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Abstract Single-cell RNA sequencing (scRNA-seq) is revolutionizing the study of complex and

dynamic cellular mechanisms. However, cell type annotation remains a main challenge as it largely

relies on a priori knowledge and manual curation, which is cumbersome and subjective. The increas-

ing number of scRNA-seq datasets, as well as numerous published genetic studies, has motivated us

to build a comprehensive human cell type reference atlas. Here, we present decoding Cell type

Specificity (deCS), an automatic cell type annotation method augmented by a comprehensive collec-

tion of human cell type expression profiles and marker genes. We used deCS to annotate scRNA-

seq data from various tissue types and systematically evaluated the annotation accuracy under dif-

ferent conditions, including reference panels, sequencing depth, and feature selection strategies. Our

results demonstrate that expanding the references is critical for improving annotation accuracy.

Compared to many existing state-of-the-art annotation tools, deCS significantly reduced computa-

tion time and increased accuracy. deCS can be integrated into the standard scRNA-seq analytical

pipeline to enhance cell type annotation. Finally, we demonstrated the broad utility of deCS to
ces and

tion and

ciences /
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identify trait–cell type associations in 51 human complex traits, providing deep insights into the cel-

lular mechanisms underlying disease pathogenesis. All documents for deCS, including source code,

user manual, demo data, and tutorials, are freely available at https://github.com/bsml320/deCS.
Introduction

Recent breakthroughs of single-cell RNA sequencing (scRNA-
seq) have greatly boosted our ability to characterize the hetero-

geneity of cell types in various tissues [1,2], leading to deep
understanding of disease pathogenesis and development [3,4].
The typical scRNA-seq data analysis involves unsupervised
clustering of the cells, followed by annotation of each cluster

[5,6]. Accurate identification of cell types is critical for down-
stream analysis. However, this process relies heavily on prior
knowledge of cell type marker genes, which is subjective and

time-consuming.
In contrast to manual annotation, many automatic annota-

tion tools have recently been developed, including SingleR [7],

CHETAH [8], CellAssign [9], scMatch [10], scCATCH [11],
scPred [12], SciBet [13], scVI [14], and Cell BLAST [15]. A
recent comprehensive benchmarking evaluation by Abdelaal

et al. revealed a large difference in performance among these
methods, and such performance was strongly dependent on
the reference database used [16]. Thus, there is a pressing need
to curate high-quality and comprehensive reference panels of

human cell type expression profiles, which include the anno-
tated scRNA-seq data from various tissues or sequencing pro-
tocols. So far, most of these methods are based on machine

learning models, such as support vector machine (SVM) [16]
and random forest classifier [17], which are computation-
intensive and cannot be directly applied to huge datasets, such

as the human cell landscape (HCL) [18], human cell atlas [19],
and human cell atlas of fetal (HCAF) gene expression [20].
Moreover, the annotation largely relies on a single reference,
which may be inaccurate when cell types in ‘‘query” and ‘‘ref-

erence” datasets are not well matched. Therefore, a computa-
tional method that can efficiently integrate the annotation
results among multiple references is urgently needed. Further-

more, the cell type inference is mostly conducted at the single-
cell level rather than cluster level. The annotation accuracy will
significantly decrease, especially for cells with low sequencing

depth due to the dropout effect in scRNA-seq data. Even
though imputation methods [21,22] can be applied to recover
missing gene expression data and improve the annotation

accuracy, they are time-consuming [22].
Here, we present decoding Cell type Specificity (deCS), an

automatic scRNA-seq cell type annotation method by decod-
ing cell type specificity. As an improved version of the deTS

algorithm [23], deCS runs fast, allows the integration of cell
annotation from multiple references, and defines cell types at
the cell cluster level rather than the single-cell level. Specifi-

cally, we first created a high-quality and comprehensive human
cell type reference panel by including all publicly available
large-scale scRNA-seq datasets from various tissues or

sequencing protocols, such as HCL and HCAF gene expres-
sion. Then, we calculated the t-statistic- or z-score-based mea-
surements to ‘‘decode cell type specificity” of gene sets. The

deCS algorithm was implemented in an R package with differ-
ent statistical methods. It supports input for either gene
expression profiles (e.g., a query scRNA-seq dataset with
clusters to be annotated) or list of genes (e.g., a query list of

genes). Benchmark results showed that deCS reduced compu-
tation time and improved annotation accuracy in most tissues
compared to other state-of-the-art methods, especially when

the cell type composition of query and reference datasets are
not conserved. Therefore, we anticipate that deCS will become
a scRNA-seq routine annotation tool, especially when users do
not have enough prior knowledge about the cell type markers.

Lastly, the curated cell types and their signature genes can be
used to explore the cell type specificity of disease risk genes. By
defining cell type-specific genes (CTGenes) and decoding cell

type specificity, we demonstrated the utility of deCS to charac-
terize the relationships between human complex diseases and
cell types. Accordingly, these results can provide novel insights

into the cellular mechanisms underlying the poorly understood
traits and diseases.
Method

Data collection for cell type reference panels

The BlueprintEncode data

We downloaded the BlueprintEncode RNA-seq data from
Aran and his colleagues [7]. The raw data comprised 259 bulk
RNA-seq samples in total. All cell types were aggregated into

24 broad classes (‘‘main cell types”) with 43 cell types (‘‘fine
cell types”). Raw gene expression data were normalized by
transcripts per million (TPM), followed by log2
transformation.

The database of immune cell expression data

The database of immune cell expression (DICE) reference con-

tained 1561 bulk RNA-seq samples from pure populations of
human immune cells. We downloaded the TPM-normalized
values for 5 main (15 fine) immune cell types or subtypes from
https://dice-database.org/downloads [24].

The MonacoImmune data

The MonacoImmune reference comprised 114 peripheral

blood mononuclear cell (PBMC) bulk RNA-seq samples from
4 Singaporean-Chinese individuals. We downloaded the TPM-
normalized values for 10 main (29 fine) immune cell types
(GEO: GSE107011) from the study by Monaco and his col-

leagues [25].

The HCL data

The HCL reference contained more than 700,000 scRNA-seq

expression profiles from more than 50 human different tissues
[18]. These cells were grouped into 102 major clusters, and
have been well-annotated based on known marker genes.

These data were derived from 18 fetal tissues, 35 adult tissues,
and several intermediate tissues (e.g., cord blood and pla-
centa). We downloaded the gene expression profiles from

http://bis.zju.edu.cn/HCL/landscape.html.
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The HCAF data

The HCAF gene expression contained � 4,000,000 single cells

from 15 human fetal organs ranging from 72 to 129 days in
estimated post-conceptual age [20]. These cells were grouped
into 172 major cell types. The raw data are available at

https://descartes.brotmanbaty.org/bbi/human-gene-expression-
during-development/.

CellMatch

The CellMatch reference [11] was curated from various
resources, including CellMarker [26], MCA [27], CancerSEA
[28], and the CD Marker Handbook. In this study, we only

obtained 183 cell types for humans with an average of 163
marker genes per cell type. The raw dataset is available at
https://github.com/ZJUFanLab/scCATCH.
Measurement of cell type specificity of genes

All references derived from bulk RNA-seq were classified into
two tiers: tier 1 for the broad (main) cell type category and tier

2 for a more granular (fine) cell type category [7]. For both
tiers, we implemented our previous method [23] by fitting a
regression model for each gene and computed t-statistics to

measure the cell type specificity. Briefly, for cell types in tier
1, we followed our previous work [23] and fitted a regression
model for each cell type independently as Y � X, where X is

the cell group status (0 or 1) and Y is the log2-transformed
gene expression. Specifically, for a cell type in the examination,
we defined X = (xi), i = 1,. . ., N, where N is the total number

of samples; xi = 1 if the sample belongs to the cell type in the
examination, and xi = 0 if the sample belongs to any cell types
that are not in the same group. We then selected the t-statistic
for the explanatory variable X in the standard way:

t ¼ ðXTXÞ�1
XTYffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

MSE � ðXTXÞ�1
q ð1Þ

where MSE is the mean squared error of the fitted model, i.e.,

MSE ¼ 1

N
ðY� XðXTXÞ�1

XTYÞTðY� XðXTXÞ�1
XTYÞ ð2Þ

Of note, most cell types in tier 2 were biologically related,
such as ‘‘memory B-cells”, ‘‘naive B-cells”, and ‘‘plasma cells”.

An inclusion of all these instinctively related cell types in one
regression model would underestimate their cell type specificity
due to the potential collinearity. Therefore, for the cell types in

tier 2, the regression models were fitted after excluding the
samples from the same group (main cell type) but keeping
the other cell types [23].

The predefined cell number per tissue in the HCL and
HCAF datasets is large: 102 (HCL) and 172 (HCAF) major
clusters. Accordingly, we utilized z-score to measure the cell
type specificity of genes. For each gene, a z-score is calculated

as zi = (ei � mean(E))/sd(E), where ei is the average log2-
transformed expression of the gene in the i-th cluster, E repre-
sents the collection of its average expression in all clusters, and

sd denotes the standard deviation of E.
For each cell type, those genes with the highest t-statistic or

z-score are considered as CTGenes in the cell type in examina-

tion. The user can define the cutoff values (e.g., the top 5%
genes as CTGenes). Because the CellMatch database did not
include gene expression information, we directly utilized the
predefined CTGenes [11].

To create cell type classification tree, for each reference
dataset, we conducted cell type hierarchical clustering based
on Euclidian distance and ward.D2 linkage aggregation. The

bootstrap resampling and probability values (P values) for
each cluster were conducted using Pvclust package [29].
Algorithm of cell type-specific enrichment analysis

Feature selection is an important step to determine the cell
type. To deal with feature gene collinearity and dropout rate

differences, and also to consider variation among datasets, it
is better to select features that co-occur in the reference and
query data. Although we have already pre-calculated the cell
type specificity score in the reference, we still recommend users

to pre-process their query dataset and to use the union of cell
cluster-specific genes as input of deCS. These recommenda-
tions can improve the accuracy and efficiency.

Depending on the query data type, we implemented two
test approaches. If the query is an expression profile, we pro-
vided two methods to minimize the batch effects between

two different datasets, which is a particular concern in
scRNA-seq. (1) The z-score strategy normalizes the query
expression data by en = (eq � us)/sds, where eq and en are
the query and normalized expression, and us and sds are the

mean and standard deviation of a gene from the query expres-
sion data. (2) The abundance correction approach [30] normal-
izes the query RNA-seq data by en = log2 (eq + 1)/

(log2 (us + 1) + 1). After normalization, we calculated the
Pearson correlation coefficient (PCC) of cell type specificity
of genes between the query and each of the reference cell types,

respectively. The most relevant cell type(s), measured by the
highest PCC score(s), are annotated to query profiles, possibly
with further fine-tuning to resolve closely related cell type(s).

On the other hand, we also incorporated a rejection option
(e.g., minimum correlation coefficient threshold), which allows
the detection of potentially novel cell populations.

When the query is a list of genes (e.g., marker genes of a cell

cluster or trait-associated genes), we implemented Fisher’s
exact test to examine if they are significantly enriched in
CTGenes. We allow users to define the threshold, e.g., the

top 5% genes ranked by t-statistics or z-scores as CTGenes.
Specifically, for the query gene set and CTGenes in a given cell
type, we built a dichotomous 2 � 2 contingency table as

follows:

CTGenes ðrÞ

Query genes ðqÞ jQ \ Rj �Q \ R
�� ��

jQ \ �Rj �Q \ �R
�� ��

 !
ð3Þ

Here, q denotes the set of query genes and r denotes the set

of CTGenes in a given cell type. jQ \ Rj denotes the intersect

gene number between Q and R, j �Q \ Rj denotes the number

of genes only in R, jQ \ �Rj denotes the number of genes only

in Q, and j �Q \ �Rj represents the number of genes that neither
in Q or R. In addition, the intersection ratio (IR) Q \ Rj j= Qj j
will also be calculated. An IR of 1 indicates that 100% of the

query genes overlap with CTGenes (default, the top 5% genes)

https://descartes.brotmanbaty.org/bbi/human-gene-expression-during-development/
https://descartes.brotmanbaty.org/bbi/human-gene-expression-during-development/
https://github.com/ZJUFanLab/scCATCH
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of a given cell type, while 0 indicates no overlap. The most rel-
evant cell type(s), measured by the highest IR(s), are annotated
to query profiles.

Pathway enrichment analysis of cell type-specific genes

For the top 200 CTGenes (genes with the highest t-statistic or

z-score) of each cell type, we used RDAVIDWebService
(v1.19.0) [31] for pathway enrichment analysis. Both Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and Gen-

omes (KEGG) pathway annotations were used. Benjamini
and Hochberg’s approach [32] was used for multiple test cor-
rection. Significant pathways were defined as those with a false

discovery rate (FDR) < 0.05. The networks of CTGenes
enriched with KEGG pathways were presented by Cytoscape
[33].

Data collection and pre-processing

scRNA-seq data

Two PBMC datasets were collected from 10X Genomics
website (https://www.10xgenomics.com/resources/datasets).
The test dataset of bronchoalveolar immune cells (BICs)

was collected from healthy controls (HC, n = 3), as well
as patients with moderate (M, n = 3) and severe (S,
n = 6) COVID-19 infection [34,35]. The BIC data included
63,103 single cells. The raw data and predefined labels are

available at https://github.com/zhangzlab/covid_balf. The
fetal cardiac cell (FCC) scRNA-seq data were collected from
18 human embryos, ranging from 5 weeks (5 W) to 25 W of

gestation [36]. The unique molecular identifier (UMI) count
of 3842 cells and predefined labels were downloaded from
the GEO website (GSE106118). The human liver scRNA-

seq data were collected from five fresh hepatic tissues [37].
The raw dataset of 8444 cells and annotation are available
through the GEO accession (GSE115469). The scRNA-seq

data of human lung, spleen, and esophagus tissues were col-
lected from 12 organ donors [38]. The raw data of 239,224
single cells and annotation are available at https://www.tis-
suestabilitycellatlas.org/.

Trait-associated gene lists from genome-wide association study
summary statistics

Previous studies have suggested that most trait-associated
genes (TAGs) show strong tissue-specific associations [23,39].
Therefore, we further collected 51 publicly available genome-
wide association study (GWAS) datasets spanning a wide

range of phenotype measurements to investigate the potential
association between human traits and cell types.

Considering the statistical noise in GWAS data and more

than 90% of genetic variants from GWAS being located in
the non-coding regions, for each GWAS trait, we used moder-
ately significant associated single nucleotide polymorphisms

(SNPs) with chi-squared P value < 1 � 10�3. This strategy
allowed us to have a list of genes with weak-to-strong associa-
tion signals. Additionally, we applied our DeepFun model
[40,41] to predict their potential regulatory effects. We defined

variants with an absolute maximum SNP activity difference
(SAD) score > 0.1 as regulatory loci (potential causal vari-
ants). Then we employed Pascal software [42] to map them

to gene level if these SNPs were located within a range of
50 kb upstream or downstream of corresponding gene tran-
scription start sites by taking into account linkage disequilib-
rium and gene length information. Any gene with at least

one regulatory locus was regarded as a TAG.

Bulk RNA-seq data

The test bulk RNA-seq data were generated from

schizophrenia-associated human induced pluripotent stem cell
(iPSC)-derived cell lines from the population isolate of the
Central Valley of Costa Rica [43]. One clone from each subject

was differentiated into neuronal precursor cells (NPCs) and
neurons, respectively. In total, we collected RNA-seq data
from iPSC-NPCs (n = 13) and iPSC-neurons (n = 11).

Single-cell permutation analysis

Single-cell permutation analysis was performed to assess the

cell cluster internal correlation and detect gene richness. For
a given number (n from 1 to 50) of cells belonging to the same
cell type, we performed random sampling 100 times without
replacement, and then calculated the PCC of the averaged gene

expression level from the single cells compared to the pseudo-
bulk level (cell cluster averaged). In addition, we estimated the
total number of detected genes that could be identified (at least

one UMI in at least one cell), along with the cumulated num-
ber of cells.

Statistical analysis

Uniform manifold approximation and projection (UMAP)
analysis [44] was used to visualize scRNA-seq batch effect.

For comparison of the cell annotation accuracy among healthy
controls, moderate, and severe COVID-19 infected patients,
we used kruskal.test function in R software. The performance
of deCS was evaluated by recall, defined as TP/(TP + FN),

where TP and FN denote the number of true positives and
false negatives.

Evaluation and software implementation

The evaluation was conducted on a desktop equipped with i7-
7700HQ CPU and 16 GB of RAM. We ran deCS using two

approaches: correlation analysis and Fisher’s exact test. deCS
runs fast when applying correlation analysis. It took only � 7 s
for a gene expression matrix with BIC dataset (63,103 cells) by

deCS.correlation function. When applying Fisher’s exact test,
it took only � 50 s for a list of 43,514 genes across the 51 traits.

Results

Overview of deCS workflow

Our goal is to develop a tool to perform automatic cell type
annotation across datasets of different sequencing protocols

and levels of complexity. To this end, we first collected various
public cell type expression profiles. As shown in Figure 1, we
included several public human bulk RNA-seq data such as
BlueprintEncode [45,46], DICE [24], and MonacoImmune

[25]. Although these were bulk data, they were generated using
cell lines and have already been used as reference datasets in

https://www.10xgenomics.com/resources/datasets
https://github.com/zhangzlab/covid_balf
https://www.tissuestabilitycellatlas.org/
https://www.tissuestabilitycellatlas.org/


Figure 1 Overview of deCS flowchart

For each cell type, we compute t-statistic and z-score for each gene in the bulk RNA-seq and scRNA-seq derived references, respectively.

Then, we define genes with the highest t-statistics or z-scores (top 5%) as CTGenes. We further integrate cell signature gene sets from

CellMatch database. Depending on the type of ‘‘query data”, when the query input is a gene expression profile, deCS calculates PCC or SCC

between query scaled expression profiles and t-statistics (or z-scores) of each cell type in the reference, and then assigns the label with the

highest score to the query profile. When the query input is a list of genes, deCS is analogous to existing tools for identifying candidate genes

that are overrepresented in specific GO terms or KEGG pathways [31]. Finally, the top enriched cell type is annotated to query data. deCS,

decodingCell type Specificity; RNA-seq, RNA sequencing; scRNA-seq, single-cell RNA sequencing; CTGene, cell type-specific gene; DICE,

database of immune cell expression; HCL, human cell landscape; HCAF, human cell atlas of fetal; PCC, Pearson correlation coefficient;

SCC, Spearman’s correlation coefficient; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; QC, quality control.
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SingleR [7]. In addition, we downloaded the most comprehen-
sive human single-cell expression data resource from the HCL

[18] and HCAF [20] projects. For each dataset, we applied dif-
ferent analytical strategies (see Method for more details) to
define CTGenes. Finally, we integrated the manually curated

marker genes (used as CTGenes in deCS) from the CellMatch
database [11]. Based on genes’ t-statistics/z-scores and
CTGenes, we implemented two statistical tests for cell type

annotation (Figure 1). If the query data are a ‘‘gene expression
profile” with unknown cell types, deCS applies the correlation
analysis to determine which cell types in the reference are sig-
nificantly similar to those in the query data. If the query data

are a set of ‘‘candidate genes” of interest, deCS determines if
they overlap significantly with a cell type in the reference data-
set by using Fisher’s exact test.
CTGenes among different reference datasets share strong

consistency

To validate the reliability and consistency of CTGenes, we first
calculated internal cell type correlation, and then performed
UMAP dimension reduction analysis [44] to visualize the
global landscape of expression profiles (Figure S1). We further
validated the consistency of CTGenes across different refer-

ences, including BlueprintEncode, DICE, MonacoImmune,
and HCL. Accordingly, we systematically compared the
CTGenes (by default using the top 5% genes ranked by t-

statistics) between two different references. We observed a
large variation between references, with matching rate ranging
from 20% to 70%, although more than 80% of matched cell

types shared the highest cell type-specific marker genes (Fig-
ure S2). For example, when comparing the BlueprintEncode
reference with the HCL reference, only 36 out of 102
(35.3%) cell types in HCL shared at least 200 CTGenes with

the BlueprintEncode reference, while most cell types in HCL
reference [e.g., alveolar type 2 (AT2) cells in lung and mast
cells in blood] were missed in BlueprintEncode.

To further assess the validity of CTGenes identified by
t-statistics, we performed KEGG pathway enrichment analysis
for each cell type using the top 200 CTGenes (Table S1). We

constructed a network containing all significantly enriched
pathways (FDR < 0.05) and corresponding cell types. As
shown in Figure 2, more than 90% CTGenes were correctly
enriched in biologically relevant pathways: adipocytes were

enriched in ‘‘Regulation of lipolysis in adipocytes”; B cells



Figure 2 KEGG pathway enrichment of cell type-specific genes

The network shows the relationship between CTGenes and KEGG pathways with significant association (FDR< 0.05). Each arrow head

node in different color represents a cell type, and each hexagon node in light blue represents a enriched pathway. Edge width between two

nodes is proportional to �log10-transformed FDR from pathway enrichment analysis. The network layout is based on a force-directed

graph. FDR, false discovery rate; DC, dendritic cell; NK, natural killer; HSC, hematopoietic stem cell.
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were enriched in ‘‘B cell receptor signaling pathway”; CD4+

and CD8+ T cells were enriched in ‘‘T cell receptor signaling
pathway”; hematopoietic stem cells (HSCs) were enriched in

‘‘Spliceosome”; melanocytes were enriched in ‘‘Melanogene-
sis”; and neuron cells were enriched in ‘‘GABAergic synapse”
and ‘‘Glutamatergic synapse”. In addition, the relationship of

CTGenes could be observed based on a force-directed layout
network. For example, several cell types were well clustered:
myocytes and skeletal muscle; CD4+ T cells, CD8+ T cells,
and natural killer (NK) cells; and monocytes, dendritic cells

(DCs), and macrophages.

scRNA-seq cell type annotation by deCS demonstrates its

advantage when combining multiple references

PBMCs

Human PBMCs are routinely studied in the biomedical fields
including immunology and the development of diagnostics
and therapeutics for human diseases [47]. To explore the utility

of deCS for direct annotation of scRNA-seq data, we first ana-
lyzed a PBMC dataset, which is available from 10X Genomics
using the MonacoImmune reference. The basic workflow of
two alternative annotation pipelines is depicted in Figure S3.

We followed the standard pre-processing workflow for PBMC
scRNA-seq data [5]. We extracted the union of top 10 cell
cluster-specific marker genes for each cluster, and then calcu-

lated the average expression profile followed by z-score nor-
malization (Figure 1). We applied two statistical approaches,
correlation analysis and Fisher’s exact test, which would match
the cell label with the highest PCC or IR to each query cluster
(Figure 3). Overall, the main labels predicted by all 9 clusters
were the same between these two methods on the PBMC data-

set. The similarity scores of most clusters mapped to a single
main label and were significantly higher compared to the
remaining cell types, indicating high specificity on main cell

label annotation. When mapping to fine labels, many cell clus-
ters were mapped to multiple fine labels. Nevertheless, most of
them were mapped to closely related cell types. For example,
native CD4+ T cells were predicted as one subtype CD4+ T

helper 1 (Th1) cells [48].

Solid tissues on adult and fetal samples

We next evaluated the performance of deCS in six additional
scRNA-seq datasets from different solid tissues. We first con-
sidered the BIC dataset from COVID-19 infected patients [34].
The results indicated that deCS found the best-matched cell

type for the majority of cell clusters (8 out of 10) on Blueprin-
tEncode panel (Figure 4A). Two exceptions were mast cells
and plasmacytoid dendritic cells (pDCs), which were matched

to erythrocytes (PCC = 0.5, IR = 0.25) and neurons
(PCC = 0.27) or B cells (IR = 0.3), respectively. One major
concern of the misclassification is that cell type is not repre-

sented in the used BlueprintEncode reference [8]. One possible
solution is to annotate them as undetermined cells if they are
too dissimilar to any references (e.g., PCC < 0.3) [49]. Alter-
natively, users can map their query data to other available ref-

erences to identify novel cell types. As shown in Figure S4,
mast cells and pDCs were mapped to their counterpart when



Figure 3 Comparison of the two methods in deCS using PBMC scRNA-seq data

A. Correlation analysis by PCC. B. Fisher’s exact test. X-axis shows the 9 cell type clusters (query). Y-axis shows the 10 main (up panel)

and 29 fine (bottom panel) immune cell types from the MonacoImmune reference [25]. The colors represent the PCC or IR, and the sizes of

circles represent the log10-transformed P values. Non-significant associations (P > 0.05) were labeled by white color. Names of cell type

clusters on X-axis and immune cell types on Y-axis are derived from original references. IR, intersection ratio.
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using the HCL (PCC = 0.82, IR = 0.7) and MonacoImmune
(PCC = 0.74, IR = 0.9) references, respectively.

The second dataset was derived from FCC [36]. As shown

in Figure S5, almost half cell clusters (5/9) failed to find any
matched cell types (using PCC > 0.3 as the threshold) when
mapping to BlueprintEncode. However, when using the HCL

or HCAF reference, there were 8 out of 9 cell clusters (except
for C5 valval cell) mapped to the annotated cell type. Simi-
larly, for the four human scRNA-seq datasets of liver, lung,

spleen, and esophagus tissues, only 50%�70% of cell clusters
were mapped to their counterpart when using BlueprintEn-
code, HCL, or HCAF reference individually (Table S2). When

combining the highest-scoring labels across multiple refer-
ences, mapping rate was improved to 87.8% or above. This
demonstrates that integrating results from multiple high-
quality curated reference panels could effectively identify novel

cell types that cannot be detected by other methods, thereby
significantly improving annotation accuracy and utility.

Annotation at single-cell resolution

In the aforementioned analysis, we used the averaged expres-
sion level in each cluster to evaluate the performance of deCS
[50]. These traditional routines, however, overlook an impor-
tant characteristic of scRNA-seq data [51]: cellular heterogene-
ity. Considering the true hierarchical cluster structure for a cell

population (e.g., both CD4+ and CD8+ are T cells) [51], cel-
lular heterogeneity is widely observed when applying unsuper-
vised clustering [52]. The ideal scenario is that each cell can be

annotated to one specific branch of the hierarchical tree [8].
Therefore, we further evaluated deCS in BIC dataset [34]. As
shown in Figure 4B, the majority of cells within 10 clusters

can be matched to the best cell type through the integrative
analyses across multiple references. There may exist misclassi-
fications only in closely related cells. For example, for myeloid

cells, 1514 and 2076 cells in macrophage cluster were erro-
neously annotated as monocytes and neutrophils, respectively.
Some neutrophils were annotated as monocytes or macro-
phages (Figures S6 and S7).

Previously the scMatch method [10] showed that the cells
with more reads were more likely to be correctly classified than
those with lower read depth. Therefore, based on the sequenc-

ing depth, we divided 63,103 cells from BIC data into three
groups: low-depth (1000 � UMI count < 3000), median-
depth (3000 � UMI count < 6000), and high-depth

(UMI count � 6000) groups. As Figure 5A showed, although



Figure 4 deCS annotation of BICs from COVID-19 infected patients

A. Correlation analysis by PCC and Fisher’s exact test between 10 major cell type clusters (query) and 24 main cell types from the

BlueprintEncode reference. The colors represent the PCC or IR, and the sizes of circles represent the log10-transformed P values. B.

Individual cell level annotation of 63,103 single cells profiled on the 10X Genomics platform. We annotated each cell by using the top

matched mode (cell type with the highest PCC). Using integrated references (BlueprintEncode: green; MonacoImmune: blue; HCL: red),

deCS classifies all cells that are nearly identical to that by manual classification. The colors and the numbers represent the percentages and

the total cell counts that were annotated to a given cell type. Names of cell type clusters on X-axis and cell types on Y-axis are derived from

original references. BIC, bronchoalveolar immune cell; pDC, plasmacytoid dendritic cell; mDC, myeloid dendritic cell; CMP, common

myeloid progenitor; MEP, megakaryocyte-erythrocyte progenitor; GMP, granulocyte-monocyte progenitor.
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low sequencing depth has a slight impact on annotation accu-
racy (e.g., 10 B cells were annotated to macrophages), deCS
approach had a good performance for other cell types. As a

negative control, we further compared the annotation recall
among healthy controls and moderate or severe COVID-19
infected patients. As shown in Figure 5B, the cell type frequen-

cies among different groups demonstrated significant differ-
ences (Kruskal–Wallis test; P < 0.05), especially for
epithelial and neutrophil cell types [53].

Although deCS demonstrated good performance at the
single-cell level, there remained a small fraction of misclassified
cells. To address this issue, we further investigated top marker

genes for each cluster to better understand the underlying rea-
son. As shown in Figure S8, CCR7, the top marker gene of
naive CD4+ T cell, was expressed in approximately 40% of
the naive CD4+ T cells due to the dropout effect in scRNA-

seq. The annotation accuracy was decreased when cell type
inference was conducted at single-cell level, while utilizing gene
expression imputation approaches [21,54,55] could improve

annotation performance at single-cell resolution. Thus, we
recommend cell type annotation on clusters instead of individ-
ual cell after imputation, which is consistent with other publi-
cations [5,56].

Benchmarking analysis on different tissues

To demonstrate the superior performance of deCS, we com-
pared it with other six methods, including SingleR [7], CHE-

TAH [8], scPred [12], SciBet [13], Cell BLAST [15], and
scSorter [57] using the aforementioned eight datasets. We first
applied the methods to two PBMC datasets. As summarized in

Table 1, the overall performances of deCS, SingleR, scPred,
and SciBet ranged from 87.55% to 88.78%. Among them,
scPred was the best-performing classifier (88.78%), which is
consistent with previous benchmark work, demonstrating that

SVM classifiers have overall the best performance [16]. How-
ever, as classical genes are not expressed in every single cell,
deCS showed better performance (89.41%) than scPred

(Table S3) after imputation [21]. In addition, we noticed that
CHETAH, Cell BLAST, and scSorter had weaker robustness



Figure 5 Comparison of deCS annotation on cells with different sequencing depth and individuals

A. Annotation comparison of cells sequenced among low (1000 � UMI count < 3000), median (3000 � UMI count < 6000), and high

(UMI count � 6000) depth groups. B. Annotation comparison of cells derived from HC, M, and S groups of COVID-19 infected patients.

We only use the union of top 20 marker genes of each cluster. The colors and the numbers represent the percentages and the total cell

counts that were annotated to a given cell type. Only cell types annotated with at least 5% cells from 10 predefined cell clusters were

labeled with cell counts. Names of cell type clusters on X-axis and cell types on Y-axis are derived from original references. UMI, unique

molecular identifier; HC, healthy control; M, moderate; S, severe.
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Table 1 Performance comparison of deCS with six other models among eight datasets

ID Dataset deCS (PCC) deCS (Fisher’s exact test) SingleR scPred SciBet CHEATH Cell BLAST scSorter

1 PBMC1 88.74% – 87.81% 88.78% 87.55% 54.34% 77.38% 75.81%

2 PBMC2 88.52% – 87.81% 88.59% 87.79% 54.42% 78.40% 71.86%

3 Bronchoalveolar 97.34% 95.79% 71.34% < 50% 91.54% < 50% < 50% –

4 Heart 80.97% 80.97% 63.33% < 50% <50% < 50% < 50% –

5 Liver 99.56% 92.37% < 50% < 50% 83.99% < 50% < 50% –

6 Lung 98.59% 87.78% 70.72% < 50% 67.77% < 50% < 50% –

7 Oesophagus 87.64% 87.07% 86.82% < 50% 96.34% < 50% < 50% –

8 Spleen 97.34% 90.54% 91.90% 79.63% 90.35% < 50% < 50% –

Note: PBMC datasets were benchmarked at the single-cell level, since the cell-cluster level information needed for the deCS ( Fisher’s exact test)

model is not available from these PBMC datasets. Considering that scSorter is a ‘‘semi-supervised” cell type assignment method and the prior

knowledge of markers would strongly affect the annotations, we did not benchmark scSorter on datasets from six solid tissues. ‘‘–” means not

applicable. PCC, Pearson correlation coefficient; PBMC, peripheral blood mononuclear cell.
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on the annotation accuracy. One possible reason is that the
rejection threshold is too strict, such that most cells were anno-

tated to be ambiguous or an intermediate branch of cell types.
Another possible reason is potential overcorrection when some
query cell types are non-overlapping with reference (details are
shown in Table S2 and Figure S9).

Since most methods showed comparable performance on
PBMC datasets, we further benchmarked them on six extra
datasets, including bronchoalveolar, heart, liver, lung, oesoph-

agus, and spleen. As described in Table 1, the deCS correlation
analysis showed an average of 93.6% accuracy. When deCS
Fisher’s exact test failed to consider the ‘‘weight” feature, it

only obtained an average of 89.1% accuracy. SciBet (86.0%)
and SingleR (76.8%) also achieved good performance on most
tissues, as both of them incorporated a comprehensive refer-
ence panel with middle size (> 30 cell types). However, the

accuracy for most other methods was lower than 50% due
to inappropriate reference panels, even when counting those
undetermined cells (when query cell types are non-

overlapping with reference). For example, as most cell types
from spleen were identical with those from PBMC, scPred
showed 79.6% accuracy on spleen tissue. However, on liver tis-

sue, where there was a large proportion of hepatocytes (48.2%)
(non-overlapping with reference), the accuracy was below
50%, as 41.3% of the hepatocytes were annotated to mono-

cytes (rather than unassigned cell type). In most studies,
researchers typically do not have enough prior knowledge
about the cell type composition in the investigated samples.
Therefore, the expanded reference in deCS can be widely used

on various tissues.
deCS reduces the feature collinearity and impact of sequencing

depth difference

The superiority of deCS is not only due to the expanded cell
type. Even after excluding those query-specific cell types
(e.g., ventricle cardiomyocytes in heart, hepatocytes in liver,
and alveolar cells in lung), deCS showed better annotation

accuracy in distinguishing biologically related cell types (e.g.,
CD4+ T cells, CD8+ T cells, and NK cells; monocytes and
macrophages). We speculated that feature selection (compar-

ing to SingleR) is still an essential step before correlation anal-
ysis. The identified anchor genes (cluster marker genes) can
effectively reduce the collinearity compared to the case when

using more genes (top variable genes). As shown in Figure 6A
(upper), the query cluster is naive CD4+ T cells, and the PCC
was 0.87 when using ‘‘union of cluster-specific genes”, but

dropped to 0.45 when using top 2000 variable genes. In con-
trast, the PCC between query cluster and CD8+ T cells was
still high (PCC = 0.32) when using top 2000 variable genes
(Figure 6A, lower). Although there are lots of other methods

for feature selection and model prediction (e.g., SVM)
[12,13], it is not realistic to conduct such time-consuming pro-
cess on huge HCL or HCAF raw data (> 4 million cells) [20].

In consideration of both speed and scalability when combining
the highest-scoring labels across multiple references, we
decided to provide the cell cluster aggregated t-statistics and

z-scores. On the other hand, deCS drastically reduced the
required memory and runtime, which is helpful for annotation
of large dataset using a personal computer.

Due to the stochasticity and inefficient mRNA capture in

scRNA-seq, varying sequencing depth across batches is a
major driver of batch effects [7,58]. Thus, we evaluated the
level of sequencing depth (different sized pools, n from 1 to

50) of single-cell transcriptomes to the pseudo-bulk level (clus-
ter averaged). As shown in Figure 6B, we observed a gradually
diminishing improvement of inter-correlation with increasing

sequencing depth. For example, the inter-correlation between
single-cell and pseudo-bulk levels for T cells in PBMC and
BIC datasets was 0.707 and 0.898, respectively. As the median

number of detected genes in BIC dataset was almost 4-fold
more than that in PBMC dataset, it only needed to cumulate
5 cells to approximate 95% bulk level in BIC dataset, while
it needed at least cumulated 10 cells in PBMC dataset (Fig-

ure 6B). To put it another way, when a gene is observed at a
low or moderate expression level in BICs, it is probably not
detected in PBMCs. This phenomenon is also known as ‘‘drop-

out” [59]. For better demonstration, we randomly selected 5
bulk RNA-seq samples and down-sampled each sample to
10,000–100,000 reads followed by quantification normalization

(Table S4). Interestingly, in the low sequencing depth condi-
tion, we noticed a pronounced effect of ‘‘sequencing depth”
compared to the ‘‘identity” level in the principal component
analysis (PCA) plot. In contrast, z-score normalization effec-

tively reduced the ‘‘batch effect” (Figure S10). Furthermore,
standard UMAP analysis was applied to two different data
batches (PBMC and BIC). As shown in Figure 6C, we

observed a strong batch effect between PBMC and BIC
natural-log-normalized expression matrices (e.g., NK and T
cells were clustered by two samples). In contrast, after

z-score normalization (Figure 6D), most cell types form dis-



Figure 6 deCS pipeline reduces the collinearity and impact of sequencing depth difference

A. Correlation comparison by using the union of cell cluster-specific genes and top 2000 most variable genes between query (CD4+ T) cells

and reference on CD4+ T (positive; upper panels) or CD8+ T cells (negative; lower panels). B. Rarefaction curve of T cells in PBMC and

BIC datasets. X-axis indicates the sized pools (n from 1 to 50). Y-axis indicates the inter-correlation between the gene expression of pooled

cells and pseudo-bulk level (cluster averaged). The red, green, and blue lines indicate the number of single cells that hypothetically enables

the averaged expression levels of pooled cells approximate to bulk populations with PCC > 0.90, PCC > 0.95, and PCC > 0.975,

respectively. UMAP integrative analysis of PBMC and BIC datasets by natural-log-normalized expression matrix (C) or further z-score

scaled (D). Each circle or triangle represents a single cell derived from BIC or PBMC dataset. PBMC, peripheral blood mononuclear cell;

UMAP, uniform manifold approximation and projection.
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tinct clusters were separated by cell types (e.g., B cells, NK
cells, T cells, and DCs).

Decoding the cell type specificity on other applications

In addition to scRNA-seq cell type annotation, deCS reference

panels can be used to detect cell type specificity and to provide
insightful understanding of many other biological problems.
For example, we can apply deCS to GWAS data for identify-

ing trait–cell type associations, and also to bulk RNA-seq data
from iPSC-derived cells. We demonstrated the utility of deCS
with two applications below.

Understanding the underlying context of human complex

diseases is an important step to unveil the etiology of disease ori-
gin [60], yet tissues are complex milieus consisting of various cell
types [61]. Therefore, tissue-level association may fail to eluci-
date cell type contributions in diseases [62]. To uncover novel

associations between cell types and diseases, deCS was applied
to 51 GWAS data (Table S5) and the associations were evalu-
ated by Fisher’s exact test. As shown in Figure 7, we observed
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(1) neuropsychiatric disease-, college-, and education-associated
genes being mainly enriched in neurons; (2) immune-related
traits enriched in B cells, T cells, and NK-cells (lymphoid cells);

(3) blood red cell-related traits enriched in erythroid cells (Fig-
ure S11); (4) bone mineral density enriched in chondrocytes;
and (5) high-density lipoproteins enriched in adipocytes. Of

note, Alzheimer’s disease, a neurodegenerative disease of the
brain, was found to be associated with myeloid lineage cells,
rather than neurons. We believe that these results collectively

shed light on the casual cell type underlying complex traits for
both related and unrelated traits. Taken together, the accurate
detection of the cell types underlying genetic variants will not
only improve our understanding of the molecular mechanisms

of complex diseases at the cell type level [63], but also can serve
as an important instrumental role in cell type-specific
transcriptome-wide association studies [64] and colocalization

test [65], among other integrative genetic analyses.
The second application of deCS was applied to bulk RNA

expression profiles. Human iPSCs have revolutionized the

study of the biological mechanisms underlying psychiatric dis-
orders by establishing cellular models that account for a
patient’s genetic background [66]. In most iPSC studies,

differentiation quality is routinely assessed [66]. After we nor-
malized the bulk RNA-seq data of iPSC-derived NPCs and
neurons [67], the top matched cell types in 12 of 13 iPSC-
Figure 7 Association between trait-associated genes and cell type-spec

Fifty-one traits were analyzed. Heatmap shows the significant trait–tis

shared gene counts between TAGs and CTGenes in BlueprintEncode. T

transformed P values. Since more significant SNPs are likely found in

we recommend users to focus on the top 3 most relevant cell types for th

are derived from original references. SNP, single nucleotide polym

progenitor; MPP, multipotent progenitor cell; ALZ, Alzheimer’s disea

spectrum disorder; BIP, bipolar disorder; MDD, major depressive

depressive symptoms; NRT, neuroticism; OCD, obsessive-compulsive

well-being; ATH, asthma; CAD, coronary artery disease; MIGR, m

disease; IBD, inflammatory bowel disease; MS, multiple sclerosis; P

systemic lupus erythematosus; T1D, type 1 diabetes; UC, ulcerative
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menarche; EGFR, glomerular filtration rate; FG, fasting glucose; FI,
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mean red blood cell volume; MPV, mean platelet volume; PLT, platel
NPCs were most enriched in ‘‘fetal progenitor cells” or ‘‘hu-
man embryonic stem cells (hESCs)” (Figure S12), while the
top matched cell types for iPSC-neurons were most enriched

in ‘‘fetal neurons”. Therefore, deCS can also be applied for
decoding the cell type specificity on bulk RNA-seq data.
Discussion

Single-cell sequencing is a fast-evolving technique that pro-

vides deep insight into the complexity of cellular heterogeneity
within the same tissue. One critical step in the scRNA-seq data
analysis is cell type annotation. However, this step is largely
done manually, which is time-consuming and subjective. A list

of methods has been recently developed for automatic cell type
annotation [16]. Based on our benchmark results, we demon-
strate that most classifiers work well when users provide a ref-

erence dataset that is conserved with query data. However, due
to the small amount of starting tissue material, scRNA-seq
data tend to have batch effects [68]. In most scenarios,

researchers do not have enough prior knowledge in the cell
type composition of the investigated samples. Thus, finding a
suitable reference is a time-consuming and subjective task. If
some novel cell types were not labeled in the reference, it would

be difficult to control the sensitivity/specificity of most
ific genes

sue associations (P < 0.05). The numbers on the cells indicate the

he colors and sizes represent the shared gene counts and the log10-

immune-related diseases and blood-related traits than other traits,

ose traits with higher TAG number. Names of cell types on Y-axis

orphisin; TAG, trait-associated gene; CLP, common lymphoid

se; ADHD, attention deficit-hyperactivity disorder; ASD, autism

disorder; SCZ, schizophrenia; ANXC_FS, anxiety angst; DS,

disorder; PTSD, post-traumatic stress disorder; SWB, subjective

igraine; T2D, type 2 diabetes; CD, Crohn’s disease; CEL, celiac

BC, primary biliary cholangitis; RA, rheumatoid arthritis; SLE,

colitis; BFP, body fat percentage; BMI, body mass index; BW,

N-BMD, bone mineral density (femoral neck); HEIGHT, height;

te; WHR, waist–hip ratio; 2HG, two-hour glucose; AAM, age at

fasting insulin; HDL, high-density lipoprotein; LDL, low-density

emoglobin; MCHC, mean cell hemoglobin concentration; MCV,

et count; RBC, red blood cell count.
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classifiers; in that case, it is good to define them as unknown
cell types, rather than annotate them as a wrong cell type.
For example, in Figure 4A, if PCC threshold was set 0.25,

pDCs would be wrongly annotated as neurons. When PCC
threshold was set 0.65, both macrophages and neutrophils
would be annotated as unknown cell types. To overcome these

limitations, we collected multiple human cell type expression
profiles from different platforms. As deCS only relies on the
pre-calculated cell type specificity score and the correlation

analysis without further advanced dimension reduction, it
can efficiently conduct cell type annotation on each reference,
and then combine the highest-scoring labels across multiple
references. When the cell composition between query and ref-

erence datasets is not well conserved (e.g., in the cases of bron-
choalveolar, heart, liver, and lung in this study), deCS achieves
the best performance by using the combined highest-scoring

labels across multiple reference panels.
deCS relies on the predefined cell clusters. There are multiple

algorithms for unsupervised clustering, including k-means clus-

tering [69], hierarchical clustering, and graph-based clustering
[5], which may generate different clusters and affect deCS’s per-
formance.Weperformed the test across various clusteringmeth-

ods and resolutions, which showed greater than 90%annotation
consistency (Table S6). This suggests that deCS is robust to pre-
defined cell clusters. In addition, feature selection is also an
essential step to obtain the accurate results. In this regard, deCS

has several advantages over other models. First, deCS selects
features that co-occur in the reference and query data (discard-
ing useless features in query). Therefore, it drastically reduces

the collinearity, the requiredmemory, and runtime for cell anno-
tation, while it achieves comparable accuracy on biologically
related cell types (e.g., CD4+ T cells, CD8+ T cells, and NK

cells; monocytes and macrophages). Second, with the expanded
references, deCS exhibits superior performance to other meth-
ods. It is worth noting that even for the same cell type, their

expression profiles demonstrate strong heterogeneity among
different tissues or different individuals. Thus, it will not work
well by simply relying on a single reference. deCS can combine
the highest-scoring labels across multiple references and dra-

matically reduce the incorrect cell type annotation when real cell
type counterparts are missing in the reference. Although the
parameter selection, such as marker genes and correlation mea-

sure, may slightly affect the annotation accuracy, the collected
comprehensive human cell type profiles in deCS provide wider
applicability ranging from blood cells to adult and fetal solid tis-

sues. Third, deCS supports scRNA-seq cell type annotation for
either gene expression profiles or list of genes without prior
knowledge. deCS is a new tool that not only benefits the studies
of scRNA-seq data, but also yields novel insights for better

understanding the molecular basis of thousands of human com-
plex diseases or traits.

We applied deCS algorithm to the GWAS data in our

recently developed database, Cell type-Specific Enrichment
Analysis DataBase (CSEA-DB), which covers 55 unique tis-
sues [70]. Among a total of 10,250,480 trait–cell type associa-

tions, we observed significant cell type association in 598
(11.68%) traits. Some human complex diseases or traits are
associated with multiple cell types. For example, asthma was

found tobe associatedwithboth immuneand epithelial cells [70].
Moreover, comparing to previous studies [23] that most TAGs
enriched in ‘‘blood” tissue, deCS showed that immune TAGs
were enriched in lymphoid lineage cells, while red blood cell-
related traits were enriched in erythroid cells. It has been fre-
quently recognized that pleiotropic effects are ubiquitous in
human complex traits [71]. For example, individuals carrying

schizophrenia risk alleles tend to be also associated with high
risk of Crohn’s Disease [72]. We expect to identify more explicit
associations with the increasing high-quality curation of tran-

scriptome profiles among different cell types.
There are several limitations in our study. First, deCS does

not take tissue information (except for HCAF) into account

whichmay bias the annotation results. For example, 93.2% cells
from fetal thymus were annotated as proliferating T cells (clus-
ter 52), and 85% cells from fetal brain were annotated as fetal
neurons (cluster 11) (Table S7). We strongly encourage users

to combine prior biological knowledge and apply tissue-
matched cell type reference to mitigate potential bias (e.g.,
almost no neurons or astrocytes in peripheral blood). Second,

as a mapping-based annotation toolkit, deCS fails to character-
ize novel cell types. Although we have included more than one
hundred cell types and most of them come from healthy tissues,

it is expected that deCS might be challenging for cancer cell
annotations due to the expression profile difference between
healthy and malignant cells [73]. We believe some ‘‘semi-

supervised” cell type assignment methods like scSorter [57]
can address this problem by providing the marker gene in the
corresponding cell type. Owing to the efforts by the human cell
atlas [19] as well as time-dependent change of cell states in gene

expression profiles [74], the available large numbers of single-cell
datasets can be fed in as reference datasets to improve the anno-
tation of future experiments. Despite these limitations, we

demonstrate the feasibility and availability of deCS for broad
applications. Importantly, deCSmethod is not limited to disease
gene lists. As our cell type reference panels are only built upon

expression profiles, including those unstudied or poorly anno-
tated genes [23,60], users can highlight the cell type specificity
from any analysis. Taken together, deCS is a new tool that not

only benefits studies on scRNA-seq data of complex tissues,
but also yields novel insights for better understanding themolec-
ular basis of various human complex traits and diseases.

Code availability

The source codes and results are implemented in an R package,

and are freely available at GitHub (https://github.com/bsm-
l320/deCS); these data have also been submitted to BioCode
at the National Genomics Data Center, Beijing Institute of

Gemonics, Chinese Academy of Sciences / China National
Center for Bioinformation (BioCode: BT007286), and are pub-
licly accessible at https://ngdc.cncb.ac.cn/biocode/tools/
BT007286. We also developed a shiny application as part of

the deCS package, and it is available at https://gpei.shi-
nyapps.io/decs_cor/ and https://gpei.shinyapps.io/decs_fisher/.
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