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Abstract

Although there is ample evidence that the advanced glycation end-product (AGE) glucosepane 

contributes to age-related morbidities and diabetic complications, the impact of glucosepane 

modifications on proteins has not been extensively explored due to the lack of sufficient analytical 

tools. Here, we report the development of the first polyclonal anti-glucosepane antibodies 

using a synthetic immunogen that contains the core bicyclic ring structure of glucosepane. We 

investigate the recognition properties of these antibodies through ELISAs involving an array 

of synthetic AGE derivatives and determine them to be both high-affinity and selective in 

binding glucosepane. We then employ these antibodies to image glucosepane in aging mouse 
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retinae via immunohistochemistry. Our studies demonstrate for the first time accumulation of 

glucosepane within the retinal pigment epithelium, Bruch’s membrane, and choroid: all regions 

of the eye impacted by age-related macular degeneration. Co-localization studies further suggest 

that glucosepane colocalizes with lipofuscin, which has previously been associated with lysosomal 

dysfunction and has been implicated in the development of age-related macular degeneration, 

among other diseases. We believe that the anti-glucosepane antibodies described in this study will 

prove highly useful for examining the role of glycation in human health and disease.

Graphical Abstract

INTRODUCTION

Advanced glycation end-products (AGEs) are a heterogeneous group of compounds formed 

as a result of non-enzymatic reactions between nucleophilic residues and sugars. AGEs have 

been shown to alter the structure of long-lived proteins, such as crystallin, albumin, and 

collagen,1 making them more resistant to degradation and promoting their accumulation 

in cells and tissues with age.2–5 There is increasing evidence that AGEs are involved 

in the pathogenesis of age-related and chronic diseases, including age-related macular 

degeneration (AMD) and diabetes.6–9

Glucosepane is among the most abundant AGEs found in human tissues. It is formed 

from lysine, arginine, and glucose, and it is over an order of magnitude more abundant 

than any other AGE cross-link in the extracellular matrix (ECM; Supplementary Scheme 

1).10 Notably, glucosepane levels have been shown to correlate with various disease states, 

including diabetic retinopathy, microalbuminuria, and neuropathy.3,11–13 While the exact 

mechanisms behind glucosepane-mediated dysfunction remain unclear, it is believed to 

impair the functional and mechanical properties of proteins in the ECM14 and interfere with 

proteolytic degradation of collagen.15

To date, the primary method for identifying glucosepane in tissues has required exhaustive 

enzymatic degradation followed by high pressure liquid chromatography−mass spectrometry 

(LC/MS).13,16,17 Although these protocols have proven effective in quantifying glucosepane 

in bulk tissue extracts, they are labor-intensive, and the degradation process destroys the 

tissue architecture, making it difficult to examine the localization of glucosepane.

In recent years, anti-AGE antibodies have emerged as useful tools for studying AGEs and 

have the advantage of being compatible with the evaluation of intact tissues, enabling 

immunohistochemical staining and imaging procedures.18 nb Several anti-AGE antibodies 

have been produced by immunization of animals with AGEs generated either from total 
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synthesis19 or through in vitro glycation methods. Such methods involve the incubation 

of an immunogenic carrier protein, such as BSA, with glucose or other reactive sugar 

metabolites.20–23 Reaction conditions that generate glucosepane24 are known also to 

generate a range of AGE byproducts, including carboxymethyllysine.25,26

These in vitro preparation methods are unlikely to produce antibodies that are specific 

for glucosepane, although no such studies have been reported. To avoid this expected 

complication, we decided to synthesize homogeneous, synthetic glucosepane immunogens.

Herein, we describe the development and characterization of the first antibodies known to 

selectively recognize glucosepane. To this end, we have created a synthetic glucosepane 

immunogen that closely resembles glucosepane found in vivo and used it to generate 

a polyclonal antibody serum that recognizes glucosepane both in vitro and in ex vivo 
tissue samples. We have demonstrated that the antibodies can bind to glucosepane with 

high degrees of specificity and sensitivity through ELISA studies and have employed 

these antibodies in immunohistochemical experiments. Interestingly, these latter studies 

demonstrate that glucosepane accumulates within subcomponents of the retina, specifically 

the retinal pigment epithelium (RPE), Bruch’s membrane, and choroid, which are anatomic 

areas highly affected by AMD and diabetic retinopathy.27,28 Our results suggest that 

anti-glucosepane antibodies could be useful for uncovering mechanisms through which 

glucosepane contributes to aging and disease and could potentially serve as tools for the 

diagnosis of aging and diabetic complications.

RESULTS AND DISCUSSION

Immunogen Design and Synthesis.

In order to generate antibodies capable of binding glucosepane cross-links in proteins, we 

designed immunogen 1 (Scheme 1a), containing the glucosepane core incorporated into 

an immunogen peptide as our target epitope (highlighted in red, Scheme 1a). Surrounding 

the target epitope, we included polyethylene glycol and glycine residues. We hypothesized 

that these motifs would only contribute minimally to antibody binding affinity due to their 

flexibility and, as such, would allow us to obtain clones that interact preferentially with 

the target epitope. Cysteine was added to the C-terminus as a chemical handle to enable 

thiol-maleimide conjugation reactions to proteins and solid supports.

Immunogen 1 (Scheme 1a) was retrosynthetically disconnected in a manner to facilitate late-

stage incorporation of advanced precursor 2 (Scheme 1a) into the peptide sequence. The key 

disconnection was made between the 2-amino group and the rest of the bicyclic glucosepane 

core. We hypothesized that we could construct this bond through a late-stage reaction of 

an unprotected ornithine side-chain with the electrophilic glucosepane precursor 2 using a 

strategy derived from our reported glucosepane total synthesis (Supplementary Figure 1).29 

This, in turn, could be appended to resin-bound ornithine derivative 3, which could be 

readily prepared via solid-phase peptide synthesis (SPPS). We felt this late-stage installation 

of glucosepane precursor 2 would be more material-efficient than a traditional monomer-

based approach with an Fmocprotected glucosepane amino acid monomer (Supplementary 

Figure 1).
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For the synthesis of electrophilic glucosepane precursor 2, we followed a synthetic 

strategy similar to what we employed previously in the total synthesis of glucosepane 

(Supplementary Scheme 2).29 This 10-step procedure starts from readily available 1,5-

dibromopentane and affords antigen precursor 2 with an overall yield of 3.6%. Compound 2 
was then allowed to react with resin-bound ornithine derivative 3 to afford a 2,4-diamino-5-

hydroxyimidazole species on-resin. After a sodium triacetoxyborohydride reduction and 

cleavage from the resin, we accessed the desired glucosepane immunogen 1 in 4.06% yield.

Antibody Generation and Characterization.

Upon completion of synthesis, peptide immunogen 1 was conjugated to keyhole limpet 

hemocyanin (KLH) via the pendant thiol (Scheme 1b). This conjugate was then used by 

New England Peptide, Inc. (Gardner, MA) to immunize New Zealand white rabbits. After an 

immunization period of three months, serum samples were collected from the rabbits. The 

polyclonal antiserum was then subjected to negative selection against oxidized glucosepane 

derivative 4 to remove antibodies specific for the peptide backbone, followed by positive 

selection against agarose beads coated with glucosepane immunogen 1. Following elution, 

we isolated anti-glucosepane antibodies.

The specificity of the purified anti-glucosepane antibodies was tested via ELISA against a 

panel of synthetic peptides (Figure 1a, 6−9) containing some of the most abundant AGEs, 

along with arginine-containing (Figure 1a, 5) and glucosepane-containing controls (Figure 

1a, 10).30,31 Peptides were anchored to the wells of maleimide-coated 96-well plates via 
thiol-maleimide conjugation reactions. Binding of these synthetic peptides was then tested 

against the polyclonal serum. As hypothesized, peptides 5−9 exhibited no detectable binding 

to the antibodies, while the glucosepane peptide 10 bound tightly to the antibodies with an 

EC50 of 14.16 ± 0.20 nM (Figure 1b). To the best of our knowledge, this is the first report of 

the generation of glucosepane-specific antibodies.

To characterize the binding epitope of the antibodies further, additional ELISAs were 

performed with several abiotic glucosepane analogs. These experiments were designed 

to determine the importance of various structural elements of glucosepane toward the 

binding epitope of the antibodies. As expected, the glucosepane peptide most structurally 

similar to the immunogen (S24) exhibited the lowest EC50 for the antibodies at 5.6 ± 0.23 

nM. Scaffolds that slightly perturbed the core immunogen scaffold demonstrated weaker 

affinities. For example, when the hydroxyl groups were not present (as in S22), the EC50 

increased to 7.07 ± 0.13 nM, and when the core ring system was oxidized (as in S23), 

the EC50 increased to 11.86 ± 0.20 nM. Further differences, such as the absence of the 

polyethylene glycol motif in addition to the hydroxyl groups (as in S21), resulted in a 

more significant reduction in affinity to ~1 μM. Additional alterations, such as cleavage of 

the seven-membered ring (as in S20) caused the EC50 of the antibodies to rise to levels 

comparable to negative control compound 5 (Supplementary Figure 2).

In summary, the only analogs that showed significant affinity to the antibodies are abiotic. 

Two substrates in physiological systems that have the potential to cross-react with the 

antibodies generated herein are pentosinane and pentosidine, but to date there have been no 
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reported synthetic routes to peptides containing these modifications.32 The abiotic analogs 

tested also offer insights into our antibody generation and purification process. The high 

binding affinity of oxidized substrate S23 highlights that negative affinity purification 

did not completely precipitate antibodies capable of binding to this substrate. Meanwhile, 

PEGylated S24 highlights that PEGylation of the immunogen results in a minor contribution 

to the binding epitope over AcHN-Lys-NHMe-modified 10 (5.6 ± 0.23 nM, S24; 14.16 ± 

0.20 nM, 10).

An experiment was also performed to demonstrate the capacity of a soluble inhibitor S25 
to inhibit binding of the antibodies to glucosepane substrate S24. When excess soluble 

glucosepane competitor S25 was present, the binding of the antibodies was reduced to 

background levels (Supplementary Figure 3).

Overall, these experiments demonstrate that antibody binding is highly specific for the 

molecular structure of glucosepane, and comparable binding properties are observed only for 

very closely related abiotic analogs.

Having demonstrated that the antibodies bound synthetic glucosepane specifically and with 

high affinity, we next sought to evaluate their utility in biological samples. To this end, 

we measured glucosepane levels in several commercial samples of human serum albumin 

(HSA) using an LC/MS method. Approximately 0.3% of the arginine residues in these 

HSA samples were found to be modified by glucosepane. We also employed in vitro 
glycation methods to enrich glucosepane content in HSA and found these samples to contain 

glucosepane levels of 1.3%.33

ELISAs were then performed, wherein our antibodies were exposed directly to low- 

and high-content HSA samples. As predicted, significantly greater binding was observed 

with glycated HSA compared to commercially available HSA (Figure 1c). Importantly, 

the glucosepane levels used in this experiment, 0.3% and 1.3%, align with the range of 

glucosepane levels that have been observed in human serum samples.16

Glucosepane in Aging Retinae.

Glucosepane has been found to accumulate in various tissues with age10,16 and has long 

been thought to play a role in promoting ocular diseases such as cataracts, diabetic 

retinopathy, and AMD.3,12,34 However, tissue localization studies of glucosepane have not 

been performed to our knowledge. Therefore, we next sought to apply the anti-glucosepane 

antibodies to study the localization of glucosepane in the retinae of aging mice via 
immunohistochemistry. In these studies, we sectioned, stained, and imaged retinae of young 

(2 month), middle-aged (7 month), and older (12 month) C57BL/6J mice (Figure 2a). These 

experiments revealed an increase in the area of glucosepane staining in retinal tissue samples 

with age. Further examination of the IHC images showed glucosepane accumulation in 

the retinal pigment epithelium (RPE), Bruch’s membrane, and choroid: regions associated 

with diseases such as AMD and retinopathy (Figure 2b).27,28 Weaker glucosepane staining 

was also observed in the photoreceptor inner and outer segments (Figure 2a). Additionally, 

in competition experiments, a reduced fluorescence signal was observed in the presence 
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of peptidic competitor S25 (Supplementary Figure 3), suggesting that the antibodies were 

binding glucosepane cross-links.

Notably, granular glucosepane staining was observed in the RPE at the subcellular 

level (Figure 2b). We, therefore, hypothesized that there could be colocalization 

between glucosepane and lipofuscin, a lysosomally derived, non-degradable, heterogeneous 

molecular aggregate that is partially characterized by its granular appearance. Previous 

reports have proposed that the accumulation of lipofuscin within the RPE is considered 

to be a risk factor for age-related diseases of the eye.35 Lipofuscin has been shown to 

induce lysosomal dysfunction and interfere with autophagic clearance, contributing to the 

development of various eye pathologies, including AMD.36–39 There is also evidence that 

AGEs promote formation of lipofuscin and that AGE-modified proteins may be components 

of lipofuscin granules.40,41

Lipofuscin granules are often identified by their characteristic autofluorescence, as well 

as their lysosomal origin, indicated by colocalization with lysosomal-associated membrane 

protein 1 (LAMP-1).42 After partial bleaching of retinal samples, colocalization between 

autofluorescent granules and glucosepane was observed in regions of the RPE (Figure 

3a). Additional costaining experiments demonstrated colocalization between glucosepane 

and LAMP-1 (Figure 3b). Although other AGEs have been associated with lipofuscin 

formation,43,44 this is the first evidence for the colocalization of lipofuscin and glucosepane. 

Our findings therefore suggest that glucosepane-modified proteins may be constituents 

of lipofuscin and accumulate within the RPE with age. Given the known involvement 

of lipofuscin in disease, these findings warrant further investigations into the impact of 

glucosepane accumulation on lysosomal activity and disease onset. These data also suggest 

that glucosepane merits exploration as a biomarker for age-related eye disease.

CONCLUSIONS

Investigation into the role of AGEs in pathophysiology has been hindered by a lack of tools 

to study the distribution of individual AGEs in intact tissues. Through the preparation of a 

synthetic glucosepane immunogen, we have developed the first polyclonal anti-glucosepane 

antibodies, which recognize glucosepane with high specificity and sensitivity. These 

antibodies bind both synthetic glucosepane and glucosepane-like molecules, as well as 

glucosepane-modified HSA in a manner that correlates with traditional HPLC/MS protocols. 

Furthermore, we applied these antibodies to demonstrate, for the first time, that glucosepane 

accumulates in the RPE, Bruch’s membrane, and choroid in the retinae of aging mice. 

The accumulation of glucosepane in the RPE partially colocalizes with lipofuscin granules, 

suggesting a potential link to lipofuscin-related pathology. Taken together, these data 

demonstrate that anti-glucosepane antibodies are effective tools for examining glucosepane 

cross-links in tissue with subcellular resolution. In the future, these antibodies will serve as 

tools to provide insight into the role of glucosepane in human health and disease.
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METHODS

A description of all chemicals, reagents, instrumentation, and procedures is available in the 

Supporting Information.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Chemical structures of synthetic ELISA substrates and the corresponding ELISA 

results used to demonstrate anti-glucosepane antibody selectivity. (a) Synthetic peptides 

containing arginine, other advanced glycation end-products, and glucosepane (CML 

= carboxymethyllysine; MG-H1 = methylglyoxal-derived hydroimidazolone 1; MG-

H2 = methylglyoxal-derived hydroimidazolone 2; MG-H3 = methylglyoxal-derived 

hydroimidazolone 3). (b) ELISA data toward panel of synthetic peptides. Indirect ELISAs 

were run on maleimide-coated plates. Error bars represent standard deviation (n = 2). (c) 

Protein-based indirect ELISA on Nunc plates. Binding of anti-glucosepane antibodies was 

tested against commercially available HSA and glycated HSA (***P < 0.0005, two-tailed, 

unpaired t test).
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Figure 2. 
Immunohistochemical images of mouse retinae. Retinal samples were taken from 2, 7, 

and 12 month old mice. (a) Representative retinal sections labeled with anti-glucosepane 

antibody/anti-Rbt Alexa488 (green) and DAPI (blue). Scale bars are 100 μm (GCL = 

ganglion cell layer; INL = inner nuclear layer; ONL = outer nuclear layer; IS/OS = inner/

outer segments; RPE = retinal pigmented epithelium). (b) Representative high-magnification 

images of the RPE, Bruch’s membrane, and choroid. White arrows highlight the position of 

Bruch’s membrane (BrM). Scale bars are 20 μm.
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Figure 3. 
Immunohistochemical images of 12-month-old mouse retinae. (a) Localization of 

glucosepane (green) and autofluorescence (red) in partially bleached RPE. Yellow 

indicates colocalization. White arrows highlight areas of colocalization. (b) Localization 

of glucosepane (green) and LAMP1 (red) in unbleached retinal photoreceptors (left) and 

bleached RPE/choroid (right). Yellow indicates colocalization. Scale bars are 20 μm (ONL = 

outer nuclear layer; IS/OS = inner/outer segments; RPE = retinal pigmented epithelium).
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Scheme 1. 
(a) Immunogen Retrosynthesisa and (b) Antibody Generation and Purification Processb

aImmunogen 1 was accessed from electrophilic glucosepane precursor 2 and resin-bound 

peptide 3. bThe immunogen was conjugated to keyhole limpet hemocyanin (KLH). Rabbits 

were immunized, and antiserum was collected. The antiserum was subjected to a series of 

affinity purifications, and the resulting antibodies were used for all subsequent experiments.
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