranuclear translocation of β-catenin.

4. Discussion

OC is a prevalent malignancy of the female reproductive
system, and it holds the highest mortality rate among gyne-
cological tumors. Apart from the challenge of early detection,
the unfavorable prognosis of patients is also attributed to the
metastasis and recurrence of tumors, which has become a

prominent concern in the medical field. Therefore, a deep
appreciation of the pathogenesis of OC is mandatory. RNA
epigenetic modifications play a pivotal role in the malignant
progression of OC. Therefore, further exploration of genes
involved in epigenetic modifications in OC and identification
of potential therapeutic targets will provide a valuable basis
for effective improvement of the prognosis of OC. In this
study, we observed that METTL16 is differentially expressed
in EOC and is associated with the prognosis of EOC by
bioinformatic analysis of the publicly available datasets of
EOC from TCGA. We validated METTL16 expression level
and this association with the clinicopathologic parameters of
EOC patients of our own cohorts. We examined clinical
tissue samples from patients with EOC by IHC and RT-
qPCR and clarified that METTL16 mRNA and protein
expression levels were obviously decreased compared to
neighboring noncancerous tissues. Subsequently, we per-
formed a statistical analysis of the METTL16 protein
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expression using IHC and evaluated the association between
the quantified IHC H-score with the clinicopathological fea-
tures of EOC patients. The outcomes showed that the low-
expression level of METTL16 was obviously linked with poor
prognostic factors, such as FIGO stage, tumor size, and
lymph node metastasis. We explored the effect of low
METTL16 expression on the biological behavior of EOC cells

after we validated that METTL16 is differentially expressed
in EOC and is associated with the prognosis of EOC. The
findings of in vitro functional assays demonstrated that
reduced METTL16 expression levels significantly enhanced
OC cell proliferation, migration, and invasion. At the same
time, functional assays in vivo also observed that low levels of
METTL16 expression promoted tumor growth in EOC
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FIGURE 4: Expression level of lncRNA MALAT1 is downregulated by METTL16 in EOC cells. (a) The downstream target of METTL16,
lncRNA MALAT1, was selected from the common seven genes identified from the five GEO datasets indicated. (b) The mRNA expression
level of lncRNAMALAT1 was observed by RT-qPCR in adjacent noncancerous tissues (n= 30) and EOC tissues (n= 30). (c) The correlation
between lncRNAMALAT1 and METTL16 expression levels in 30 EOC tissues was observed by RT-qPCR. r=−0.43, P ¼ 0:017 by Spearman
correlation analysis. (d) Expression level of lncRNA MALAT1 in SKOV3 and OVCAR3 cells detected by RT-qPCR. (e) Relative mRNA
expression level of MALAT1 72 hr after SKOV3 and OVCAR3 cells were transfected with si-MALAT1 (si-MALAT1-1 or si-MALAT1-2).
(f ) EdU assay was conducted to assess the proliferation ability of SKOV3 and OVCAR3 cells subsequent to the downregulation of lncRNA
MALAT1 expression using si-MALAT1 (si-MALAT1-1 or si-MALAT1-2). Furthermore, the proliferation ability of SKOV3 cells was
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MALAT1 (scale bar, 100 μm). (g) LncRNA MALAT1 expression level detected by RT-qPCR in SKOV3 and OVCAR3 cells with METTL16
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xenografts in mice. Based on the data from both in vitro and
in vivo experiments, we demonstrate that METTL16may be a
crucial factor in the malignant development of EOC.

A unique nuclear expression element is contained in the
3′ end of lncRNA MALAT1, which could protect MALAT1
from degradation and maintain its oncogenic activity in a
variety of cancers due to its three-helix structure [20–22].
Recently, many studies have shown that alteration of the
m6A methylation modification of the lncRNA MALAT1
affects tumor progression. For example, METTL3 potentiates
the stability of MALAT1 by m6A modification with the
assistance of an RNA-binding protein, HuR, thereby facili-
tating the malignant progression in gliomas with IDH wild-
type [23]. Overexpression of the lncRNA MALAT1 has been
shown to promote the development of inflammation, as well
as proliferation and invasion of tumor cells in the tumor
microenvironment of EOC, ultimately resulting in the devel-
opment of cancer [24]. Although it has been shown that
METTL16 can bind to the 3′-terminal triple helix of lncRNA
MALAT1 [12], its specific function after binding is not yet
clear. Our study found that the downregulated expression of
METTL16 enhances the oncogenic effect of lncRNAMALAT1
in OC cells, and the upregulation of lncRNA MALAT1 pro-
motes the proliferation of OC cells. We then observed a

significant negative association between the expression levels
of METTL16 and lncRNAMALAT1 in EOC tissues. Based on
the above experimental results, we further analyzed the corre-
lation between METTL16 and MALAT1 by performing RIP
and RNA stability experiments. The results of our study
showed that METTL16 inhibited its oncogenic activity in
EOC by binding lncRNA MALAT1 to promote its degrada-
tion, which is a novel finding. However, whether METTL16
regulates the degradation of lncRNA MALAT1 through m6A
methylation modification needs to be further investigated.

The Wnt/β-catenin pathway is a canonical pathway of
the Wnt signaling pathway in the physiological settings.
Upon activation, this pathway results in a cascade of hall-
mark events—the buildup of β-catenin in the cytosol, the
translocation of β-catenin to the cell nucleus, and the binding
of translocated β-catenin with T-cell transcription factor/
lymphoid enhancer factor that ultimately activates expres-
sion of downstream target genes [25]. In the pathophysio-
logical settings, the Wnt/β-catenin signaling pathway plays a
crucial role in the progression of cancer by acting as a signif-
icant regulator of the various biological processes. Persistent
activation of the Wnt pathway accompanied by aberrant
expression of β-catenin protein is present in approximately
40% of EOC [26]. In our study, we demonstrated that
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FIGURE 5: METTL16 suppresses EOC progression through the lncRNA MALAT1/β-catenin axis. (a) KEGG enrichment analysis of genes
associated with METTL16 and lncRNA MALAT1. (b) Western blotting assay was conducted to determine the protein expression level of β-
catenin in SKOV3 cells following the knockdown of METTL16. (c) Western blotting assay was performed to assess the β-catenin expression
level in SKOV3 cells subsequent to the combined knockdown of both METTL16 and lncRNA MALAT1. (d) cytoimmunofluorescence
staining assay was employed to assess the protein expression level of β-catenin following the knockdown of METTL16 alone or combined
knockdown of both METTL16 and lncRNA MALAT1 (scale bar, 50 μm).
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METTL16 coregulates the expression of β-catenin protein
with lncRNA MALAT1. This was mainly characterized by
an increase in the amount of β-catenin protein after the
downregulation of METTL16, whereas the amount of β-cate-
nin protein decreased upon the downregulation of lncRNA
MALAT1. Guo et al. [27] reported that the reduction of
MALAT1 decreased β-catenin expression in EOC, which is
consistent with our findings. Additionally, we demonstrated
that METTL16 was involved in the nuclear migration of
β-catenin protein and facilitated the transfer of β-catenin
protein from OC cell membranes to the cell nucleus. The
β-catenin protein that is accumulated within the cell nucleus
further contributes to the malignant progression of EOC.
Interestingly, the nuclear translocation phenomenon of
β-catenin protein was reversed when we downregulated
lncRNA MALAT1. In conclusion, based on the aforemen-
tioned experimental results, we determined that METTL16
played a pivotal role in the formation of OC, acting as a
tumor suppressor via the lncRNA MALAT1/β-catenin axis.
Therefore, METTL16 is expected to be a potential therapeu-
tic target for OC.

5. Conclusions

In conclusion, our study demonstrates that METTL16 is
significantly downregulated in EOC, which has a correlation
with the known adverse prognostic factors of EOC. Mecha-
nistically, METTL16 is able to inhibit the development of
EOC by binding and promoting the degradation of lncRNA
MALAT1 and thus downregulating β-catenin expression.
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