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Abstract

Urban vegetation is associated with numerous public health benefits; however, urban tree canopies 

may be threatened by fugitive methane exposure from leaky natural gas distribution systems. 

Despite anecdotal evidence of the harmful impacts of natural gas leaks on urban tree decline, 

the relationship between soil gas exposure and tree health has not been formally quantified in an 

urban setting. We conducted a case-control study to compare soil natural gas exposure in sidewalk 

tree pits of healthy and dead or dying trees in Chelsea, Massachusetts, during summer 2019. We 

measured soil concentrations of methane and oxygen at four points around the trunks of 84 case 

and 97 control trees. We determined that case trees had 30 times the odds of being exposed to 

detectable levels of soil methane relative to the control trees sampled (95% CI=3.93, 229). Among 

tree pits with elevated soil gas, we also found that methane concentrations were highest on the 

side of the tree pit closest to the street. These results contribute evidence to support the widespread 

belief that soil methane exposure can negatively impact urban tree health. They also suggest that 

fugitive methane leakage from urban natural gas distribution systems beneath the street surface 

may be responsible for elevated soil gas concentrations in sidewalk tree pits and subsequent tree 

death.

Summary capsule:

Urban street trees exposed to elevated soil methane as a result of leaky natural distribution 

infrastructure have increased odds of death.
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Introduction

Urban vegetation, in particular tree canopy, is known to have multiple public health benefits, 

including improving air quality and associated respiratory outcomes among residents, 

moderating ambient temperature through shading and mitigating urban heat island effects, 

and improving human physical and mental health by promoting physical activity, reducing 

stress, and facilitating positive social interactions (Ulmer et al. 2016, Nowak et al. 2006, 

Donovan and Butry 2009, Tyrvanien et al 2005, Kweon et al. 1998). Higher percentages 

of urban tree canopy cover are also associated with increased perceptions of personal 

safety (Mouratidis 2019). Despite broad and general acceptance of these benefits and major 

investments in urban tree planting over the last several decades, urban tree canopy in 

the United States is declining (Nowak and Greenfield 2012, Roman 2014). Among the 

many causes of urban tree death (e.g., drought, excess moisture, construction/development), 

asphyxia from natural gas has received attention from the tree industry, extension agents, 

and activists (Fraedrich nd, Extension 2019, Taliesen 2019). To date, there have been 

only individual case studies and anecdotal evidence of tree death near natural gas leaks, 

particularly in urban environments. In an effort to contribute to understanding of tree health 

in proximity to gas leaks, we conducted a formal assessment of tree death and fugitive 

natural gas exposure in a densely populated urban community in Massachusetts, USA.

Despite its reputation as a fuel source that emits relatively low levels of carbon dioxide, 

natural gas is primarily made up of methane (CH4) which is also a potent greenhouse gas 

(Brandt et al. 2014, Howarth et al. 2011). Natural gas leaks, which can cause explosive 
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hazards, occur throughout the gas extraction and distribution processes, posing as the largest 

source of anthropogenic methane emissions in the United States (Jackson et al. 2014).

Fugitive methane emissions, caused by leaks in the distribution infrastructure, are of 

particular concern in Massachusetts which has one of the oldest natural gas pipeline 

systems in the United States. Over eleven percent of the pipeline distribution network in 

Massachusetts is made up of leak-prone materials such as cast iron, wrought iron, and 

bare steel relative to an average of only 0.9% for the rest of the country where older 

pipes have been replaced with improved manufactured or lined steel pipes (PHMSA 2018, 

Gallagher et al. 2015). The material of these aged pipes subject them to corrosion and 

pose a high risk of rupture and leaks (Gallagher et al. 2015). Previous studies have 

documented the abundance of natural gas leaks in east coast cities, including Boston and 

the District of Columbia, where the average density of leaks was found to be 4.2 and 3.9 

leaks per mile of road, respectively (Phillips et al. 2013, Jackson et al. 2014). In Boston, 

researchers found 3356 leaks across the 785 miles of road surveyed, with ambient methane 

concentrations exceeding up to 15 times background concentrations (Phillips et al. 2013). 

Ambient methane concentrations were even higher in the District of Columbia, where the 

maximum concentration measured reached up to 45 times background levels (Jackson et al. 

2014). The density and magnitude of natural gas leaks found in these two major east coast 

cities highlight the severity of this leaky infrastructure in densely populated urban areas.

Beyond explosive risks and global warming impacts associated with fugitive methane 

emissions, leaky natural gas infrastructure also decreases the efficiency of gas distribution, 

which can increase utility costs for consumers (Phillips et al. 2013). Methane emissions are 

also known to negatively impact soil and vegetation health (Davis 1977, Flower 1981). 

Although methane is not directly toxic to plant matter, methane-rich soil can induce 

anaerobic soil conditions that are harmful for tree root systems (Adamse et al. 1972, 

Smith et al. 2005, Steven et al. 2006, Costello et al. 1991, Kozlowski 1985). Previous 

studies, which experimentally injected natural gas into soil in controlled settings and 

monitored changes in soil chemistry found an inverse relationship between methane and soil 

oxygen, which is characteristic of direct oxygen displacement; however, these studies also 

observed declines in soil oxygen concentrations to levels greater than the amount of methane 

introduced, which the authors concluded was indicative of further oxygen consumption by 

methanotrophs (methane-oxidizing bacteria) (Adamse et al. 1972, Smith et al. 2005, Steven 

et al. 2006). Elevated methane-oxidizing methanotroph counts, along with decreased oxygen 

levels, have also been documented in studies of soil cover over methane-producing landfills 

(Whalen et al. 1990, Nozhevnikova et al. 2003). These anaerobic soil conditions can limit 

respiration and growth in tree roots, which may be particularly damaging during early 

development (Costello et al. 1991). Root stress resulting from anaerobic soil conditions can 

also decrease tree root resilience to other factors such as pests and fungi, which contribute 

to overall tree decline and death (Costello et al. 1991, Kozlowski 1985). These impacts may 

be of particular concern to urban vegetation which often lies in close proximity to subsurface 

natural gas distribution infrastructure.

This study quantifies the relationships between subsurface exposure to natural gas and street 

tree deaths in Chelsea, Massachusetts. Using a case-control study design, we compared 
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measured soil methane concentrations in sidewalk tree pits of healthy and dying or dead 

trees throughout the city to determine the odds of soil gas exposure among dead or dying 

trees. Our hypothesis was that soil gas concentrations would be higher among the tree pits 

of dead or dying trees compared with soil gas concentrations in the tree pits of healthy 

trees. We also sought to determine if elevated soil gas concentrations in tree pits could be 

attributed to urban natural gas distribution systems.

Materials and Methods

Study Area

We conducted our study in the City of Chelsea, MA. Chelsea is one of the most densely 

populated and diverse cities in the nation, with more than 35 languages spoken among 

approximately ~40,000 residents, 78.9% of whom identify as ethnic/racial minorities 

(RWJF, U.S. Census Bureau). Twenty-four percent of residents live below the federal 

poverty level (compared to the state’s 10.5%) (Healthy Chelsea). Despite its characterization 

as an environmental justice community (Mass.gov), for over 15 years the City has been 

awarded Tree City USA status by the Arbor Day Foundation (Arbor Day Foundation). Tree 

City USA status is accomplished by meeting the four core standards of urban forestry: an 

active tree board, a tree care ordinance, an annual urban forest budget of at least $2 per 

capita, and observance of Arbor Day (Arbor Day Foundation). In 2016 the City contracted 

arborists to conduct a thorough inventory of Chelsea’s tree inventory using risk assessment 

methods defined by the International Society of Arboriculture, which considers multiple 

factors including trunk condition, root health, foliage condition, canopy, branch structure, 

and presence of pests (Davey Resource Group 2016, Smiley et al. 2011). Each tree is rated 

as Dead, Critical, Poor, Fair, Good, Very Good, or Excellent for each factor and general 

health is determined by the most commonly assigned rating across all factors (Smiley 

et al. 2001). This inventory resulted in records, maps, and unique identification numbers 

for approximately 4000 trees, including both street trees (i.e. trees planted in sidewalk 

tree pits that line the streets) and park trees. This inventory is publicly available via the 

OpenTreeMap app (OpenTreeMap). We divided the City into seven geographic regions that 

could each conveniently be printed on single-page, zoomed-in maps for the field team, 

and identified cases and controls from six of the seven regions. We focused primarily 

on residential and commercial land use zones in order to minimize the impacts of other 

potentially harmful ambient or soil exposures thought to be associated with industrial zones. 

The majority of Chelsea street trees are also planted in the residential and commercial zones. 

However, the maps we used were not perfectly aligned with zoning usages, nor did they 

include zoning uses when the field team ascertained cases and controls.

Case definition and ascertainment

We defined cases as dead trees (or very close to dead, if not technically absent of all life). 

Cases were selected by one of our team members upon visual inspection of every tree in 

each region during July 2019 and noting if the tree appeared to be dead. OpenTreeMap was 

used to identify the unique tree ID and examine its history (i.e., the 2016 inventory). Dead 

trees with any record of improper pruning, human-caused physical damage, interference 

with overhead utility lines, or any other condition that may indicate a non-gas related 
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cause of death were removed from the sample. Cases were then confirmed separately by 

an arborist certified by the Massachusetts Arborist Association in 2011 (Massachusetts 

Certified Arborist ID Number: 2408).

Control definition and ascertainment

Control trees were selected from the 2016 tree inventory from the same six regions. Trees 

were deemed controls if their 2016 health assessment indicated that they were in ‘Good’ 

or ‘Very good’ condition, if tree failure potential was ‘Improbable’, and if there were no 

additional assessor notes indicating poor health or damage. Control trees were selected 

to accomplish a comparable distribution of tree diameter breast height (DBH) and genus 

diversity relative to the cases. We essentially sought to match controls to cases, but not on 

an individual basis. We also mapped all sample trees using ArcGIS Pro 2.1.0 to ensure 

cases and controls were sufficiently spatially distributed throughout the study area. A 

certified arborist confirmed the health status of all control trees identified from the 2016 

tree inventory.

Exposure: Soil Methane and Oxygen Sampling

Methane and oxygen concentrations were measured separately from the ascertainment 

of cases and control by different members of our research team. We chose to 

measure subsurface methane concentrations as opposed to ambient methane because we 

had previously conducted an exploratory study in Chelsea, MA of ambient methane 

measurements collected using a mobile Picarro G2301 Cavity Ring-Down Spectrometer 

and did not find an association between ambient methane and tree health. We hypothesized 

soil gas may be a more reliable measure of a tree’s exposure to methane. Previous studies 

which examined at the impact of methane on vegetation health have also used soil gas 

concentrations as their exposure metric (Smith et al. 2005, Steven et al. 2006). At each tree 

pit, gas was measured approximately 15–25 centimeters below the soil surface at four points 

(sampling holes) around the tree trunk. Each sampling hole was 20–25 centimeters from 

the tree trunk (Jim 1998, Kargar et al. 2015). Figure 1 diagrams the sampling schema in 

each tree pit. We used a plunger bar to puncture holes into the root zone of the tree pit 

then immediately inserted a Bascom-Turner Gas Sentry multi-gas detector into the hole to 

obtain a methane gas measurement. The limit of detection of the multi-gas detector was 

0.01%. Methane measurements were taken on all four sides of the tree using this method. 

Because elevated soil methane is known to be associated with anaerobic soil conditions, 

we created four new holes directly next to the original holes to collect measured oxygen 

concentrations from each side of the tree (Adamse et al. 1972, Smith et al. 2005, Steven 

et al. 2006). Leaks with subsurface methane concentrations greater than 4% and within 1.5 

meters from a building foundation were immediately reported to the utility company. Such 

leaks are characterized as a “probable hazard to person or property… and require repair as 

immediately as possible and continuous action until the conditions are no longer hazardous” 

according to Massachusetts state law, which is informed by guidance from the Gas Piping 

Technology Committee (Mass. Gen. Laws ch. 164, § 144).
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Statistical analysis

In all analyses, oxygen and methane measurements below the limit of detection were 

converted to the limit of detection and divided by the square root of two. We averaged 

the four methane and oxygen measurements from each pit and used within-pit means to 

calculate the mean methane and oxygen concentrations in the case and control groups. 

We calculated the minimum methane and oxygen concentrations by taking the lowest 

concentration measured at any point within the tree pits (i.e. not based on the average of 

the four measurements across the pit). Similarly, we calculated the maximum methane 

and oxygen concentrations across the case and control groups by taking the highest 

concentrations measured at any of the four points in each pit. Concentrations are reported as 

percent gas content.

We calculated an odds ratio to predict odds of tree death based on exposure to soil methane 

in tree pits. We defined exposed trees as those in tree pits where at least one of the four 

methane measurements was greater than the limit of detection of the instrument. Unexposed 

trees were defined as those trees in pits where all four soil methane measurements were 

below the limit of detection. We generated histograms showing the distributions of methane 

concentrations in each hole position across the exposed trees. We conducted a one-way 

ANOVA with Tukey HSD post hoc comparisons to test for differences in mean methane 

concentrations between tree pits in different zoning regions. A two sample t-test was used 

to assess the difference in mean oxygen levels between case and control trees. Finally, we 

conducted a multiple linear regression adjusting for case status and zoning region to evaluate 

the relationship between soil methane and oxygen concentrations measured in each tree pit. 

All statistical analyses were carried out in R 3.6.1.

Results

Our final sample consisted of 84 dead or dying case trees and 97 healthy control trees, 

distributed across residential and commercial zones throughout the city (Figure 2). The 

case group consisted of 17 unique tree genera with Acer, Prunus, and Amelanchier (Maple, 

Cherry, and Serviceberry trees) being the most common genera represented. The control 

group was made up of 16 unique genera with Quercus (Oak), Acer (Maple), and Zelkova 

being the most common genera. The average trunk diameter was 16.0 cm in case trees was 

and 10.7 cm in control trees (Table 1).

Of the 84 case trees, 20 were exposed to CH4 above the limit of detection of the multi-gas 

sensor. Of the 97 control trees sampled, only one was exposed to CH4 via tree pit soil. Based 

on these exposure frequencies, we determined that case trees had 30 times the odds of being 

exposed to CH4 relative to the control trees sampled, with a minimum odds of nearly four 

times and a max of over 200 times more likely (Table 2). In the tree pits where methane 

was detected, the average methane concentration was highest in the sample location closest 

to the street (Table 3). Figure 3 shows the distribution of methane concentrations across all 

four sampling holes in the tree pits of exposed trees. There was a significant difference in 

methane concentrations across the four zoning regions [F(180)= 4.171, p= 0.0427], with a 

Tukey HSD post hoc comparison indicating that tree pits in commercial zones (M=3.14, 
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SD=9.24) had significantly higher soil methane levels than in residential zones (M= 0.244, 

SD=1.21), on average.

Mean oxygen concentration measured in case tree pits was significantly lower than the mean 

oxygen concentration measured in control tree pits [t(141)= 2.10, p= 0.037]. Our multiple 

linear regression result, adjusting for case status and zoning region, indicated a significant 

negative association between soil methane concentrations and corresponding soil oxygen 

concentrations [β=−0.52, R2 =0.24, p>0.0001].

Discussion

In this study, we found that trees exposed to detectable levels of soil methane had higher 

odds of being dead or dying relative to unexposed trees. We also found the greatest 

soil methane concentrations on the side of the tree pit closest to the street, nearest to 

where natural gas distribution pipelines are located. These results suggest that elevated soil 

methane may contribute to urban street tree decline and that the fugitive methane may be 

the result of leaking pipeline infrastructure beneath the street surface. We found that case 

tree pits had significantly lower mean oxygen concentrations than controls as well as a 

significant negative association between soil methane and soil oxygen levels. Despite the 

fact that these results are based on a limited sample size, they may point to a potential 

mechanism for vegetation decline that has been cited in previous studies related to direct 

oxygen displacement by methane and the proliferation of methane-oxidizing methanotrophs 

that thrive in methane-rich soil, both which contribute to anaerobic soil conditions (Adamse 

et al. 1972, Smith et al. 2005, Steven et al. 2006, Whalen et al. 1990, Nozhevnikova et al. 

2003).

While measuring soil oxygen and methane concentrations we called the utility company 

to report 3/21 tree pits that we identified as most hazardous based on the Massachusetts 

Department of Public Utilities-mandated uniform leak classification system. Leaks are 

graded on a scale from 1 to 3 based on explosive potential, where a Grade 1 leak is 

considered a hazard to humans or property and requires immediate repair and surveillance 

(PHMSA 2015). Grade 2 and 3 leaks are considered non-hazardous at the time of evaluation 

and are flagged for reevaluation after 6 and 12 months, respectively (PHMSA 2015). These 

grades do not represent leak severity in terms of any other factors besides explosive 

potential; thus, they do not account for severity of hazards to climate and vegetation 

(Hendrick et al. 2016). Under this classification system, 85% of the leaks we detected would 

not be classified as Grade 1, despite associated tree decline. The current reporting and repair 

processes may not be sufficiently protective of urban vegetation.

Beyond the loss of the human health benefits of urban vegetation cited above, this street 

tree damage has financial implications for municipalities. The City of Chelsea spends 

approximately $50,000/year on tree removals throughout the city and approximately $500 to 

replant a single tree (Maltez, Personal Communication, 2019). While not all trees removed 

each year are due to methane exposure-related decline, our results indicate that fugitive 

natural gas could be an important contributor to urban tree death and that these deaths could 

have notable ecological, human health, and economic impacts.
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One limitation of this study was that we were unable to look retrospectively at leaks 

and repairs due to imprecise geolocated leak and repair locations by utility companies 

(i.e. companies often report the street address nearest to the leak instead of the exact 

coordinates of the leak beneath the street surface). This lack of knowledge of previous leaks 

and repairs may have contributed to exposure misclassification if we were unaware of a 

recently repaired leak near a case tree and did not detect soil methane in the tree pit as 

a result. Additional limitations stem from our small sample size and limited information 

on individual tree histories; however, we attempted to address this by creating case and 

control groups with similar distributions of trunk diameter, number of unique tree genera, 

frequencies of those genera, and land-use categories. We also tried to control for other 

factors which are often attributed to urban tree decline, such as age, vandalism, over or under 

pruning, and poor species selection by excluding trees in the inventory with record of these 

stressors or stressors that were obvious upon visual inspection; however, it is still possible 

that some of these factors were not recorded in the inventory and that other factors, such 

as lack of water, pests, or too deep or too shallow planting, could have contributed to tree 

decline in the case group. Despite these limitations, our study demonstrated a significant 

association between soil methane exposure in tree pits and street tree decline.

Conclusion

Our study quantifies the association between subsurface methane exposure and likelihood 

of street tree death. We found that exposure to elevated soil methane concentrations was 

associated with significant increased odds of tree death, supporting the hypothesis that 

fugitive emissions from natural gas distribution infrastructure negatively impact urban 

vegetation health. Additional research on urban tree pit soil conditions, including studies of 

methanotroph populations in these environments, could contribute to a better understanding 

of the mechanisms leading to tree decline in close proximity to leaky natural gas 

infrastructure.
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Highlights

• First study to quantify the effects of natural gas leaks on urban tree health

• Urban street trees exposed to soil methane have increased odds of death

• Leaky natural gas pipes may be responsible for elevated methane in tree pits
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Figure 1. 
Diagram of the protocol for sampling methane and oxygen concentrations in sidewalk tree 

pits. The black dots represent the two adjacent holes, one for the methane sample and one of 

oxygen sample, that were created at each of the four locations around the tree trunk.
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Figure 2. 
Map of spatial distribution of case and control trees overlaid on top of Chelsea zoning 

ordinances.
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Figure 3. 
Distribution of CH4 content by sampling hole in all exposed trees (n=21). The * indicates 

the exposed control tree.
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Table 1:

Characteristics of case and control trees and exposure means in each group.

Case(n=84) Controls (n=97)

Unique Genus Count 17 16

Mean 2016 DBH (cm) (min, max) 16.0 (5.0, 64.5) 10.7 (5.0, 30.5)

Land Use Type

Residential 31.2% 49.1%

Commercial 11.5% 5.8%

Industrial 0.6% 0.6%

Waterfront 0.6% 0.6%

Mean CH4 soil content (%) (min, max) 1.55% (0, 58) 0.08% (0, 31)

Mean O2 soil content (%) (min, max) 15.8% (0.5, 21.1) 16.9% (4.3, 21.2)
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Table 2.

Odds of tree death among trees in pits with measured natural gas.

Cases Controls Odds Ratio (p-value, 95% CI)

Exposed 20 91
OR=30.0 (p=0.001, CI=[3.93, 229])

Unexposed 64 1
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Table 3:

Descriptive statistics of soil CH4 content by sample hole in exposed trees.

Hole 1 (street side) Hole 2 Hole 3 Hole 4

Mean % CH4 (Min, Max) 2.45% (0.00, 47.0) 1.09% (0.00, 31.0) 1.37% (0.00, 33.0) 1.65% (0.00, 58.0)
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