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Abstract

Preterm birth (PTB) is the leading cause of infant deaths globally. Current clinical measures 

often fail to identify women who may deliver preterm. Therefore, accurate screening tools are 

imperative for early prediction of PTB. Here we show Raman spectroscopy is a promising tool 

for studying biological interfaces, and we examine differences in the maternal metabolome of the 

first trimester plasma of PTB patients and those that delivered at term (healthy). We identified 

fifteen statistically significant metabolites that are predictive of onset of PTB. Mass spectrometry 

metabolomics validates the Raman findings identifying key metabolic pathways that are enriched 

in PTB. We also show that patient clinical information alone and protein quantification of standard 
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inflammatory cytokines, both fail to identify PTB patients. We show for the first time that 

synergistic integration of Raman and clinical data guided with machine learning results in an 

unprecedented 85.1% accuracy of risk stratification of PTB in first trimester that is currently not 

possible clinically. Correlations between metabolites and clinical features highlight body mass 

index and maternal age as contributors of metabolic rewiring. Our findings show that Raman 

spectral screening may compliment current prenatal care for early prediction of PTB, and our 

approach can be translated to other patient-specific biological interfaces.
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1. Introduction

Spontaneous preterm birth (PTB) occurring at <37 weeks of gestation is the leading cause 

of neonatal mortality worldwide, and results in >1 million childhood mortalities under the 

age of 5.1 The mechanisms that lead to PTB are poorly understood due to the heterogeneities 

associated with the many risk factors such as maternal age, race, etc. Whereas many 

risk-scoring systems based on a patient’s epidemiologic and obstetric factors have been 

applied to predict PTB, sensitivity and positive predictive values have been low and failed 

to identify women at risk of PTB; patients identified as high risk often did not deliver 

preterm.2 Current clinical standards that identify women at high risk of PTB include cervical 

length assessment and screening for fetal fibronectin, a protein elevated in the vaginal pool 

near birth.3 However, these approaches are inadequate and often inconclusive in predicting 

the complex phenotype of PTB.4, 5 Despite advances in biomarker discovery, prediction of 

the onset of PTB has remained a challenge because (1) current clinical assays have poor 

sensitivity and specificity which fail to identify relevant biomarkers;6 (2) single biomarker 

tests are ineffective due to low positive predictive values;7 (3) there are significant inter- 

and intra-assay disparities due to variations in detection method, sample type used, and 

timing of sample collection which make comparative analysis of biomarkers difficult for 

PTB prediction;8 and (4) while some studies have reported multiplexed screening using 

the same sample type and platform,9 there were significant variations in the study designs 

and clear conclusions could not be drawn. An unmet clinical need exists for an effective 

screening tool that enables quantitative detection of unconventional biomarkers of PTB with 

high sensitivity and specificity at clinically relevant levels, yet simultaneously be low-cost 

allowing early, accurate, and affordable screening for patients.
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Recent findings support dynamic metabolic changes in the placenta that are critical for 

uterine function, nutrient transport to the fetus, and fetal growth and development.10 

Therefore, deficits in the capacity of the placenta to maintain this dynamic and 

precisely programmed metabolic stability during pregnancy could contribute to PTB. Mass 

spectrometry (MS) remains a gold standard in metabolomics, offering high specificity, 

selectivity, and multiplexed measures of metabolites in samples. However, MS is also cost-

prohibitive and time-intensive, requiring an elaborate extraction process that is prone to 

user error. MS also requires larger sample volumes (~60 μL of serum/plasma), and it is 

destructive, i.e., the sample is consumed during the measurement. Raman spectroscopy is an 

optical technique where incident photons induce vibrations in the samples, manifesting as 

inelastic light scattering, that reveals biochemical information as a unique “fingerprint” of 

that sample.11 Raman is a low-cost, highly sensitive approach that enables rapid analysis 

(~30 min per sample) in very small sample volumes (~3 μL) capturing the chemical 

footprint of multiple metabolites in a high-throughput format. Raman is non-destructive, 

i.e., a sample can be archived and measured multiple times. It offers an extraction-free 

approach where serum, plasma, or other biofluids can be directly measured without further 

preparation. Our group has leveraged the strengths of Raman both as a label-free approach 

to assess cellular metabolism,12 as well as a labeled surface-enhanced Raman approach 

utilizing nanoparticles to measure biomarkers in in vivo,13, 14 and in sera.15

Here, we demonstrate the utility of Raman in metabolic measurement of plasma from first 

trimester pregnant patients who delivered at term (healthy) and those who delivered preterm 

(<37 weeks). We integrated machine learning models with Raman data to distinguish 

healthy patients and those at high risk of PTB and identified key metabolites correlated 

to the gestational age at delivery. We also leverage the merits of MS metabolomics to 

validate our findings in Raman and demonstrate synergism between the two approaches 

in metabolites measured and the corresponding metabolic pathways enriched using Kyoto 

Encyclopedia of Genes and Genomes (KEGG) pathway analysis. We demonstrate that 

analysis of standard proinflammatory cytokines, which have been implicated in the 

pathogenesis of PTB, with enzyme-linked immunosorbent assay (ELISA) is neither 

conclusive nor predictive of the onset of PTB in the first trimester consistent with literature 

findings. Finally, based on measurements acquired from the first trimester, we report that 

Raman spectral analysis when synergistically combined with patient clinical information and 

obstetric history, offers an accurate prediction of patients who will subsequently have PTB 

(Scheme 1). Our results indicate that Raman-based metabolic profiling has the potential to 

enable a robust and clinically relevant screening tool that may predict those at risk of PTB 

and allow for the appropriate risk stratification and surveillance.

2. Results and Discussions

This study evaluated total 37 plasma samples from the first trimester of pregnant patients 

who delivered at term (healthy) and those who had spontaneous preterm birth (PTB). The 

maternal demographic data is shown for healthy and PTB patients (Table 1). Table 1 shows 

the maternal age of patients, body mass index (BMI), gestational age when they delivered, 

number of pregnancies (gravida), number of births (parity), prior pregnancy loss and known 

comorbidities. Diabetes was a common comorbidity among the 37 participants. Average 
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prior spontaneous pregnancy losses were also higher in PTB patients, a known risk of 

preterm birth. The clinical information for individual healthy and PTB patients are presented 

in Tables S1 and S2 in the supporting information. The average gestational age when plasma 

was collected for the study was 12.1 ± 1.2 weeks with a high of 15.7, low of 10.1, and 

median of 12 weeks.

We measured the Raman spectra of the 37 plasma samples using a 120 mW, 785 nm laser 

with a spot size of 1 μm resolution and a 50 × objective. The plasma samples (3 μL) were 

deposited on CaF2 disks, dried for 20 min, and immediately measured. The Raman data 

was normalized with the standard normal variate (SNV) method in a custom Matlab code, 

and once processed, all data was renormalized so that the 1447 cm−1 lipid peak would have 

a consistent value of 1. We chose this peak for normalization as it had minimal variation 

across samples. The normalized spectra of healthy and PTB patients (Figure 1a, Figure 

S1) shows significant differences in their molecular makeup, which are highlighted in the 

difference spectrum (Figure 1b). The difference spectrum was obtained by subtracting the 

healthy Raman spectrum from the PTB spectrum. Positive values in Figure 1b indicate 

an increase in a specific Raman peak in PTB patients, which suggests an increase in an 

abundance of a specific metabolite. Likewise, negative values indicate metabolites that are 

lower in PTB patients. The Raman peaks and the tentative metabolic assignment are listed in 

Table 2. In assigning our Raman peaks, we used a three step approach: (1) we referred to the 

literature we have cited in Table 2; these are a collection of highly cited and well-established 

Raman reference papers16–20; (2) we referred to published literature focused on preterm 

labor (see ref. 8, 26–46) to ensure that the metabolites assigned are relevant in pregnancy; 

and (3) we also referred to published literature that indicate metabolites present in blood 

and blood components.21 This three-step approach gave us confidence in our tentative peak 

assignments, and the metabolic pathways that have resulted from these assignments. For 

metabolites with multiple peaks (such as some of the amino acids in Table 2), we only 

considered the strongest Raman peak of that metabolite as smaller peaks may not appear in a 

complex media such as plasma.

The peaks were analyzed with student t-tests to evaluate statistical significance between 

healthy and PTB patients which indicated 15 significant metabolites differentiate the two 

patient cohorts. We employed t-distributed neighbor embedding (tSNE), an unsupervised 

machine learning based on nonlinear dimension reduction approach. Our tSNE analysis 

of Raman data (Figure 1c) shows separation between healthy and PTB patient samples in 

the first trimester. Here, each point represents a single patient’s averaged and normalized 

spectrum. The axes are unitless, representing a nonlinear combination of features in the data. 

An exaggeration value of 2 with 30 PCA components and a perplexity value of 15 were used 

to generate the tSNE plot.22 The accuracy of the Raman data and the separation observed in 

tSNE was confirmed with an area under the curve - receiver operating characteristic curve 

(AUC-ROC) analysis (Figure 1d). The ROC curve determines the probability of correctly 

classifying data based on the sensitivity and specificity of the corresponding Raman peaks. 

The sensitivity is the percentage of patients with PTB (true positive rate), and the specificity 

is the percentage of healthy patients (true negative rate). A weighted support vector machine 

(SVM) algorithm was used to generate the AUC-ROC curves using MetaboAnalyst’s 

Biomarker Analysis module. SVM is a versatile approach for the binary classification of 
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samples and regression analysis, and it is often combined with Raman data for biological 

classification.23–25 The data scored an AUC of 0.839 with a 95% confidence interval (CI) 

of 0.6–1 using statistically significant peaks of Raman. For each patient sample, we used a 

mean spectrum that was averaged from 100 RS measurements per sample. When building 

the SVM model, Metaboanalyst uses a 2/3 cross-validation split. The cross-validation is 

then conducted 100 times on the dataset, giving a smooth AUC-ROC and a 95% confidence 

interval from the cross-validation process. The cross-validation accuracy characterization is 

provided in the supporting information (Figure S2) with the list of the peaks used to build 

the SVM model. Our AUC results demonstrate that Raman spectroscopy has the potential to 

classify patients accurately during the first trimester who are likely to have PTB, which is 

currently not possible clinically.

We show twelve statistically significant Raman peaks in Figure 2, and additional peak 

analysis is provided in the Supporting Information (Figures S3). Metabolites identified in 

Raman are directly correlated to the pathophysiology of PTB. We observed an increase in 

DNA (668 cm−1) that may be correlated to DNA methylation, an epigenetic mechanism 

associated with the risk of PTB.26, 27 Alterations in the intrauterine environment changes 

DNA methylation patterns at the cytosine-guanine dinucleotide sites promoted by multiple 

factors, such as diet, smoking, and inflammation. Other studies have also shown that Raman 

peaks of DNA increase with methylation.28 An increase in DNA may also be correlated to 

cell-free fetal DNA in the maternal circulation that typically increases at the onset of birth at 

term and has also been associated with PTB.29, 30 We also observe an increase in histidine 

(659 cm−1) and methionine (681 cm−1), both of which are essential amino acids (AAs) that 

play a critical physiological role in scavenging reactive oxygen and nitrogen species. Yet 

an increase in these AAs is correlated to oxidative stress and inflammation,31 which are 

two detrimental factors in PTB pathology.8 Increase in the methionine pathway has been 

correlated to PTB in other studies as well.32 We observe that metabolites of the tricarboxylic 

acid (TCA) cycle citric/succinic acid (940 cm−1) increase in our PTB cohort. TCA cycle 

metabolites have been associated with oxidative stress and are well documented in PTB.33 

Next we find that peaks associated with carotenoids (1154 and 1517 cm−1) is also elevated. 

β-carotene is naturally found in fruits and vegetables and not endogenous to humans; 

β-carotene serves as a precursor to vitamin A biosynthesis.34 Vitamin A is important for 

fetal health, and deficiencies are associated with PTB.35 Here, an increase in β-carotene may 

be associated with the diet of the PTB patients (or intake of supplements). We note that in 

our recent study focused on Raman spectral analysis of preeclampsia patients throughout 

pregnancy, we also observed an increase in carotenoids in the preeclamptic cohort in all 

three trimesters.36 This suggests that in addition to patient diet, a correlation of β-carotene 

concentrations in inflammatory phenotypes. However, we aim to investigate this further, 

in a future study with a larger cohort of patient samples. We find peaks corresponding to 

lipids and fatty acids (FAs) including myristic acid (956 cm−1), long chain FAs (1173 cm−1), 

and phospholipids including phosphatidylcholine/phosphatidylethanolamine (PC/PE, 1656 

cm−1) also increase in PTB. An increase in this group of metabolites in maternal plasma has 

been associated with premature rupture of membranes and increased risk of preterm labor.37 

Indeed, complex crosstalk is at play between maternal lipids and signaling molecules 

secreted from the placenta,38 and an increase in membrane phospholipids, including PC/PE, 
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may be a consequence of high inflammation in PTB patients.39 Sphingolipids have also been 

associated with increased prostaglandin levels which influence dilation and contractions 

during labor.40

Among the metabolites that decrease in PTB patients include AAs such as tryptophan 

(1551 cm−1), tyrosine (1615 cm−1), and phenylalanine (1583 cm−1, Figure S1), which have 

been directly linked to parturition and PTB. These AAs are essential building blocks in 

protein synthesis, as they are actively transported across the placenta from mother to fetus. 

As a patient nears term, a continued increase in fetal AA metabolism depletes maternal 

AAs.41 From our findings, a decrease in AAs in the first trimester of PTB patients may 

be a metabolic biomarker of dysregulated maternal-fetal tolerance and premature placental 

senescence leading to PTB. Among AAs, the phenylalanine-tyrosine metabolic relationship 

drives many processes key to healthy fetal development. Phenylalanine, an essential AA, 

is obtained through diet and intracellularly converted to tyrosine, a non-essential amino 

acid. Tryptophan, also an essential AA, plays a crucial role in many metabolic functions 

necessary for fetal growth, placental function, and immune regulation.42 This suggests that a 

decrease in these amino acids in the first trimester is an early indicator of cervical changes 

and placental inflammation leading to PTB.43, A recent multi-omics study confirmed the 

role of these key AAs and corresponding pathways in the inflammatory pathophysiology 

of PTB.44 We also observed a statistically significant decrease in the Amide III peak 

(1249 cm−1) representing proteins, including collagen-like and other proteins.45 A decrease 

in Amide III among the PTB patient cohort directly correlates to reduced AAs, which 

intricately participate in protein synthesis. Proteins are a key component of the extracellular 

matrix and are critical to the maternal-fetal interface providing structural integrity to the 

uterine endometrium and decidua in pregnancy.46 Deficiencies in proteins in the first 

trimester could indicate premature cervical ripening and parturition, increasing the risk of 

PTB. We used correlation analysis to detect patterns in statistically significant metabolites 

with respect to the gestational age at delivery in patients (Figure 2m). For this analysis, 

the Raman peak values of all patient samples (n=17 healthy and n=20 PTB) and their 

corresponding gestational age was uploaded to the Statistical Analysis [one factor] module 

of MetaboAnalyst. The module used the Pearson’s correlation test to determine positive and 

negative values that associate peaks to gestational age.

A Pearson product-moment coefficient (r) was specified for the correlation measure. 

Negative values indicate that a metabolite decreases in abundance in PTB, while positive 

values designate an increase in abundance in PTB. Positive and negative values also 

imply that gestational age increases or decreases jointly with changes in healthy patients 

or inversely in PTB patients. From top to bottom, metabolites increase in correlation 

strength. Values between ± (0 – 0.29) suggest a weak correlation, ± (0.30 – 0.50) moderate 

correlation, and ± (0.51 – 1) suggest strong correlation of variates to each other.47, 48 

Our results show methionine (r = −0.41187), DNA (r = −0.39267), long-chain FAs (r = 

−0.36687), phenylalanine (r = 0.36665), NADH (r = 0.32524), tryptophan (r = 0.30092) 

and lipids/phospholipids (r = −0.30) have a moderate correlation to gestational age at 

delivery when measured in the first trimester. The remaining metabolites have weak 

correlation values. The nicotinamide adenine dinucleotide (NAD+) and its reduced form 

NADH are redox couples that are essential in energy metabolism including glycolysis and 
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mitochondrial oxidative phosphorylation. NAD+/NADH regulate the cellular redox state, 

and the loss of redox homeostasis of these molecules has been linked to loss of pregnancy.49 

These data suggest that targeted screening of these metabolites in the first trimester may be 

predictive for patients at risk of PTB.

We validated our Raman findings with mass spectrometry (MS) metabolomics using GC-

MS and LC-MS/MS on plasma extracts to confirm the differences between PTB and 

healthy patients in the first trimester (Figure S4). MS is a gold standard in metabolic 

profiling, identifying specific metabolites with high selectivity. However, larger sample 

volumes are required for MS of plasma (60 μL vs. only 3 μL for Raman) and a time- 

and labor-intensive sample extraction process is needed (no sample prep necessary for 

Raman). The detailed procedure for metabolite extraction from plasma for MS, and sample 

analysis is provided in the methods. The metabolites assessed with MS are represented via 

a heat map (Figure 3a) and quantitative analysis (Figure S5) and show an increase in a 

number of membrane phospholipids including PC/PE as well as in lipids and fatty acids 

for PTB patients reflecting the trends observed in Raman metabolic analysis (Figure 2). 

Metabolites from the TCA cycle such as citric acid and other metabolites in MS also show 

an increase in PTB which aligns well with an increase in Raman peaks of citric/succinic 

acid (940 cm−1, Figure 2d). In MS, some sugars show increase while others show decrease 

indicating that the overall metabolite class of sugars may not have a significant change 

between PTB and healthy cohort early in pregnancy; similar trends were observed in Raman 

peaks for sugars (Figure S2). Among the class of AAs, we find a decrease in β-alanine 

in PTB cohort, minimal change in glutamic acid between the two cohorts, and an increase 

in homomethionine. These trends are analogous to changes in amino acids observed in 

Raman and also highlights the complex interplay of AAs in protein synthesis necessary 

for fetal development vs. their role in oxidative stress which may lead to adverse effects 

in pregnancy. Note that some variations between trends observed in Raman and MS is 

expected as MS identifies a much larger subset of AAs than Raman. These variations may 

be correlated to how samples are measured in the two techniques. Raman measures the 

inelastic scattering of photons induced by the vibrational modes in samples where molecules 

with stronger vibrational motions (such as fatty acids) have intense peaks in the spectra. MS 

utilizes a mass-to-charge ratio to identify chemical and structural information, enabling a 

higher specificity in distinguishing metabolites, although overlap with irrelevant molecules 

often occurs depending on the databases used for metabolite identification. To identify 

metabolites that overlap between MS and RS and those that distinctly appear in one or 

the other approach, we present Venn diagrams (Figure 3b) that demonstrate that RS and 

MS combined together provide a more comprehensive metabolic information. Therefore, 

we view that MS and Raman are not competitive rather highly complementary where the 

strengths of each approach is combined together to elucidate metabolic rewiring during the 

pathophysiology of PTB.

The metabolites tentatively identified with Raman and validated with MS were then used 

to examine possible metabolic pathways that may be responsible towards the onset of 

PTB (Figure 4a, b). We used the KEGG pathway analysis obtained with MetaboAnalyst’s 

Enrichment Analysis module (see methods for details on how MetaboAnalyst was used). 

Table S3 shows the KEGG pathways that are associated with each metabolite found in 
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Raman. Group labels such as DNA, lipids, fatty acids, and Amide I and III are generic 

and cannot be used for enrichment analysis. The enrichment analysis provides 18 enriched 

pathways in Raman that overlap with MS. The metabolites that correspond to the Raman 

peaks (Figure 2, S3, and Table S3) and are found in the MS heat map (Figure 3, S4) 

are directly involved in the pathways listed. We also found several pathways that are 

observable in Raman but are indirectly correlated to pathways in MS. For example, the 

pantothenate and CoA biosynthesis pathway in MS where pantothenate (also known as 

vitamin B5) is absorbed in the intestine from food, and gut microbiota serves as the main 

precursor to the biosynthesis of coenzyme A (CoA).50 This pathway is involved in the 

synthesis and degradation of fatty acids, including phospholipids, gangliosides, and bile 

acids among others, and it is directly associated with Raman metabolic pathways of fatty 

acid biosynthesis, degradation, elongation, and bile acid biosynthesis. The nicotinate and 

nicotinamide metabolism in MS is another example where nicotinamide, also known as 

niacin or vitamin B3, is biosynthesized from tryptophan and participates in the nicotinamide 

adenine dinucleotide (NAD+/NADH) redox cycle.51 The tryptophan-niacin pathway is 

associated with tryptophan metabolism in Raman enrichment analysis, and as discussed 

previously (Figure 2), tryptophan correlates to the inflammatory pathophysiology of PTB. 

Finally, aminoacyl-tRNA biosynthesis and pyrimidine metabolism observed in both MS 

and Raman metabolic pathways are linked with purine metabolism seen in MS enrichment 

analysis, and correlates to changes in the DNA peak in Raman (Figure 2a). Indeed, DNA 

methylation associated with PTB, as discussed previously in Figure 2, can be measured 

by the stoichiometric ratio of purine and pyrimidine bases.52 Tyrosine, tryptophan, and 

phenylalanine are also essential to the aminoacyl-tRNA metabolism, and collectively, these 

metabolites support fetal health and development and correlate to maternal parturition. 

The pentose phosphate pathway (PPP) in MS is also associated with pathways found 

in Raman. PPP proceeds in parallel to glycolysis and they share the starting molecule, 

glucose-6-phosphate. PPP produces NADPH, which is then utilized in the metabolic 

pathways associated with biosynthesis of steroids and fatty acids, both of which are present 

in Raman KEGG analysis. A more expansive enrichment pathway in MS is expected since 

MS measures a larger subset of metabolites. Our results demonstrate that the tentative 

metabolites identified with Raman and the possible pathways determined from KEGG may 

be potential early predictors of PTB.

Next, we determined if synergistic integration of Raman metabolic profiling with patient 

clinical history, which is a routine part of prenatal care, would enable a more accurate early 

diagnosis of PTB than achieved with clinical information alone or Raman data alone. We 

normalized patient demographic data, (Table 1, Tables S1, S2) including maternal age, BMI, 

gravida, parity, and previous pregnancy losses for tSNE and the correlation heat map (Figure 

5). The data were normalized by dividing by the maximum value of a particular clinical 

parameter within both PTB and healthy groups. For example, the BMI of all patients was 

divided by the highest BMI among both patient cohorts to get a maximum of 1 and all other 

values being a fraction. This normalization was performed to aid in tSNE data visualization 

of clinical parameters. The tSNE in Figure 5a was generated from the normalized patient 

data; tSNE parameters included an exaggeration value of 2, 2 PCA components, and a 

perplexity of 14. This plot demonstrates that clinical information alone cannot accurately 
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classify patients at high risk of PTB in the first trimester. Gestational age was excluded from 

the tSNE of clinical data as that information would not be available in the first trimester. 

The combination of Raman metabolic classification (Figure 5b, also shown in Figure 1c) 

with the normalized clinical data of patients (Figure 5c) enables a robust separation of the 

two patient cohorts better than can be achieved with either dataset alone. We generated 

AUC-ROC curves of the Raman + clinical data shown in Figure 5c using an SVM algorithm; 

the AUC was based on statistically significant Raman peaks and the five clinical parameters 

included in Figure 5a. We achieved an AUC of 0.851 with a 95% CI of 0.638–1 (Figure 5d) 

highlighting that Raman metabolic analysis combined with patient clinical history enables 

an unprecedented diagnostic accuracy in the 1st trimester to identify patients at high risk 

of PTB. Please see Figure S2b for the cross validation of the SVM model that enabled the 

AUC-ROC analysis.

We examined if metabolites measured in the first trimester correlated with patients’ clinical 

information (not including gestational age at delivery). We generated a correlation heat map 

where blue cells represent an inverse correlation and red cells represent joint correlation 

(Figure 5e). Pearson’s product-moment coefficient (r) values for each pairing are provided 

in the Supporting Information (Table S4) where values between ± (0 – 0.29) suggest a 

weak correlation, ± (0.30 – 0.50) moderate correlation, and ± (0.51 – 1) suggest strong 

correlation of metabolites and clinical parameters. Our results indicate gravida, parity, and 

spontaneous pregnancy losses all have strong-to-moderate positive correlations to each 

other, but not to any metabolites. This is not surprising, as spontaneous pregnancy losses 

contribute to the disparity between total pregnancies and births. We found that maternal 

age has a moderate positive correlation (r = 0.32) to unsaturated lipids and PC/PE (1656 

cm−1). Maternal plasma lipids have been correlated to the pathogenesis of PTB and shown 

to increase with maternal age.37 Membrane phospholipids including PC generally increase 

throughout aging.53 This implies advanced maternal age may correlate to a risk of PTB, 

and a lipidomic screening in the first trimester would be beneficial in patients >35 years of 

age. We found that patient BMI is moderately correlated to several metabolites, including an 

inverse strong to moderate correlation with carotenoids (1154 cm−1, 1517 cm−1) and PC/PE 

(1656 cm−1). It has been shown in mouse models that dietary PC benefits individuals with 

diet-induced obesity, suggesting that diet may play a critical role in the risk of PTB for 

patients with a high BMI.54 BMI also has a moderate joint correlation to AAs including 

tyrosine (1615 cm−1), phenylalanine (1583 cm−1), and tryptophan (1551 cm−1). Obesity is 

associated with a reduced protein synthesis rate, resulting in increased plasma amino acid 

concentrations.55 Further, BMI is also jointly correlated to NADH (1569 cm−1); metabolic 

balance between white adipose tissue, which stores energy, and brown adipose tissue, which 

expends energy, is associated with the NAD+/NADH redox couple.56 In addition, we found 

moderate-to-strong intra-metabolite correlations where metabolites that increase (Figure 2a–

f) or decrease (Figure 2g–l) in PTB patients are jointly correlated. We also discovered that 

metabolites of the same class share a positive correlation, such as amino acids methionine 

(681 cm−1), histidine (659 cm−1), tyrosine (1615 cm−1), and phenylalanine (1605 cm−1). 

Finally, strong joint correlations between TCA cycle metabolites (citric acid, 940 cm−1) and 

fatty acids (1173 cm−1) and lipids/myristic acid (956 cm−1) are also observed, demonstrating 
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that these metabolic pathways are intertwined in pregnancy and are critical to the onset of 

PTB.

In comparing our Raman findings to clinical measures, currently, no standard mechanisms 

exist to clinically predict PTB in the 1st trimester. Ultrasound measurement of cervical 

length (CL) is performed at ~16 weeks of gestation, but CL alone is neither an early 

predictor nor an accurate measure of risk of PTB. A recent meta-analysis of >1000 

women showed that CL measurements at 18–22 weeks scored a poor AUC of 0.605 in 

predicting PTB, which slightly improved to 0.725 at 28–32 weeks of gestation.57 They also 

concluded at 11–14 weeks gestation there were no differences in CL between those at risk 

of PTB and healthy pregnancies. Another prospective study of a low-risk population of 

1113 women also concluded that CL measurement at 11–14 weeks of gestation does not 

show any predictive value (AUC = 0.55) for those that delivered <35 weeks gestation.58 

CL measurement is therefore sometimes combined with a fetal fibronectin (fFn) test, a 

protein marker in the cervicovaginal fluid, used in the 2nd trimester as a negative predictor 

for asymptomatic patients at high risk of PTB. In many clinical settings fFn is presented 

as a qualitative test with positive or negative result based on a concentration cut-off of 

50 ng/ml.59 But qualitative tests have poor accuracy reporting an AUC of 0.68.60 Recent 

quantitative fFn tests have overall improved accuracy (AUC of 0.78) but these tests are 

not included in routine prenatal care. Patients are only tested when they present symptoms 

of PTB but do not show signs of cervical dilation. Therefore, current clinical measures 

are inadequate in early and accurate risk prediction of PTB, and innovative, cutting-edge 

technologies are imperative that fill this clinical gap in patient stratification.

Our compelling findings suggest that (i) metabolic profiling with Raman has the potential 

to address this critical clinical gap by examining changes in multiple metabolites in the 1st 

trimester that report a good predictive value (AUC of 0.839) for early assessment of those 

at risk of PTB. (ii) Tentative metabolic assignment from Raman combined with clinical and 

obstetric history of patients (Fig. 5c, d) scores an unprecedented AUC of 0.851 to enable 

potential risk assessment of PTB in the 1st trimester that surpasses current clinical standards. 

(iii) Raman-based screening also complements current prenatal care allowing a rapid (30 

min measurement per sample), low-cost, and highly sensitive approach that requires minimal 

sample volumes (3 μL plasma). Therefore, Raman metabolic testing may be implemented 

as affordable maternal screening for patients as early as the first trimester to achieve a 

predictive risk scoring.

We compared Raman findings with standard protein assays of exploratory markers for 

PTB in the first trimester. Here, we performed ELISA (Figure 6) in n =11 healthy 

patients and n=10 PTB patients for four pro-inflammatory cytokines.7, 61, 62 These include 

tumor necrosis factor-alpha (TNF-α), interleukin-12 (IL-12p20), interleukin-6 (IL-6), 

and granulocyte-macrophage colony-stimulating factor (GM-CSF). Three independent 

experiments for each cytokine and for each patient sample were performed i.e. each dot 

in Figure 6 represents the average of the experimental triplicate data for one patient. Values 

were normalized to total protein in the samples which were assessed with Bicinchoninic acid 

protein assay. Our results show no statistically significant differences in any of the cytokines 

when comparing patients that delivered preterm vs. those that delivered at term. A slight 
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decrease in GM-CSF in the PTB cohort is observed which corresponds well to findings in 

the literature,63 but generally, first trimester cytokine levels did not have a clear correlation 

with an increased risk of PTB. These protein levels are not surprising, as cytokines and 

other proteins are already established in the literature to have low positive predictive values 

for accurate diagnosis.64 This result is, in part, due to the poor sensitivity of ELISA and 

the inability to measure ultra-low levels of proteins. Further, such protein-based assays also 

have inter- and intra-assay discrepancies between studies due to variations in the type of 

sample studied and timing of sample collection.7, 8 These challenges collectively make a 

comparative analysis of proteins difficult for PTB prediction and provide an opportunity to 

expand Raman metabolic profiling as an affordable screening platform for all pregnancies. 

tSNE of the ELISA results (Figure 6e) confirms that differences between PTB and healthy 

cohorts in the first trimester is inconclusive with these protein levels. tSNE parameters 

include an exaggeration value of 2, 3 PCA components, and a perplexity of 11.

3. Conclusions

In summary, this study demonstrates rapid, low-cost, and highly sensitive metabolic 

profiling with Raman in the first trimester plasma samples of pregnant patients. Raman 

data combined with unsupervised machine learning enable a predictive measure of patients 

early in the pregnancy who may be at risk of PTB. Tentative metabolite classes identified 

with Raman and validated with MS metabolomics showed an increase in lipids, fatty acids, 

membrane phospholipids, and metabolites of the TCA cycle; literature evidence shows these 

trends are expected in PTB pathogenesis. Based on the Raman peak assignments, we found 

that amino acids play a complex role, as some amino acids are necessary for placental 

growth and fetal development while others contribute to the inflammatory pathophysiology 

of PTB. We performed enrichment analysis to determine possible metabolic pathways 

that may be early predictors of PTB, and we found 18 significant pathways in Raman 

that also overlap with MS. Our analysis conservatively shows the relevance of Raman 

in metabolic assessment, which compliments the high specificity of MS in identifying a 

larger subset of metabolites. Finally, we demonstrate that the tentative metabolites identified 

with Raman, when combined with clinical information and obstetric history, enable a 

compelling screening tool for identifying patients who may be at risk of PTB in their 

first trimester. A correlation analysis with the Pearson coefficient shows that membrane 

phospholipids likely has a moderate correlation to maternal age and BMI, indicating that 

a lipidomic screening in the first trimester would benefit patients of advanced maternal 

age. BMI also correlated to multiple amino acids, indicating that patients with high BMI 

may be offered additional recommendations for diet management or medications. Our 

ELISA analysis of key pro-inflammatory cytokines showed that first trimester cytokine 

levels did not have a clear relationship to an increased risk of PTB, rendering it difficult to 

predict the mechanisms of PTB based on inflammatory proteins alone. We note that in this 

study, samples were obtained from an academic biobank where patient plasma (and other 

biofluids) are continuously banked for research and education; therefore, patients were not 

targeted or recruited specifically for this study. The purpose of our work was to demonstrate 

the capabilities of Raman in early diagnosis of PTB and we expect that our results may 

be improved and more metabolites may be identified in a larger, targeted cohort study in 
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future. We envision that Raman spectral measurements of maternal biofluids combined with 

machine learning has the potential to complement current prenatal care, offering a predictive 

tool that may be useful for risk stratification of PTB. Our study is also expected to advance 

maternal and fetal health in rural areas enabling affordable screening for patients throughout 

their pregnancy.

4. Experimental Methods

Materials:

Ribitol, nonadecanoic acid, methoxamine HCl, ethanol, acetone and BSTFA + 1% TMCS 

were obtained from Sigma-Aldrich, Inc. (St. Louis, Missouri, USA). Methanol, water, 

chloroform, and hexane (HPLC grade) were obtained from Fisher Chemical; Thermo Fisher 

Scientific, Inc. (Waltham, MA, USA).

Human plasma samples:

All patients provided informed consent to have blood collected by the Perinatal Family 

Tissue Bank from the University of Iowa Department of Obstetrics and Gynecology 

(IRB#200910784). Blood was collected in ACD-A tubes (Becton Dickinson), centrifuged, 

aliquoted, snap-frozen, and stored at −80 °C to isolate the plasma. All samples and 

paired clinical data received from the tissue bank were de-identified to maintain patients’ 

anonymity.

Raman mapping and analysis:

A Renishaw inVia Raman confocal microscope with a 785 nm laser was used to take scans 

of the plasma with WiRE 5.4 software. A 120 mW laser was operated at 100% power with 

1200 lines per mm grating. A spot size of 1 μm resolution and a 50 × objective were used 

to obtain spectra. Static scans were taken from 600 to 1700 cm−1 with 10 sec of exposure 

time and one accumulation. The instrument was calibrated using an external silicon standard 

wafer at 520.5 nm daily, and line maps were used to take 100 spectra per patient. The 

plasma samples were prepared by thawing and aliquoting 3 μL on 2 mm × 2 mm CaF2 disks 

from Crystran Ltd followed by drying in a 37 °C oven for 20 min prior to measurement. 

Smoothing, baseline correction, cosmic ray removal, and standard normal variate (SNV) 

method normalization were applied with a custom MATLAB code. The spectra were 

smoothed using a Savitzky and Golay filter with a 10th order polynomial and coefficient 

value of 45 points.65 The fluorescent background was removed using a modified polyfit 

method with a 9th order polynomial fit with a threshold value of 0.0001.66 To visualize 

data clustering, the MATLAB Statistics and Machine Learning Toolbox implementation of 

t-distributed stochastic neighbor embedding (tSNE) was used via a custom MATLAB code 

(R2021b). This method is a nonlinear, unsupervised, multivariate dimensionality reduction 

technique. Parameters included the Exact algorithm with a Cosine distance function, an 

exaggeration value of two, and PCA components and perplexity which varied by figure and 

are included in the text.
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Mass spectrometry Metabolomics:

Plasma samples were submitted to the W.M. Keck Metabolomics Research Laboratory 

(Office of Biotechnology, Iowa State University, Ames IA) for non-targeted metabolomic 

analysis. Sample preparation was conducted using a modified methanolic extraction and 

sample preparation methods established by Moritz and co-workers.67 50 μL of each sample 

were spiked with internal standards (10 μg of nonadecanoic acid (1 mg/mL in methanol) 

(Sigma-Aldrich CO., St. Louis, MO), 10 μg ribitol (1 mg/mL in water) (Sigma-Aldrich CO., 

St. Louis, MO) and the extraction initiated with the addition of 0.9 mL of 80% ice-cold 

LC-MS grade methanol with 20% LC-MS grade water (Fisher Scientific, Waltham, MA). 

Samples were vortexed for 90 sec, rested on ice for 10 min, followed by more vortexing for 

90 sec then placed into an ice-cold sonication water bath for 10 min at full output power. 

Samples were then vortexed again for 90 sec and centrifuged for 7 min at 13,000 × g at 

room temperature. The supernatants were recovered, and the remaining insoluble pellets 

were re-extracted with additional volume of 0.9 mL of 80% ice-cold methanol, then the 

supernatant extracts were pooled.

Six hundred microliters of the combined extracts were dried using a speed-vac concentrator 

for 10 h prior to derivation.68 Samples were derivatized with 50 μL of methoxyamine 

hydrochloride (20 mg/mL in pyridine) initially added to the dried extracts followed by a 1.5 

h incubation at 30 °C. Subsequently trimethylsilylation (TMS) was performed by addition 

of 70 μL of bis-trimethyl silyl trifluoroacetamide with 1% Trimethylchlorosilane (BSTFA 

+ 1% TMCS) for 30 min at 60 °C. GC-MS characterized the derivatized samples at the 

ISU W.M. Keck Metabolomics Research Laboratory. GC-MS analyses were performed with 

an Agilent 6890 gas chromatograph coupled to a model 5973 Mass Selective Detector 

(Agilent Technologies, Santa Clara, CA). The column used was HP-5MSI 5% Phenyl 

Methyl Silox with 30 m × 250 μM × 0.25 μm film thickness (Agilent Technologies). One 

microliter of the sample was injected with the inlet operating in splitless mode and held 

at a constant temperature of 280 °C. The oven temperature was programmed as follows: 

an initial temperature of 70 °C was increased to 250 °C at 15 °C/min, followed by an 

increase of 20 °C/min until reaching 320 °C, which was held for 5 min. Helium was 

used as a carrier gas at a flow rate of 1 mL/min. The MS transfer line was held at 280 

°C. Mass Spectrometry detection was performed using electron ionization at 70 eV and 

source temperature and quadrupole temperature were set at 230 °C and 150 °C, respectively. 

The mass data was collected in the range from m/z 40 to m/z 800. Identification and 

quantification were conducted using AMDIS (Automated Mass spectral Deconvolution and 

Identification System, National Institute of Standards and Technology (Gaithersburg, MD)) 

with a manually curated retention indexed GC-MS library with additional identification 

performed using the NIST17 and Wiley 11 GC-MS spectral library (Agilent Technologies, 

Santa Clara, CA). Final quantification was calculated by integrating the corresponding peak 

areas relative to the area of the internal standards. Raw data was normalized to the amount 

of tissue used. Statistical evaluation of the non-targeted GC-MS data was conducted with the 

R-based statistical package MetaboAnalyst.69 Important molecular features were elucidated 

using the MetaboAnalyst multivariate analysis tools.
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The supernatant extracts were pooled and filtered with 0.2 μm centrifugal filters (Cat. 

No. UFC30LG25, Millipore Sigma, Burlington, MA) and subjected to LC-MS analysis. 

LC separations were performed with an Agilent Technologies 1290 Infinity Binary Pump 

UHPLC instrument equipped with an Agilent Technologies Eclipse C18 1.8 μm 2.1 mm 

× 100 mm analytical column that was coupled to an Agilent Technologies 6540 UHD 

Accurate-Mass Q-TOF mass spectrometer (Agilent Technologies, Santa Clara, CA). Six 

μL of each sample were injected into the LC system. Chromatography was carried out 

at 40 °C with a flow rate of 0.400 mL/min. Running solvents were A: water with 5mM 

ammonium formate and 0.1% formic acid; B: 25% iso-propanol in acetonitrile with 5 mM 

ammonium formate and 0.1% formic acid. Initial solvent conditions were 0% B which 

increased on a linear gradient to 100% B over 15 min, 100% B was held for 5 min before 

returning to 0% B over 2 min. After each LC-MS acquisition, a 6-min post run at 0% B 

was conducted. Metabolites were detected using electrospray ionization in both negative and 

positive ionization modes. Nitrogen was used as the service gas for the ion source with a 

drying gas flow rate of 12 L/min at a temperature of 350 °C, a nebulizing pressure of 25 

psi, and a sheath gas flow of 11 L/min at 400 °C. The capillary and nozzle voltages were 

4000 and 1750 volts respectively. The mass spectrometer was operated in high resolution (4 

Gz) mode with a scan range from m/z 100 to m/z 1700. An acquisition rate of 1.5 spectra 

per sec was used. Reference masses were monitored for continuous mass calibration during 

LC-MS data acquisition: m/z 121.050873 with m/z 922.009698 for positive mode and m/z 

112.985587 with 1033.988109 for negative mode. Data evaluation and peak detection were 

performed using Agilent MassHunter Qualitative Analysis (version 10.0) and Mass Profiler 

programs (version 8.0) (Agilent Technologies, Santa Clara, CA). Metabolite peaks were 

identified using accurate mass spectral analysis compared to the METLIN database.70

Enzyme-linked immunosorbent assay (ELISA):

IL-6 (88-7066-88), IL-12p20 (88-7126-88), GM-CSF (88-7346-88), and TNF-α 
(88-8337-88) ELISA kits for humans were purchased from Thermo Fisher (Waltham, MA). 

Corning® 96 well half-area microplates were used for ELISA analysis. Total protein was 

measured by BCA protein assay (Thermo Fisher 23225). The assays were performed 

according to the manufacturer’s protocol. GraphPad Prism 8.2.1 software was used to 

analyze the data.

MetaboAnalyst Methods:

MetaboAnalyst, a web based interface for analysis of metabolic data, was used to generate 

figures for AUC-ROC analysis (Figure 1d), correlation analysis (Figure 2m), MS and 

RS metabolites intensity heat maps with auto-scaled features per row (Figure 3 and S4), 

enrichment analysis (Figure 4a,b) and Pearson correlation heat map from normalized 

Raman intensity values (Figure 5e). The Statistical Analysis [one factor] module was 

used to create the heat maps and correlation analysis for the Raman and MS data, and 

[metadata table] created the correlation bar graph. Heat maps were generated using the 

default MetaboAnalyst parameters: normalized data-to-scalable features, Euclidean distance, 

Ward clustering, and analysis with Student’s t-test. The Enrichment Analysis module 

created the bar graphs detailing metabolic pathways for Raman and MS data. For Raman 

enrichment analysis, the individual Raman peak assignments (corresponding to different 
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metabolites) and the peak intensities for all of the patients in this study were uploaded 

into Metaboanalyst. Here the intensity of the Raman peaks was used as a “proxy” for 

metabolite concentrations to obtain the corresponding metabolic pathways. Generic peaks 

in Raman such as carbohydrates (1017 cm−1), amino acids (1206 cm−1), amide III (1243 

cm−1), amide I (1672 cm−1) and DNA (805, 1420 cm−1) were not used in the enrichment 

analyses since they are representative of a broad family of metabolites. The enrichment 

analyses provides p-values for the most probable metabolic pathways. But note that the 

enrichment p-values provided by Metaboanalyst are different than the p-values obtained 

from statistical analysis. The enrichment p-value is defined as the probability of obtaining n 
or more pathways that give rise to a cumulative hypergeometric distribution. Metaboanalyst 

selects the hypergeometric test for over-representation analysis (ORA). ORA is a statistical 

method that determines whether metabolites from a pre-defined set (such as the KEGG 

database) are present more than would be expected (over-represented) in the data we upload. 

MS enrichment pathways was obtained similarly. Quantified enrichment analysis was used 

with the ID type as compound names and feature type as metabolites with a categorical 

group label. The KEGG pathway was used to identify metabolic pathways in the Raman and 

MS data. Finally, the Biomarker Analysis module was utilized to prepare AUC-ROC curves 

in Tester mode. The peak values were uploaded for every sample in both cohorts. Only the 

strongest peak for each metabolite was used and additional peaks belonging to the same 

metabolite was removed from the analysis as only a single can be used in Metaboanalyst. 

Metaboanalyst offers the option to compute and add statistically significant ratios to this 

analysis. But we chose to not add this option to avoid overfitting our model. This option can 

be applied when larger sample numbers are available.

Statistical analysis:

Data is presented as standard error of the mean. Unpaired, two-sided, homoscedastic 

Student’s t-tests were used in excel to generate p values. P values of < 0.05 and < 0.01 

are indicated as * and **.
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Figure 1. 
Raman spectroscopy distinguishes PTB from healthy pregnant patients. (a) Mean, 

normalized Raman spectra of healthy and PTB patient normalized to the 1447 cm−1 lipid 

peak. (b) The difference spectrum is obtained by subtracting the healthy spectrum from the 

PTB spectrum in Figure 1a. (c) tSNE of healthy and PTB patients showing separation of 

the two groups. (d) An area under the curve - receiver operating characteristic (AUC-ROC) 

curve shows our predictive model can differentiate PTB and healthy patients.
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Figure 2. 
Key metabolites that distinguish PTB (red) from healthy (black) patients are presented in 

box plots and correlation coefficient plot to gestational age. (a-i) Metabolites increasing 

in PTB, including DNA (668 cm−1), histidine (659 cm−1), methionine (681 cm−1), citric/

succinic acid (940 cm−1), carotenoids (1154, 1517 cm−1), myristic acid (956 cm−1), long-

chain fatty acids (1173 cm−1), fatty acids, triglycerides, and PC/PE (1656 cm−1). (j-l) 

Metabolites decreasing in PTB, including tryptophan (1551 cm−1), tyrosine (1615 cm−1), 

and Amide III (1249 cm−1). Here, * represents a p value < 0.05, and ** represents a p value 
< 0.01. (m) Pearson’s correlation analysis of significant metabolites to gestational age at 

delivery. Remaining peaks not included in (a-l) are NADH (1569 cm−1) and phenylalanine 

(1583, 1605 cm−1).
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Figure 3. 
Mass spectrometry metabolomics distinguishes PTB from healthy. (a) Heat map of 

statistically relevant metabolites obtained from GC-MS and LC-MS of n = 4 patients per 

group.(b) Venn diagrams of metabolites in RS and MS. Metabolites in the middle overlap 

between the two approaches.
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Figure 4. 
KEGG pathway enrichment analysis shows metabolic pathways that correspond to the 

metabolites enriched in the patient samples from (a) Raman measurements and (b) mass 

spectrometry measurements.
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Figure 5. 
tSNE of (a) patient clinical data from first trimester healthy and PTB cohort that include 

maternal age, BMI, gravida, parity, and previous pregnancy losses. (b) Raman data only 

from Figure 1c, and (c) Raman + clinical information combined present a powerful approach 

to distinguish patients at high risk of PTB in the first trimester. (d) AUC-ROC analysis 

shows Raman + clinical data can predict those at risk of PTB with higher accuracy than 

Raman alone. The AUC was created with a weighted SVM algorithm using the statistically 

significant peaks from Raman and the five clinical parameters from “a”. (e) Correlation 

heat map of significant Raman metabolic peaks and clinical data of patients. The Raman 

metabolic peaks include methionine (681 cm−1), saturated long-chain fatty acids (1173 

cm−1), histidine (659 cm−1), DNA (668 cm−1), citric/succinic acid (940 cm−1), myristic acid 
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(956 cm−1), carotenoids (1154, 1517 cm−1), phospholipids including PC/PE (1656 cm−1), 

tryptophan (1551 cm−1), NADH (1569 cm−1), phenylalanine (1583, 1605 cm−1), tyrosine 

(1615 cm−1), and Amide III (1249 cm−1).
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Figure 6. 
ELISA of pro-inflammatory cytokines of PTB and healthy patients. (a-d) Box plots of 

cytokine concentrations of n = 10 PTB and n = 11 healthy patients each, featuring GM-CSF, 

IL-6, IL-12p20, and TNF-α. Data were normalized to total protein in samples. (e) tSNE of 

ELISA data shows that cytokine levels in the first trimester are not predictive of the onset of 

PTB and cannot distinguish the two groups.
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Scheme 1. 
Schematic representation showing Raman spectra of pregnant patient plasma identify 

specific metabolites and corresponding metabolic pathways. Raman data combined with 

clinical data of patients and machine learning enables a predictive model for screening risk 

of preterm birth in the first trimester.
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Table 1.

Demographics and obstetric history of patients. BMI: body mass index.

Clinical Parameter of Patients
Healthy PTB

Statistical significance(mean ± SD) (mean ± SD)

Number of patients 17 20 -

Maternal age (years) 30.8 ± 5.0 29.7 ± 4.5 0.474890284

BMI (kg/m2) 29.9 ± 9.9 25.9 ± 7.9 0.192137563

Gestational age at delivery (weeks) 39.1 ± 0.8 34.5 ± 2.2 5.33259E-09

Gravida 2.6 ± 1.4 3.5 ± 2.7 0.298146612

Parity 1.2 ± 0.5 1.4 ± 1.6 0.794293266

Pregnancy loss 0.0 ± 0.0 0.7 ± 1.2 0.026910325

Diabetic (%) 11.7 30 0.189192452

Another comorbidity (%) 5.9 5 0.2481179
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Table 2.

Tentative peak assignments for Raman spectral data including the vibrational modes.

Wavenumber (cm−1) Vibrational Modes Tentative Metabolites Ref.

621, 1002, 1030, 1583, 
1605 C-C twisting, C-C aromatic ring stretching, ring stretching Phenylalanine 16, 17

643 C-C twisting, C-O-C skeletal mode Proline 17, 18

659, 1317 C-S stretching, CH3/CH2 twisting or bending mode Histidine 17, 18

668, 805, 1420 C-S stretching of cytosine, C-C stretching, ring breathing 
mode DNA 16 18

681 CO2- scissoring and deformation Methionine 17, 18

699 Choline group, CH2 rocking Cholesterol 16, 19, 20

717 C-N symmetric stretch from choline group Phosphatidylcholine and sphingomyelin 16, 19, 20

743 Backbone vibrations, ring deformation Thymine 17, 18

756, 1551 Symmetric breathing, C-C stretching, C-C stretching Tryptophan 17, 18

828, 1615 C-C stretching Tyrosine 16, 17, 18

848, 1125 C-O-C skeletal stretching Glucose, glycerol 16 18

878 C-O-C ring, C-O-H bending Glutamic acid 17, 18

898 CH2 wagging vibrations from backbone Glycine 17, 18

940 C-H bending Citric acid, Succinic acid 18 

956 C-H bending Myristic Acid 19 

986 C-N stretching Arginine 17, 18

1016 C-O-C ring, C-O-H bending Carbohydrates 16 

1060, 1078, 1447 C-C and C-O stretching, CH2 bending Lipids 16, 19

1103 σ(CH2) twisting vibrations Mannose/Trehalose 18 

1154, 1517 C-C and C-N stretching, C-C stretching Carotenoids 16, 20

1173 C-H bending Saturated long-chain fatty acids 16, 19

1206 NH3 asymmetric rocking Amino acid 17, 18

1249 NH2 group Amide III 16, 20

1267 C-C stretching, C-H stretching Fatty acids 16, 19

1300 CH3/CH2 twisting or bending mode Triglycerides 19, 20

1338 CH3/CH2 twisting/ wagging mode Threonine 17 

1355 CH3/CH2 wagging Isoleucine 17 

1569 COO− group NADH 16, 18

1656 C-C and C-O stretching
Unsaturated Lipids, 

Phosphatidylcholine, 
phosphatidylethanolamine

16, 19, 20

1695 C=C and C=O stretching Amide I 16 
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