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ABSTRACT

Breast cancer is a significant cause of cancer-related mortality in women worldwide. Early 
and precise diagnosis is crucial, and clinical outcomes can be markedly enhanced. The rise of 
artificial intelligence (AI) has ushered in a new era, notably in image analysis, paving the way 
for major advancements in breast cancer diagnosis and individualized treatment regimens. In 
the diagnostic workflow for patients with breast cancer, the role of AI encompasses screening, 
diagnosis, staging, biomarker evaluation, prognostication, and therapeutic response prediction. 
Although its potential is immense, its complete integration into clinical practice is challenging. 
Particularly, these challenges include the imperatives for extensive clinical validation, model 
generalizability, navigating the “black-box” conundrum, and pragmatic considerations of 
embedding AI into everyday clinical environments. In this review, we comprehensively explored 
the diverse applications of AI in breast cancer care, underlining its transformative promise and 
existing impediments. In radiology, we specifically address AI in mammography, tomosynthesis, 
risk prediction models, and supplementary imaging methods, including magnetic resonance 
imaging and ultrasound. In pathology, our focus is on AI applications for pathologic diagnosis, 
evaluation of biomarkers, and predictions related to genetic alterations, treatment response, and 
prognosis in the context of breast cancer diagnosis and treatment. Our discussion underscores 
the transformative potential of AI in breast cancer management and emphasizes the importance 
of focused research to realize the full spectrum of benefits of AI in patient care.

Keywords: Artificial Intelligence; Breast Neoplasms; Diagnostic Imaging; Pathology; 
Precision Medicine

INTRODUCTION

The incidence of breast cancer has been increasing, with breast cancer surpassing lung 
cancer as the most commonly diagnosed cancer in women [1,2]. However, the combination 
of advancements in early detection through screening and the emergence of personalized 
treatment strategies has led to a decline in breast cancer mortality rates [1,3]. The 
introduction of innovative treatment options tailored to specific tumor characteristics has 
significantly improved patient outcomes.
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Despite advances in diagnostic modalities, the current workflow for breast cancer diagnosis 
is not without errors [4-7]. From the challenges posed by overdiagnosis in low-risk groups 
to the strenuous workload shouldered by the dwindling number of radiologists and 
pathologists, the system often finds itself stretched thin. Additionally, inherent discrepancies 
in test interpretations, limited test accessibility, and high costs further underscore the 
pressing need for an overhaul [8-12].

The digital era is ushering in transformative changes in the clinical domain, particularly within 
radiology and pathology. Artificial intelligence (AI), with its potential to extract intricate 
details from images, automate workflows, and offer predictive insights, presents a promising 
avenue to address existing limitations [13-16]. Applications of AI are already reshaping 
practices, from aiding in radiological workflows to predicting long-term disease risks.

In this comprehensive review, we aimed to scrutinize the current diagnostic landscape of 
breast cancer and highlight its strengths and limitations. We explored the burgeoning role 
of AI in this field and examined its applications, challenges, and prospects. Through this 
review, we hope to shed light on the immense potential of AI and the trajectory it sets for 
breast cancer diagnosis and treatment in the future.

LIMITATIONS OF CURRENT CLINICAL WORKFLOW FOR 
BREAST CANCER
The diagnostic workflow for breast cancer typically involves several stages, including 
screening, diagnostic imaging, biopsy, pathologic diagnosis, staging, additional testing (e.g., 
evaluation of biomarkers), and treatment decision-making (e.g., neoadjuvant chemotherapy 
[NAC], surgery, adjuvant therapy, hormonal therapy and targeted therapy) [17,18].

Although clinical workflow has improved significantly over the years, it still has several 
limitations. One of the key challenges for current breast screening programs is the lack of 
optimal approach for all individuals, as breast cancer risk varies among different individuals. 
These programs can potentially lead to overdiagnosis in low-risk individuals. The Independent 
United Kingdom (UK) Panel on Breast Cancer Screening reviewed three randomized 
controlled trials (RCTs) and found an approximately 19% overdiagnosis risk among UK 
women [4]. Overdiagnosis can result in unnecessary treatment, emotional distress, and 
increased healthcare costs, thereby affecting the quality of life of affected individuals.

High-risk individuals can be targeted through current risk stratification models for breast 
cancer screening, which identify eligible women for supplemental screening or preventive 
interventions. Guidelines by the American Cancer Society recommend annual breast magnetic 
resonance imaging (MRI) for women with a lifetime risk of 20% or greater [19]. However, 
these risk models are primarily based on factors, such as reproductive history, family history 
of breast cancer, previous benign breast disease, and genetic factors, which may not always 
be readily available during routine screening workflows. Additionally, some risk models may 
have limited discriminatory performance, with area under the curve (AUC) values below 0.7, 
and only a few models incorporate mammographic density, which is an important risk factor. 
Additionally, women identified to be at high risk for breast cancer based on these models are 
significantly more likely to be diagnosed with breast cancers that have a favorable prognosis, 
thereby having less impact on the overall disease burden of the population [20-22].

406

Application of Artificial Intelligence in Breast Cancer

https://doi.org/10.4048/jbc.2023.26.e45https://ejbc.kr

https://orcid.org/0000-0001-7646-5064
https://orcid.org/0000-0001-7646-5064


Another problem is the workload and labor requirements of clinicians. The world is currently 
witnessing a significant global shortage of radiologists and pathologists, compared to the 
escalating utilization of radiologic and pathologic tests. From a radiological perspective, 
there is a growing demand for scans that require more time for interpretation, such as 
computed tomography (CT) and MRI. However, there is a constant shortage of clinicians 
available to read these scans. The UK estimates a 40% shortage of radiologists by 2027 [5]. 
Similarly, Metter et al. [6] reported a decline in the number of active pathologists in the 
United States (US), resulting in a 41.73% increase in the diagnostic workload per pathologist 
during the same period.

Moreover, the majority of these tasks are time-consuming and labor-intensive. For example, 
radiologists may opt to utilize digital breast tomosynthesis (DBT) or additional imaging 
modalities, such as MRI, to improve cancer detection [23]. Likewise, pathologists may 
acquire additional slide sections from the tissue blocks. However, these practices can 
increase the workload and labor time, incur additional costs, and introduce delays in patient 
reporting [7].

Additionally, there are inherent difficulties and variations in interpreting radiological 
and pathological tests [8-10]. Significant discrepancies persisted among pathologists and 
radiologists, with inter-reader agreement ranging between 75%–88%, particularly for 
specific types of diagnoses [8,11]. Notably, experience level affects diagnostic accuracy; more 
experienced radiologists demonstrate higher sensitivity in identifying breast abnormalities 
on mammograms than less experienced radiologists [24]. However, training new radiologists 
or pathologists is becoming increasingly challenging owing to time constraints imposed by 
rising workloads and a shortage of experienced mentors to provide supervision. Without a 
solution to effectively develop new clinicians into proficient and skilled practitioners within 
a short period, inter-reader variability remains a formidable challenge, impacting the correct 
interpretation of images, disease management, and potentially delaying diagnosis and 
treatment decision-making [25].

Lastly, limitations arise as certain tests require specialized facilities and they incur high costs, 
thereby restricting accessibility for some hospitals and patients to obtain test results. For 
example, radiological tests, such as contrast-enhanced mammography (MMG) and MRI, in 
conjunction with gene assays, such as Oncotype Dx (ODX), provide valuable assistance in 
more accurate diagnosis and treatment decision-making for breast cancer. However, these 
assays are highly expensive and often necessitate either patient travel to specialized facilities 
or transportation of specimens to these facilities, leading to time-intensive procedures. 
Additionally, their tissue-destructive processes can pose challenges in obtaining additional 
biomarkers or genetic tests [12].

As mentioned previously, multiple limitations require effective and scalable care. Therefore, 
we believe that AI technology can be instrumental in addressing these limitations.

EMERGENCE OF AI IN RADIOLOGY AND PATHOLOGY

Radiology and pathology specialties are witnessing the introduction of digital workflows and 
AI, which offer promising prospects for addressing some of the aforementioned limitations. 
In the era of precision medicine, the demand for more precise and comprehensive diagnostic 
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tests is increasing. In this regard, the emergence of digital images and Picture Archiving and 
Communication Systems (PACS) in radiology, as well as whole slide images (WSI) and digital 
pathology, have brought significant changes to routine practice.

AI systems have advanced rapidly over the last 20 years, transitioning from machine 
learning (ML) to deep learning (DL), and now to transformer models capable of leveraging 
multimodal information as inputs. Among the popular DL architectures for imaging analysis, 
convolutional neural networks (CNNs) are widely used, owing to their ability to extract spatial 
and contextual information from images through multiple layers and convolutional operations 
[26]. CNNs trained on extensively labeled datasets can perform tasks, such as segmentation, 
prediction, and detection, with high accuracy and efficiency [27]. Transfer learning in DL is a 
valuable method for establishing baseline capabilities for image-related tasks. By leveraging 
pretrained models on large datasets, transfer learning allows the transfer of learned features 
and representations to new tasks with limited labeled data, thereby improving performance 
and reducing the need for extensive training [28]. In practical applications, AI systems 
support radiologists by managing workflows and detecting suspicious lesions [29]. Certain 
systems outperform humans in predicting long-term breast cancer risk and prognosticating 
breast cancers [30]. Similarly, in breast pathology, AI algorithms have been applied to tasks, 
including cancer detection, classification, histologic grading, lymph node (LN) metastasis 
detection, biomarker quantification, and genetic abnormality prediction, such as BRCA 
mutation [31]. Figure 1 summarizes and illustrates the potential areas in which AI can be 
integrated into the diagnostic workflow for patients with breast cancer.
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Figure 1. Diagnostic flow chart of breast cancer and application of artificial intelligence. 
Potential application of AI in the diagnostic workflow of patients with breast cancer. 
IC = interval cancer; MMG = mammography; DBT = digital breast tomosynthesis; USG = ultrasonography; MRI = magnetic resonance imaging; LN = lymph node; 
SLNB = sentinel lymph node biopsy; W/U = workup; CR = complete remission; PR = partial response; SD = stable disease; PD = progressive disease; AI = artificial 
intelligence.



SCREENING OF BREAST CANCER

Breast imaging and computer aided detection (CAD) in MMG screening
Breast imaging has played a pivotal role in reshaping early cancer detection and reducing 
mortality in breast cancer since Salomon developed the first mammogram in 1913 [32]. The 
introduction of imaging modalities, such as MMG, has significantly improved the initial 
detection of cancer, precise segmentation and characterization of cancerous lesions, as 
well as monitoring treatment response and post-treatment follow-up [33]. Consequently, 
two-dimensional (2D) MMG has been widely adopted as the gold standard screening test for 
women in many countries worldwide, offering cost-effective and scalable approaches [34].

However, standard breast screening using 2D MMG is not without caveats. There is 
inherent difficulty in detecting cancers using 2D MMG because of overlapping structures 
in pathological regions. In particular, the difficulty in interpreting mammograms increases 
with breast density. Dense breasts have a higher proportion of glandular and fibrous tissues, 
which can mask potential tumors and make them appear similar to normal breast tissue on 
mammograms. Because breast cancer may be missed or diagnosed at a later stage in women 
with dense breasts (characterized by ≥ 75% density on MMG), they are at a higher risk of 
breast cancer [35]. Therefore, attention should be directed towards the development and 
evaluation of alternative techniques for such cases.

To improve breast cancer detection, several different solutions, such as double reading or 
arbitration in breast screening, DBT, and the use of CAD systems, have emerged.

Some European countries have implemented double-reading as a strategy for breast cancer 
screening, which requires two radiologists to reach a consensus on patient recall. In cases of 
disagreement, arbitration involved a third radiologist, typically with more experience, making 
the final decision. These methods aimed to enhance cancer detection and reduce recall rates. 
However, given the previously mentioned shortage of radiologists, existing double reading 
screening programs are expected to experience major challenges for survival [36].

In regions, such as the US, alternative forms of MMG, such as DBT, are being explored. DBT, 
also known as three-dimensional MMG, provides a more detailed and clearer view of breast 
tissues. Thus, the chances of detecting cancerous lesions are increased, while reducing false-
positive findings and recall rates compared to 2D MMG [37,38]. Nonetheless, the drawback 
of the added three-dimensional information is that it requires radiologists to review multiple 
image slices, leading to an increased reading time [39].

The introduction of digital imaging has significantly increased data availability, prompting 
the development of CAD algorithms to assist with data interpretation. The first CAD 
algorithm obtained a US Food and Drug Administration (FDA) clearance in 1998, which 
showed improved cancer detection in 2D MMG by presenting regions of interest (ROIs) to 
radiologists, thereby aiding focused reviews [40]. Traditional CAD approaches rely on rule-
based methodologies that incorporate domain knowledge to extract handcrafted radiologic 
features from abnormal tissues, such as pixel values, surrounding pixels, texture, and shape 
[41]. These features are utilized to make a final decision by comparing them with all detected 
lesions, thereby enhancing the specificity of lesion detection [42]. Feature engineering plays 
a crucial role in these systems, with support vector machine classifiers frequently employed 
[43]. The traditional CAD system demonstrated promising results and was considered 
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effective, with the potential to replace a human reader in a double-reading screening 
workflow when used as an aid alongside a single human reader. However, this was at the cost 
of an incremental increase in recall rates [44].

Many prospective studies that followed did not prove the efficacy of CAD algorithms [45]. 
A major issue with traditional CAD was its low specificity, which resulted in numerous 
false-positive findings [46]. For example, it faced challenges in differentiating benign 
calcifications from those associated with ductal carcinoma in situ (DCIS). When used in a 
screening setting, where cancer incidence is usually approximately 0.5% and the majority 
of examinations are normal [47], many unnecessary additional reviews and tests had to be 
conducted, which pushed the biopsy rates up to 19.7% [48], resulting in increased fatigue for 
the radiologists and a reluctance to use CAD [49].

AI for breast cancer detection: digital MMG and DBT
Despite the limitations of traditional CAD systems, the growing volume of medical scans, 
shortage of radiologists, and imperative need for early and accurate cancer detection have 
underscored the need for an improved CAD system. Rapid advancements in AI and DL 
techniques have provided opportunities for the development of sophisticated CAD systems 
that can detect subtle signs and features that may not be readily apparent to the human eye.

The development of AI-CAD begins with the collection of a large dataset representing the 
target population and imaging device. Human readers then collaborate to identify and 
label lesions in mammograms based on confirmed pathological reports for breast cancer 
detection [50]. Using these labeled images, AI-CAD self-learns the features that will be 
used for training, which makes it critically different from the traditional CAD, which only 
learns human-derived features. To further improve the performance of the algorithm, 
internal validation was conducted using a dataset separate from the training data to prevent 
overfitting [51]. The result is an AI-CAD system that can achieve high cancer detection rates 
while maintaining high specificity and performs significantly better than the traditional 
CAD [52]. This transformative technology has the potential to enhance accuracy, improve 
efficiency, and reduce diagnostic variability in breast cancer screening. This can help alleviate 
the burden on radiologists and facilitate timely and accurate diagnoses.

AI can be integrated into the workflow of 2D breast screening under various scenarios. These 
include using AI as a standalone system to replace a human reader, and concurrent reading 
with AI-CAD or AI for triaging normal cases (Figure 2). In double-reading screening, AI may 
assume the role of a second reader or CAD for one or both readers. Alternatively, AI may also 
act to pre-screen normal cases and reduce the workload for radiologists, or employ a rule-in 
rule-out approach to remove low-risk cases and refer high-risk cases for another reading by 
radiologists. When choosing how AI will be implemented into a workflow, factors, such as 
target sensitivity, specificity, recall rate, and reading workflow in the target country must be 
considered. An example of the AI output is shown in Figure 3.

AI stand-alone performance was assessed to simulate a scenario in which AI entirely replaces a 
human reader. Numerous studies have demonstrated that AI can perform equivalently or even 
better than humans [53]. In a systematic review and meta-analysis of 16 studies, standalone AI 
performed equally well or better than individual radiologists in digital MMG interpretation, 
based on sensitivity, specificity, and AUC metrics. AI also outperforms radiologists in DBT 
interpretation, but further evidence is required for a more comprehensive assessment [54]. 
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This underscores the potential of AI in independent mammographic screening, which is 
particularly important for countries that employ double reading, as replacing a human reader 
with AI can lead to significant reductions in the required human resources.

The selection of an optimal AI output score, known as the threshold score or operating point, 
is important for the implementation of AI algorithms for diagnostic decision-making [55]. 
Although AI algorithms often have a default threshold score, it is important to recognize 
that different scenarios may require different scores. Factors, such as the specific workflow 
in which the AI was used or the goals of the screening program should be considered when 
determining the most suitable algorithm threshold score.

For example, Dembrower et al. [55] compared the sensitivity and workload of standalone 
AI versus a combination of AI and radiologist. When the sensitivity of the standalone AI 
was matched with that of a human radiologist, it showed a potential relative sensitivity 
approximately 5% higher than that for the combined sensitivity of the AI and radiologist, 
which also matched that of the two radiologists. However, the workload involved in the 
consensus discussions for the standalone AI scenario was nearly double that of the combined 
AI reader approach. This suggests that the combined AI-reader scenario and associated AI 
algorithm threshold may be more suitable for screening programs aimed at reducing the 
workload, while maintaining similar sensitivity compared to having two readers [55].

Similar to the traditional CAD, concurrent reading occurs when AI is used as a prompt. 
In a reader study by Kim et al. [56], it has been shown that the diagnostic accuracy of the 
readers increases with AI, and the incremental range is dependent on the experience level 
of the readers. When aided by AI, general radiologists (GR) showed improvement in their 
performance for detecting cancers in 2D MMG (AI unaided GR area under the receiver 
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Figure 2. Various workflow scenarios for artificial intelligence usage in two-dimensional breast screening. 
(A) Standard double reading with arbitration. (B) Standalone AI as a replacement of a second reader. (C) Concurrent reading by the second reader. (D) AI in a 
rule-out rule-in approach. 
AI = artificial intelligence.



operating characteristic curve [AUROC], 0.772; 95% confidence interval [CI], 0.729–0.816 
vs. AI aided GR AUROC, 0.869; 95% CI, 0.834–0.903) to a level similar to that of a breast 
radiologist (BR) (AI unaided BR AUROC, 0.847; 95% CI, 0.809–0.886 vs. AI aided BR 
AUROC, 0.892; 95% CI, 0.859–0.926) [56]. This is important, as it shows potential for use in 
countries where BRs are scarce and GRs report mammograms.

In another reader study for DBT, it has also been observed that AI use not only increased the 
radiologist performance (0.795 without AI to 0.852 with AI) but also reduced the reading time 
by up to 50% (from 64.1 seconds without AI to 30.4 seconds with AI) [57].

AI triaging is another method for testing AI algorithms. Because the majority of screening 
mammograms are negative for malignancy, removing even a portion of normal examinations 
can significantly reduce the workload. Dembrower et al. [29] showed that AI can be set at a 
threshold at which 60% of the cases can be safely removed from the worklist without risking 
missing cancer cases. Other studies have reported similar results, with a 47% reduction in 
workload, resulting in only 7% missed cancers [58]. Additionally, a “rule-in” approach can 
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Figure 3. Example of artificial intelligence application in two-dimensional breast mammography. 
The figures show the original two views (LCC and LMLO), as well as the AI outputs generated using the Lunit 
INSIGHT MMG (Lunit Inc.). These AI outputs display abnormality scores to indicate a cancerous lesion and heat 
maps for localization. A density score was provided, according to the BI-RADS category on a scale of 1–10. 
LCC = left craniocaudal; LMLO = left mediolateral oblique; AI = artificial intelligence; MMG = mammography; BI-
RADS = Breast Imaging Reporting and Data System.



be employed, where cases labeled as benign by human readers but assigned a high score by 
AI are automatically recalled for further testing. This workflow, combined with the “rule-
out” approach, can significantly reduce the workload, while increasing the detection of 
subsequent interval cancers (ICs) and next-round detected cancers [29].

Retrospective studies utilize existing data representing target populations and allow various 
simulations to test AI algorithms. The radiologists’ decisions and histopathological data were 
necessary for comparison. It is common practice to establish the ground truth based on at 
least two consecutive screening episodes to detect screen-detected cancers, ICs, and next-
round detected cancers. Promising results have been achieved; however, most retrospective 
studies are limited to the validation of AI algorithm performance in an enriched cohort or 
multiple-reader multiple-case analysis [59].

A recent topic of interest in AI cancer-detection algorithms is improving the detection of 
ICs. ICs are often aggressive forms of cancer associated with higher mortality rates, and the 
risk of death from IC is 3.5 times higher than that of non-ICs [60]. Despite previous efforts, 
IC accounts for approximately 30% of detected breast cancers, and its attempts to improve 
IC detection have been unsuccessful [61]. However, AI algorithms have shown promise in 
detecting ICs. Hickman et al. [62] demonstrated that a standalone AI can detect 23.7% of 
ICs, even when set at a 96% threshold, thereby potentially allowing for a significant increase 
in IC detection.

With the abundance of available retrospective evidence, ongoing efforts are being 
made worldwide to conduct prospective clinical trials. Results of several prospective 
trials investigating the use of AI in 2D breast screening are emerging. For example, the 
ScreenTrustCAD study conducted in Sweden examined the impact of replacing one reader 
in a double-reading setting. The results were highly positive, showing that in a prospective 
interventional study based on a large population, a single reader with AI can achieve a 
superior cancer detection rate, while maintaining the recall rate compared with traditional 
double readers [63]. In this scenario, the effects of AI on arbitration can only be prospectively 
evaluated. In another RCT conducted in Sweden called the Mammography Screening with 
Artificial Intelligence trial, the clinical safety of using AI as a detection support in MMG 
screening was investigated [64]. In an intervention group, examinations were first classified 
by AI into high- and low-risk groups, which were then double- or single-read, respectively, 
by radiologists with AI support. Interim analysis results demonstrated that AI-supported 
screening showed not only comparable cancer detection rates to a control group’s standard 
double reading, but also a significantly reduced screen-reading workload. This RCT showed 
that employing AI in MMG screening could be a safe and effective alternative to standard 
double reading in Europe. The trial will continue for two more years to assess the primary 
endpoint of the IC rate [64]. Other studies, such as the AI-STREAM in South Korea, are also 
actively investigating the effects of AI in single-reader concurrent reading settings [65].

Prospective trials are indeed essential, as they provide valuable insights into the performance 
of AI algorithms in real clinical settings and capture the challenges that may arise in these 
environments. A pitfall of retrospective trials is that cancer-enriched datasets that do not 
reflect the real-life prevalence of cancer are often used. Therefore, AI performance from 
these skewed studies may not necessarily be replicated in prospective studies or real life 
[66]. Prospective trials, on the other hand, allow the evaluation of AI algorithms in out-of-
distribution scenarios, providing a more realistic assessment of their performance. However, 
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the disadvantage of prospective studies is their high cost and lengthy time frame, which 
makes it difficult to conduct them frequently.

A potential solution for addressing the challenges of conducting prospective trials for every 
use case and geographical area is to leverage large-scale retrospective studies using extensive 
datasets. By collecting a sufficient sample size and incorporating data from multiple centers, 
these retrospective studies can better account for the variability encountered in real-life 
scenarios. National initiatives, such as the Swedish Validation of Artificial Intelligence for 
Breast Imaging project, exemplify this approach by establishing comprehensive multicenter 
databases for external validation, allowing independent and simulated testing of AI 
algorithms [67]. By combining the insights gained from prospective and retrospective trials, 
it is possible to ensure the cost-effectiveness, scalability, and safe adoption of AI in breast 
screening, which benefit both patients and healthcare systems.

AI in supplemental breast cancer screening with MRI/ultrasound
Supplemental imaging techniques, such as DBT, MRI, handheld ultrasound, and automated 
breast ultrasound (ABUS), are commonly used as additional tools to traditional MMG to 
enhance cancer detection in women with dense breasts. Attempts have also been made to 
apply AI to these modalities to enhance their performance.

For example, Shen et al. [68] demonstrated that implementing an AI system was beneficial to 
the radiologists’ diagnostic process for identifying breast cancer using ultrasound. The use of 
AI led to a significant reduction in false-positive rates by 37.3% and biopsy requests by 27.8%, 
while maintaining sensitivity. Moreover, a standalone AI system outperformed an average 
of ten board-certified BRs, with an AUROC improvement of 0.038 (95% CI, 0.028–0.052; 
p  <  0.001) [68]. This suggests that the AI system can not only assist radiologists in improving 
the accuracy, consistency, and efficiency of breast ultrasound diagnosis but also performs 
better than human experts [68].

MRI enhancement using AI algorithms focuses on improving the acquisition time, which 
is a critical problem in this modality. ‘Fast MRI challenge’ is a research initiative aimed to 
develop and evaluate MRI techniques using AI to expedite MRI image acquisition without 
compromising image quality. The results from this challenge have shown that AI can 
successfully reconstruct missing data in accelerated magnetic resonance images, while 
maintaining acceptable data quality for radiologists [69].

Finally, as CAD systems, AI algorithms have demonstrated usefulness in conjunction with 
supplemental imaging techniques. CAD-ABUS helps radiologists achieve a significant 
reduction in reading time, while maintaining accuracy in detecting suspicious lesions [70]. 
Additionally, in the case of MRI, DL-based CAD systems have shown a significantly higher 
average sensitivity in early phase scans where abbreviated MRI protocols are utilized [71]. 
This highlights the potential of AI in playing an increasingly important role in the future, 
particularly in the interpretation of supplemental images.

DIAGNOSIS OF BREAST CANCER

A confirmatory diagnosis of breast cancer can only be established through the 
histopathological examination of breast specimens, which are commonly obtained via core 
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needle biopsy. Pathologic reports typically provide information not only on the presence 
of tumor cells but also on whether the tumor is an invasive carcinoma or carcinoma in situ, 
histological subtype (ductal vs. lobular), histologic grade (such as the Bloom-Richardson 
grade [BRG]), as well as the status of biomarker expression and other relevant findings. 
The clinical management and prognosis of the disease may vary, depending on the specific 
pathologic outcomes identified in the report [17,72].

Given the fundamental role of pathologic diagnosis in disease management, the accuracy of 
pathologist’s diagnoses is important, and discrepancies in pathologic diagnoses can have 
a profound impact on diagnostic accuracy and treatment decision-making processes [73]. 
Nevertheless, inter-observer variation was noted in breast biopsy specimens, resulting in 
an overall concordance rate of 75.3%. The lowest concordance rate of 48% was reported for 
DCIS specimens and atypical hyperplasia [8].

AI for breast cancer diagnosis
Several researches have focused on developing AI algorithms for breast cancer detection and 
classification [74-77]. Cruz-Roa et al. [74] developed a CNN model that can classify patches 
containing invasive ductal carcinoma from the WSI of breast cancer and estimated the degree 
of infiltration and extent of invasive foci from the WSI using the ConvNet classifier. Han et al. 
[75] reported a DL model with an average accuracy of 93.2% across eight classes (four benign 
and four malignant) in a test dataset.

Furthermore, an image analysis challenge called Breast Cancer Histology (BACH) challenge 
aimed to automate breast tissue histology classification from hematoxylin and eosin (H&E)-
stained microscopic images and WSIs. The best-performing model reached pathologist-level 
accuracy, with AI assistance increasing average accuracy from 0.80 to 0.88 and improving 
mean interobserver concordance from 0.83 to 0.90 [76].

One example of a commercially available AI algorithm is the GALEN Breast. This AI model 
utilized breast biopsy specimens to detect cancer cells and classified them into different 
breast cancer subtypes. The AUC values of this model based on a large-scale, multi-
institutional dataset were reported as 0.99 and 0.98 for the detection of invasive carcinoma 
and DCIS, respectively [77].

AI for histologic grading in breast cancer
In addition to extensive efforts in cancer classification, various attempts have been made 
toward histologic grading. The BRG is widely recognized as a prognostic factor in breast 
cancer, and is derived from the assessment of three morphological components: tubule 
formation, nuclear pleomorphism, and mitotic count [72].

Romo-Bucheli et al. [78] developed a DL model capable of detecting tubule nuclei in WSI 
obtained from patients with estrogen receptor (ER)-positive breast cancer by introducing a 
tubule formation indicator (TFI) based on tubule nuclei to total nuclei ratio. Notably, the TFI 
correlated with the corresponding risk categories from ODX.

Similarly, Whitney et al. [12] showed that an ML classifier utilizing quantitative features 
related to nuclear shape, texture, and architecture could predict ODX risk categories for early 
stage ER-positive breast cancer patients (accuracy between 75%–86%). In another study 
conducted on H&E tissue microarray cohorts of early stage LN-negative, ER-positive breast 
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cancer patients, a model using nuclear shape and orientation stratified short- and long-term 
survival outcomes, indicating high-risk group outcomes independent of T stage, histologic 
grade, and nuclear grade [79].

Indeed, the majority of studies have focused on predicting mitotic counts. Similar to the 
approaches used for tubule formation and nuclear pleomorphism, a study demonstrated a 
DL model capable of counting mitotic figures from H&E-stained slides of early stage ER-
positive breast tumors. This model achieved an accuracy of 83.19% in distinguishing ODX 
risk groups [80]. Furthermore, several mitosis detection contests have been conducted, 
including the 2012 International Conference on Pattern Recognition (ICPR) MITOSIS 
detection contest, 2014 ICPR MITOS-ATYPIA challenge, and mitosis detection task in the 
2016 Tumor Proliferation Assessment Challenge 2016 contest [81-83]. These challenges have 
stimulated the development of diverse AI models that have shown noteworthy performance 
when applied to these datasets and have unveiled the potential for precise mitosis counting 
using AI models [84-86]. Additionally, a specific DL algorithm utilizing Faster R-CNN with 
a ResNet-101 backbone network exhibited not only high accuracy in mitosis counting tasks 
but also the potential to decrease pathologists’ reading time by 27.8% [87]. Recently, Nateghi 
et al. [88] introduced a fully automated system that encompasses ROI identification, mitosis 
counting from WSI, and prediction of tumor proliferation scores. When evaluated using the 
TUPAC-16 dataset, this system outperformed all previous methods in these tasks [88].

Moreover, a model allows for more refined stratification within the breast recurrence group 
(Nottingham histological grade [NHG] 2), a category that encompasses approximately half 
of all patients with breast cancer. This model divides patients with NHG 2 into two distinct 
groups based on their recurrence-free survival rates, thereby revealing a subset with increased 
recurrence risk and morphological characteristics akin to the NHG 3 group [89].

AI for preoperative breast cancer evaluation
AI may also play a significant role in preoperative breast cancer evaluation, including the 
prediction of LN metastasis. Zhou et al. [90] demonstrated that LN metastasis can be 
predicted with an AUROC accuracy of 0.90 based on primary breast cancer ultrasound images. 
Additionally, AI has been utilized to predict occult invasive diseases and improve the prediction 
of DCIS upstaging, thereby aiding decision-making and appropriate treatment planning [91]. 
Other preoperative uses of AI include the prediction of molecular subtypes based on radiomic 
features. This prediction is important because of the heterogeneous nature of breast cancer, 
where single biopsy specimens may not accurately represent the disease, especially when 
immunohistochemistry (IHC) test results are uncertain [92]. Radiomic features can provide a 
better overall representation of cancer, enabling more accurate classification and treatment. For 
example, previous studies have shown that combining MMG and ultrasound images to extract 
features has high accuracy in discriminating luminal and non-luminal diseases [93].

STAGING OF BREAST CANCER

As in the case of managing most solid tumors, an assessment based on the eighth edition of the 
American Joint Committee on Cancer TNM staging system is of paramount importance. This 
staging system serves as a vital determinant of treatment decisions and prognosis because the 
disease can vary significantly at different stages [17,94]. Sentinel LNs (SLNs) evaluation plays 
a critical role in breast cancer clinical staging and subsequent treatment planning [95]. SLN 
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biopsy (SLNB) is a widely used procedure in breast cancer staging for assessing whether cancer 
cells have spread to regional LNs, particularly axillary LNs. However, the false-negative rates of 
SLNB are almost 10% [96], indicating that additional imaging modalities, such as ultrasound, 
MRI, or positron emission tomography/CT, need to be considered to improve the accuracy of 
nodal staging and identify cases where SLNB alone may be insufficient.

AI for LN metastasis detection in histologic slides
AI applications for the evaluation of pathologic LN metastases have largely concentrated on 
SLNs in breast cancers [97]. Various models have been developed to detect LN metastases in 
cytokeratin IHC-stained WSIs, with one model achieving a sensitivity of 100% and specificity 
of 68.9%, indicating no false negatives [98-100]. Despite being more time-consuming 
and complex, IHC-based methods are particularly beneficial in certain scenarios, such as 
in patients who have undergone NAC, where the nodal tissue might exhibit drug-induced 
changes or an inflammatory/fibrotic response.

The CAMELYON16 challenge has spurred significant advancements in the automated 
detection of LN metastases from H&E-stained slides. An AI with a top-performing model that 
achieved an AUC of 0.994 surpassed the AUC values of pathologists under time constraints 
[101]. Another notable model demonstrated state-of-the-art performance and significantly 
reduced false-negative results for predicting the pathologic nodal status on the CAMELYON17 
dataset by combining a patch-level CNN-based metastasis detection model and slide-level LN 
classifier [102]. Google’s AI model, known as LYNA, improves pathologists’ interpretations 
and sensitivity, particularly for SLN micrometastasis detection, while also reducing the 
average reading time [103,104].

However, only a few studies have explored AI implementation for intraoperative evaluation 
assistance with frozen sections because evaluation is challenging, owing to low-quality slides 
and time constraints [97]. One study demonstrated the possibility of developing an AI model 
for frozen sections using formalin-fixed paraffin-embedded datasets from CAMELYON 16 via 
transfer learning [105]. In the HeLP 2018 challenge in H&E-stained frozen tissue sections of 
SLNs of breast cancer patients, the best-performing algorithms achieved an AUC of 0.805 and 
a processing time of 10.8 min, but AI model accuracy was similarly reduced by factors, such 
as micrometastasis, neoadjuvant therapy, and invasive lobular carcinoma [106]. Nevertheless, 
the potential of AI to overcome these challenges is evident in the field of gastric cancer. For 
example, one study revealed the possibility of confidently using an AI model for LN screening 
after neoadjuvant therapy with a positive predictive value of 94.44% [107], whereas another 
study showed increased sensitivity for micrometastases and isolated tumor cells, along with a 
shorter review time [108].

PREDICTIVE OR PROGNOSTIC FACTORS FOR BREAST 
CANCER
Biomarkers in breast cancer
Tissue biomarkers have gained importance in personalized medicine, aiding in disease 
diagnosis, prognosis prediction, and selection of patients who may derive specific 
therapeutic benefits. Breast cancer management involves key tissue biomarkers, including 
ER, progesterone receptor (PgR), human epidermal growth factor receptor 2 (HER2), and Ki-
67. Ongoing research has investigated novel biomarkers, such as programmed death ligand-1 
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(PD-L1) and tumor-infiltrating lymphocytes (TIL). Despite the importance of biomarker 
assessment, several studies have demonstrated intra- and inter-laboratory variability in the 
assessment of ER, PgR, HER2, and Ki-67. This could influence treatment decisions regarding 
hormonal and anti-HER2 targeted therapies [9].

AI in biomarkers of breast cancer
Assessing hormone receptor (HR) status via IHC can help identify patients who are likely to 
benefit from endocrine therapies, such as tamoxifen. Samples with at least 1% ER- or PgR-
positive tumor nuclei were deemed positive, with quantification achievable by reporting the 
percentage of positive cells or utilizing scoring systems, such as the Allred or H-score [109,110].

Since then, several studies have explored automated quantitative digital imaging analysis 
(DIA) techniques. Although manual interpretation of IHC staining is inherently subjective 
and time-consuming, studies have shown a strong correlation between manual and DIA-
based scoring of ER and PgR IHC staining in breast cancer. Notably, the utilization of DIA has 
demonstrated improved reproducibility compared with manual scoring methods [111-117]. 
Moreover, efforts have been made to integrate DIA algorithms into routine digital pathology 
workflows and ensure the robustness of AI models, and promising results have been reported 
[117,118]. Additionally, some AI models are promising in predicting ER and PgR status using 
only H&E-stained slides, thereby eliminating the need for specific IHC staining [119-121]. 
Notably, a DL model based on ShuffleNet was developed to predict molecular alterations and 
biomarkers in various solid tumor types, including breast cancer [122].

HER2 status, determined by IHC with or without in situ hybridization (ISH), is essential for 
identifying candidates for anti-HER2 therapies, such as trastuzumab. Levels of HER2 are 
classified based on the proportion and intensity of stained tumor cells [123]. In an effort to 
quantify HER2 IHC slides, a study reported an overall agreement of 92.3% between software-
based analysis and pathologist assessment by evaluating cell membrane connectivity [124]. 
Another study demonstrated the potential of an AI-powered HER2 analyzer to mitigate 
interobserver variability and aid pathologists in achieving a consistent evaluation of HER2 
expression levels [125]. Furthermore, several studies have used AI models to predict the 
amplification state of HER2 by analyzing digitized fluorescence ISH (FISH) images [126-128].

Subsequently, several AI models have been developed to exclusively predict the HER2 status 
using H&E-stained slides, including the HEROCHE challenge [119,121,122,129,130]. In this 
challenge, 21 international teams presented their AI models, and the best-performing model 
exhibited a classification accuracy of 0.68 in terms of F1 score. It is important to note that 
the choice of evaluation metric may influence the performance of the models. Beyond simply 
predicting the HER2 status, some studies have shown associations between AI models and 
therapeutic responses. Farahmand et al. [131] developed a CNN classifier, achieving an AUC 
of 0.80 in predicting the response to trastuzumab therapy based on HER2 status. Another 
intriguing application of AI was observed in patients who achieved a pathologic complete 
response (pCR) after NAC with anti-HER2 agents, revealing a notably higher proportion of 
tumor cells with intense HER2 staining. This insight suggests that AI models may be pivotal 
in providing nuanced information for predicting responses in patients with HER2-positive 
early breast cancer undergoing NAC [132].

Furthermore, quantitative assessment of HER2 IHC using AI algorithms is not limited 
to breast cancer. It has demonstrated promise in reducing inter-observer variability and 
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forecasting prognosis or treatment outcomes in other cancer types, including urothelial 
carcinoma, biliary tract cancer, and colorectal cancer [133-135].

Despite the consistent treatment benefit of cyclin-dependent kinase 4 and 6 inhibitors 
demonstrated in a recent phase III clinical trial regardless of the Ki-67 index, Ki-67 serves as a 
cell proliferation marker and prognostic and predictive biomarker for breast cancer [136,137]. 
However, the reproducibility of Ki-67 assessment remains a longstanding challenge [9,138,139].

Similar to other biomarker evaluations, Ki-67 is also evaluated using IHC, and several DIA 
platforms showed promising results. A comparative study revealed excellent reproducibility 
among the three DIA platforms and reference standards, with the platforms demonstrating 
indistinguishable capabilities for predicting patient outcomes in breast cancer [140]. 
Furthermore, another study revealed that incorporating AI support in the evaluation of Ki-67, 
ER, and PgR expression led to a slight improvement in pathologist agreement, with 95.8% of 
the AI analysis results for Ki-67 confirmed by most of the pathologists [117].

Recently, immunotherapy combined with chemotherapy has demonstrated efficacy in 
specific breast cancer subsets, necessitating the use of predictive biomarkers like PD-L1. 
Validation of PD-L1 IHC expression was provided by the KEYNOTE-355 trial, revealing 
improved survival outcomes in patients with metastatic triple-negative breast cancer (TNBC) 
exhibiting a PD-L1 combined positive score ≥ 10 [141].

In terms of applying AI, a study utilizing a digital pathology platform for PD-L1 scoring in 
breast cancer showed that an AI algorithm could predict chemotherapy outcomes in patients 
with TNBC, as well as in those with HER2-positive and ER-negative breast cancer [142]. The 
potential utility of AI as an aid to pathologists was highlighted in a multi-institutional ring 
study that showed that the degree of agreement among pathologists when assessing PD-
L1 expression levels could be improved with AI assistance [143]. Moreover, the DL model 
was able to predict PD-L1 status from H&E-stained images, indicating the potential role of 
AI in clinical practice for decision support and quality assurance. AI can enhance patient 
management strategies by identifying cases susceptible to misinterpretation [144]. A 
representative example of the application of AI in PD-L1 assessment is shown in Figure 4A.

The significance of TILs within the tumor microenvironment (TME) continues to increase 
because of their correlation with improved prognosis and their predictive value for 
chemotherapy and immunotherapy responses in breast cancer [145,146]. However, the 
concordance rate for manual TILs assessment among pathologists remains suboptimal 
[147,148].

Several computational approaches have been suggested to address interobserver variability, 
including the recommendation of the International Immuno-Oncology Working Groups 
to incorporate a computational approach in TIL assessment [149]. Additionally, one AI 
model proposed novel immunogradient indicators by computing TIL density profiles across 
the tumor-stroma interface zone, demonstrating robust prognostic stratification that 
outperforms traditional clinical and pathologic variables [150]. Another AI model quantified 
stromal TIL scores and provided valuable assistance to pathologists, particularly when 
discordant interpretations arose. This model enhanced the concordance rate among the 
pathologists. Furthermore, the prediction of NAC response in patients with TNBC and HER2-
positive breast cancer has been enhanced with the assistance of AI [151]. Using an identical 
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AI model, the density of TIL was spatially analyzed, leading to determination of the immune 
phenotype (IP). One study revealed varying TIL densities and IPs across different molecular 
subtypes of breast cancer, suggesting a distinct immune landscape [152]. A representative 
example of the application of AI to the spatial analysis of TIL is shown in Figure 4B. An 
additional AI model has proposed digital stromal TILs and digital tumor-associated stroma 
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Figure 4. Example of artificial intelligence application in whole slide images. 
(A) PD-L1 IHC-stained WSI. (B) H&E-stained WSI. Both figures illustrate the original WSI at low and high 
magnification with the AI outputs using the Lunit SCOPE PD-L1 (Lunit Inc.) for (A) and Lunit SCOPE IO (Lunit Inc.) 
for (B). Each cell type (± PD-L1 positivity) identified by the AI model is represented by colored dots, while the AI-
segmented areas are depicted with colored patches. 
PD-L1 = programmed cell death-ligand 1; IHC = immunohistochemistry; WSI = whole slide image; H&E = 
hematoxylin and eosin; AI = artificial intelligence; IO = immune-oncology.



scores, based on the spatial relationships among TME components, showing prognostic 
significance in predicting disease-specific survival in patients with TNBC [153].

Beyond breast cancer, AI-powered TIL spatial evaluations are gaining traction in colorectal 
cancer, with promising implications for anti-HER2 therapy response prediction. This AI 
algorithm also enables the assessment of macrophage and fibroblast cell densities within the 
TME, potentially forecasting anti-HER2 therapy outcomes [135]. Another pan-carcinoma 
investigation revealed diminished intratumoral and stromal TIL densities in HER2-amplified 
tumors, as assessed using an AI model, alluding to a correlation between HER2 amplification 
and low immune infiltration [154].

AI for breast cancer risk stratification and genetic alteration prediction
Mammographic density, measured using the Breast Imaging Reporting and Data System (BI-
RADS) category, has been investigated extensively, and it has been found that breast density 
is a strong risk factor for breast cancer [155]. Consequently, new breast screening strategies, 
such as those explored in the Dense Tissue and Early Breast Neoplasm Screening trials, now 
consider a woman’s breast density to evaluate her risk [156]. However, the current standard 
for measuring breast density relies heavily on the subjective judgment of radiologists, which 
leads to significant inter-reader variability. This highlights the need for more objective and 
standardized approaches for assessing breast density to enhance screening accuracy and 
consistency.

Objective and consistent density measurements are crucial for individual risk stratification, 
leading to the development of automated assessment tools, such as Volpara, which calculates 
the volumetric breast density percentage of each mammogram on a continuous scale [157]. 
Another alternative is to develop density AI models trained using labeled data provided 
by radiologists. These AI models can provide automated and standardized breast density 
measurements, which are not only used to assess the risk of developing breast cancer but 
also as predictive surrogate markers for therapy response in high-risk patients [158]. Further 
research is necessary to determine the most suitable assessment tool and how to effectively 
integrate this information into routine clinical practice.

Traditional risk prediction models, such as the Tyrer-Cuzick model, also consider breast 
density as a part of the risk factors [159]. AI models have been incorporated to enhance 
the existing breast cancer prediction models [160]. A recent study by Arasu et al. [161] 
demonstrated that multiple AI models outperformed the Breast Cancer Surveillance 
Consortium (BCSC) risk model in predicting five-year breast cancer risk, with significantly 
better performance (AUC, 0.63–0.67 for AI models vs. AUC, 0.61 for BCSC model).

Additionally, AI algorithms can not only be trained on human-extracted features but can also 
analyze breast parenchymal patterns that may not be discernible to the human eye. Kim et al. 
[162] developed a model that utilizes Imaging Biomarkers in MMG, which are parenchymal 
patterns observed in high-risk individuals. This model can accurately predict cancer 
occurrence, even when trained solely with the unaffected breasts of patients with cancer. 
These models enable accurate short- and long-term risk predictions using MMGs from a 
single time point [163]. Another example is the ML model called Mirai, which performed 
better than previous DL models in identifying both five-year breast cancer risk and high-
risk patients across diverse populations [164]. There is also ProFound AI, an AI-CAD-based 
concurrent-read predictive model for DBT cases, which helps reduce the workload and time 
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required to enhance radiologists’ cancer detection performance. These models may be able to 
determine screening methods and frequencies for each individual.

The potential for the direct prediction of genetic alterations using AI models has been 
suggested, akin to the prediction of HER2 FISH status using AI models. The ShuffleNet-
based DL algorithm consistently infers a wide range of genetic mutations, molecular tumor 
subtypes, gene expression signatures, and pathology biomarkers from H&E-stained slides 
across 14 of the most common solid tumor types, and detects mutations, such as PIK3CA and 
MAP2K4 in breast cancer [122]. The ML model could predict molecular features, including 
DNA methylation, gene expression, copy number alterations, and somatic mutations. 
Additionally, AI models have been developed to predict germline BRCA mutation status and 
chromosomal instability status, both of which have a prognostic value [165,166]. Several 
studies have developed AI models to predict ODX risk scores, offering both prognostic and 
predictive insights for adjuvant systemic therapy, which can classify ODX risk categories by 
quantifying tubule nuclei and mitotic counts [78,80,167]. Similarly, Cho et al. [168] reported 
that an AI model could classify the ODX risk score with a cutoff value of 25. The predicted 
high-risk groups demonstrated significantly lower survival outcomes in patients with 
early stage HR-positive breast cancer, further underscoring the potential of AI for cancer 
prognostication and management [168].

AI in predicting clinical outcomes and treatment response
AI has been used to monitor and assess the prognosis of breast cancer. AI algorithms in 
conjunction with MRI scans were employed to evaluate the anticipated response to adjuvant and 
neoadjuvant treatments based on pretreatment imaging. By analyzing the imaging features and 
patterns, AI can assist in predicting treatment responses and optimizing treatment strategies 
to improve patient outcomes [169]. A similar endeavor occurs with ultrasonography, where AI 
predicts the response to NAC and helps forecast the overall breast cancer prognosis [170,171]. 
Additionally, AI has emerged as a potential tool for assessing the response to chemotherapy in 
post-treatment MRIs and predicting recurrence risk [172,173]. In the future, AI algorithms could 
analyze medical images, such as MRIs, and provide quantitative assessments and predictions 
that could assist radiologists and oncologists in their decision-making processes.

Turning the spotlight to pathology, the wealth of information extracted from pathological 
slides is a gold mine for predicting treatment responses and broader clinical outcomes. For 
example, an AI algorithm proposes a novel recurrence score (RS) with the potential to serve 
as a viable alternative to the more expensive 21-gene assays. This model analyzed different 
aspects of the cancer and surrounding tissues as well as the density of TILs and could help 
predict which high-risk patients would benefit from adjuvant chemotherapy. This suggests 
that the RS from the AI model may serve as a predictive biomarker for adjuvant chemotherapy 
responses [174]. In a comparative study of ML models utilizing clinical and pathological 
data, the random forest model demonstrated the highest performance, with an AUC of 0.88, 
for predicting pCR following NAC in patients with locally advanced or high-risk early breast 
cancer [175]. Recently, a CNN-based model trained on H&E-stained WSIs from core biopsies 
of TNBC patients after NAC was reported to have a positive predictive value of 73.7% for pCR 
[176]. Huang et al. [177] developed an AI-based automatic WSI feature extraction pipeline, 
named IMPRESS, using WSIs stained with both H&E and multiplex IHC (PD-L1, CD8+, and 
CD163+). ML models using features from IMPRESS and clinical variables accurately predicted 
the NAC response in patients with HER2+ or TNBC, surpassing a model trained with 
manually generated pathological features, suggesting that it may be a preferred method for 
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developing algorithms to predict treatment responses in the future. Upon external validation, 
these models produced promising results, especially for the HER2+ subtype (AUC = 0.90 
for HER2+, and 0.59 for TNBC) [177]. Furthermore, a multi-omics ML model, trained on a 
combination of clinical, DNA, RNA, digital pathology, and treatment features, showed an 
AUC of 0.87 in predicting pCR following NAC, with or without HER2-targeted therapy [178].

CURRENT ADAPTATIONS, LIMITATIONS, AND HURDLES

As of October 2022, numerous AI systems operating as Medical Devices have obtained 
regulatory approval worldwide, including at least 521 devices that have received clearance 
from the US FDA [179].

However, there are several limitations for AI to be addressed in the field of breast cancer. The 
clinical validation of AI models in the real world is a primary concern. Despite the remarkable 
performance of AI algorithms in numerous studies, it is indispensable for these algorithms to 
undergo clinical validation with large-scale datasets before integrating into clinical practice. 
Recent attempts at clinical validation, particularly those focusing on treatment outcomes 
[151,153,168], are often constrained by retrospective designs that might introduce unexpected 
biases, underscoring the need for prospective studies [16]. These prospective studies are 
crucial to fully comprehend the impact of AI implementation on clinical practice and ensure 
that AI tools are both effective and reliable in a clinical setting.

Second, integrating AI models into real-world clinical settings presents challenges beyond 
validation, such as utility and usability. For utility, AI models should undergo rigorous 
validation through RCTs that assess a range of clinical endpoints. These endpoints should 
include not only overall survival but also disease control, toxicity reduction, improved quality 
of life, and decreased healthcare resource utilization. On the usability front, AI models need 
to be tested in real-world settings for time efficiency, user satisfaction, and acceptance of AI 
recommendations. Additionally, the incorporation of a feedback mechanism through post-
market surveillance is essential to identify potential weaknesses and areas for enhancement, 
thereby ensuring the continuous improvement of these models [14]. Real-time monitoring 
systems for physicians and AI algorithm developers are necessary to ensure the safe delivery 
of care. Additionally, seamless integration with existing workflows, such as PACS, is 
necessary for the efficient use of AI tools.

A third concern is the generalizability or robustness of the AI model, which refers to its 
consistent performance across various datasets, including the one on which they were 
trained. Several strategies to address this include using datasets with a wide array of 
preanalytic and analytic factors to enhance model robustness, although acquiring large-scale 
datasets with manual annotations presents challenges in the development of AI algorithms 
[77,180]. To address this issue, innovative strategies, such as unsupervised learning and 
Generative Adversarial Networks, are being utilized [181,182]. Yet another challenge that 
arises is the risk of misrepresenting health concerns in minority populations, owing to the 
creation of AI models largely based on data from majority populations. This situation can 
potentially exacerbate health disparities [183,184].

Fourth, most AI algorithms are often considered black boxes because it is often unclear which 
features can be recognized within them. In this regard, the approaches to develop explainable 
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AI algorithms could build trust among clinicians, provide transparency in the decision-
making process, and alleviate various types of biases [185]. In contrast, Ghassemi et al. [186] 
suggested that enthusiastic internal and external validation of AI algorithms could be a direct 
means of achieving goals associated with explainability.

Finally, issues related to reimbursement must be considered, particularly if AI systems start 
to replace certain roles traditionally performed by physicians. These broader discussions on 
reimbursement and the impact of AI on healthcare systems should take place at the national 
or screening program levels to ensure equitable and effective implementation [187].

To facilitate discussions and engagement among clinicians, the wider medical team, 
responsible national agencies, and hospitals regarding the integration of AI in healthcare, 
it is important to explore the overarching challenges. One significant challenge is the 
substantial investment required for AI development, including the development of 
algorithms and necessary IT infrastructure. This investment encompasses not only the initial 
costs, but also the ongoing maintenance and updating of AI systems.

CONCLUSION

The innovative intersection of AI and breast cancer care promises to revolutionize disease 
screening, disease diagnosis, biomarker evaluation, prognostication, and treatment strategies 
by overcoming human limitations and achieving remarkable precision and efficiency. 
However, the journey towards the full-scale clinical adoption of AI is not without hurdles. 
Key challenges encompass clinical validation, ensuring algorithmic robustness across diverse 
datasets, grappling with the ‘black box’ enigma of AI, and navigating the complex terrain 
of regulatory, legal, and economic considerations. Moreover, addressing potential biases, 
particularly those that negatively affect minor populations, and assessing performance using 
reliable metrics are critical for building equitable and trustworthy AI systems.

Looking ahead, the future of AI in breast cancer care is contingent on our collective ability 
to overcome these challenges. The design and implementation of large-scale prospective 
studies are essential for validating the clinical efficacy of AI algorithms. Developing models 
that are transparent and interpretable and fostering strategies to improve the generalizability 
of AI systems will facilitate their wider acceptance. Moreover, creating regulatory 
frameworks and ethical guidelines will ensure the responsible integration of AI in healthcare. 
Furthermore, the issue of cost, both initial and ongoing maintenance, is a significant barrier 
to AI adoption. Hence, future initiatives should focus on devising sustainable financing 
models to mitigate the financial burden of AI development.

Although the path ahead is marked by complexity, the potential benefits of integrating 
AI into breast cancer management are too significant to be ignored. By navigating these 
challenges with careful deliberation, we have the opportunity to drastically improve patient 
outcomes, reduce health disparities, and set the stage for a new chapter in precision 
medicine. As we continue to explore and innovate, the integration of AI in breast cancer care 
redefines our approach to screening, diagnosis, and treatment in unimaginable ways.
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