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Abstract Immunotherapy is a promising cancer treatment method; however, only a few patients

benefit from it. The development of new immunotherapy strategies and effective biomarkers of

response and resistance is urgently needed. Recently, high-throughput bulk and single-cell gene

expression profiling technologies have generated valuable resources. However, these resources are

not well organized and systematic analysis is difficult. Here, we present TIGER, a tumor

immunotherapy gene expression resource, which contains bulk transcriptome data of 1508 tumor

samples with clinical immunotherapy outcomes and 11,057 tumor/normal samples without clinical

immunotherapy outcomes, as well as single-cell transcriptome data of 2,116,945 immune cells from

655 samples. TIGER provides many useful modules for analyzing collected and user-provided data.

Using the resource in TIGER, we identified a tumor-enriched subset of CD4+ T cells. Patients with

melanoma with a higher signature score of this subset have a significantly better response and
o Z).

ion and

ciences /

http://crossmark.crossref.org/dialog/?doi=10.1016/j.gpb.2022.08.004&domain=pdf
mailto:zhaoan@zjcc.org.cn
mailto:zhouph@sysucc.org.cn
mailto:renjian@sysucc.org.cn
mailto:zuozhx@sysucc.org.cn
https://doi.org/10.1016/j.gpb.2022.08.004
http://www.sciencedirect.com
https://doi.org/10.1016/j.gpb.2022.08.004
http://creativecommons.org/licenses/by/4.0/


338 Genomics Proteomics Bioinformatics 21 (2023) 337–348
survival under immunotherapy. We believe that TIGER will be helpful in understanding anti-tumor

immunity mechanisms and discovering effective biomarkers. TIGER is freely accessible at http://

tiger.canceromics.org/.
Introduction

Immunotherapy is a promising cancer treatment method that
utilizes the immune defense system against cancer. Among

the different types of immunotherapy techniques, immune
checkpoint blockade (ICB) has revolutionized the treatment
of advanced cancers. ICB has shown durable responses in
patients with various cancer types [1,2]; however, most patients

with cancer cannot benefit from ICB because of the low
response rates in many cancer types. Although considerable
progress has been achieved, efforts are still needed to explore

new immunotherapy methods and discover effective biomark-
ers of response and resistance.

Gene expression data have shown broad applications in

identifying biomarkers to predict drug responses in cancer
treatment [3,4]. In recent years, advances in high-throughput
technologies have generated large amounts of transcriptomic

gene expression data from cancer samples, providing valuable
resources for research related to cancer immunotherapy. Some
cancer projects, such as The Cancer Genome Atlas (TCGA)
[5], have generated transcriptomic gene expression data for

thousands of tumor samples without the use of immunother-
apy information across multiple cancer types. Although these
transcriptomic gene expression data were not originally

designed to study cancer immunotherapy, recent studies have
reported that analyses of these data could improve our under-
standing of tumor–immune cell interactions, thus facilitating

the identification of cancer immunotherapy response biomark-
ers [6,7]. More recently, the amount of transcriptomic gene
expression data with clinical information of cancer
immunotherapy has grown rapidly, which enables the use of

gene expression signatures to predict immunotherapy
responses [8,9]. Despite these efforts, the effectiveness of
immunotherapy response biomarkers remains an open ques-

tion because of the small sample size of each dataset. Recent
explosively growing single-cell transcriptome studies have pro-
vided a better understanding of immune cell profiles in the

tumor microenvironment (TME) before and after
immunotherapy at a single-cell resolution [10–17]. We hypoth-
esized that integrative analysis of large-scale public bulk and

single-cell cancer transcriptome data would be helpful for com-
prehensively exploring tumor–immune cell interactions and
developing reliable immunotherapy response prediction
biomarkers.

Currently, several web servers have been developed for the
analysis of gene expression resources related to cancer
immunotherapy. Tools such as CIBERSORT [18], the Cancer

Imaging Archive (TCIA) [7], Tumor Immune Estimation
Resource (TIMER) [19], and ImmuCellAI [20] provide useful
functions for mining the immune cell infiltration in solid can-

cers based on TCGA or user-provided bulk gene expression
data. Tumor Immune Dysfunction and Exclusion (TIDE)
[21] and TISIDB [22] allow users to comprehensively evaluate

biomarkers of immunotherapy response and resistance based
on public bulk gene expression datasets with or without clini-
cal immunotherapy information. Tumor Immune Single Cell
Hub (TISCH) (https://tisch.comp-genomics.org) [23] and Sin-

gle Cell Portal (https://singlecell.broadinstitute.org) provide
interfaces for visualizing and analyzing the public single-cell
RNA sequencing (scRNA-seq) datasets of human tumors.

Although these tools are very useful in exploring cancer
immunology, an integrative resource of cancer bulk and
single-cell transcriptome data specialized for cancer
immunotherapy research is still lacking. In addition, although

Single Cell Portal and TISCH have implemented single-cell
analysis methods such as clustering analysis, differential gene
expression analysis, and cell type annotation, it lacks many

additional frequently used single-cell analysis functions. For
example, differential analysis between tumor and normal, gene
co-expression analysis, trajectory analysis, and cell–cell com-

munication analysis are important for understanding anti-
tumor immunity, but these functions are not available in Single
Cell Portal and TISCH. Therefore, we developed Tumor

Immunotherapy Gene Expression Resource (TIGER; http://
tiger.canceromics.org/), a web-accessible portal for the integra-
tive analysis of bulk and single-cell cancer transcriptome data,
which is dedicated to facilitating the development of new

immunotherapy methods and effective biomarkers.
Web server content and methods

Data sources

Preprocessed TCGA bulk RNA sequencing (RNA-seq) data of
tumor and normal samples were downloaded from the website
of the UCSC Xena project (https://xena.ucsc.edu). The bulk

RNA-seq and gene expression microarray data of tumor sam-
ples with clinical immunotherapy information were collected
from the Gene Expression Omnibus (GEO; https://ncbi.nlm.

nih.gov/geo) and Sequence Read Archive (SRA; https://ncbi.
nlm.nih.gov/sra) databases by searching for keywords such
as immunotherapy, programmed cell death protein 1 (PD-1)

inhibitors, and cytotoxic T-lymphocyte antigen 4 (CLTA4)
inhibitors. Preprocessed data were used if raw data were not
available. scRNA-seq data of human tumors were collected

from the GEO, Genome Sequence Archive (GSA; https://
ngdc.cncb.ac.cn/gsa-human/), European Molecular Biology
Laboratory’s European Bioinformatics Institute (EMBL-
EBI; https://www.ebi.ac.uk), and Single Cell Portal databases

by searching for keywords such as single-cell, scRNA-seq,
10x Genomics, inDrop, and Smart-seq2. The clustered regu-
larly interspaced short palindromic repeats (CRISPR) data

related to tumor immunology were collected from the GEO
and SRA databases.
Analysis of scRNA-seq data

Data preprocessing

STAR was used to align the FASTQ format reads to the
human reference genome (hg38 and GRCh38) [24], and then
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Cell Ranger was used to export the gene expression matrix.
Quality control was performed for each scRNA-seq dataset
using the procedure implemented in Seurat (v3.1.3) R toolkit

[25]. First, cells with more than 10% mitochondrial RNA con-
tent were considered dead or dying and were removed. Cells
with feature counts less than 200 or more than 3000 were also

excluded. Cells expressing more than one of these three mark-
ers (CD2, CD79A, and CD68) simultaneously were defined as
doublets and removed. Secondly, the filtered gene expression

matrix for each sample was normalized by the ‘‘Normal-
izeData” function of Seurat, and the highly variable genes
were retained by the ‘‘FindVariableFeatures” function. Lastly,
‘‘FindIntegrationAnchors” and ‘‘Integratedata” functions

were used to integrate the gene expression matrices of all sam-
ples, in which batch effects between different samples were
adjusted.
Single-cell clustering and cell type annotation

Seurat (v3.1.3) was used to cluster the cells based on single-cell
expression profiles. First, ‘‘RunPCA” function in Seurat was

used to perform the principal component analysis (PCA),
and ‘‘FindNeighbors” function in Seurat was used to construct
a K-nearest neighbor graph. Next, the most representative

principal components (PCs) selected based on PCA were used
for clustering analysis with ‘‘FindCluster” function in Seurat.
Finally, a Uniform Manifold Approximation and Projection

(UMAP) algorithm [26] was used to visualize the different
clusters.

We then used classical cell markers to annotate the cell

types. According to the results of differential expression
analysis among cell types, cells with significantly up-
regulated genes such as CD2, CD3D, and CD3E were anno-
tated as T cells, cells with significantly up-regulated genes

such as CD79A, CD19, and MS4A1 were annotated as B
cells, cells with significantly up-regulated genes such as
IGHA1, TNFRSF17, and SDC1 were annotated as plasma

cells, cells with significantly up-regulated genes such as
CD14, FCGR3A, and CD68 were annotated as myeloid
cells, cells with significantly up-regulated genes such as

VWF, CDH5, and FLT1 were annotated as endothelial
cells, cells with significantly up-regulated genes such as
DCN, COL1A1, and ACTA2 were annotated as fibroblast
cells, cells with significantly up-regulated genes such as

KRT18, KRT8, and EPCAM were annotated as malig-
nant/epithelial cells, cells with significantly up-regulated
genes such as MS4A2, CPA3, and TPSB2 were annotated

as mast cells, and cells with significantly up-regulated genes
such as NCAM1, KLRB1, and NCR3 were annotated as
natural killer (NK)/natural killer T (NKT) cells. CD4 and

CD8 gene expression levels were used to differentiate
between CD4+ and CD8+ T cells. To get higher resolution
clusters in CD4+ T cell, CD8+ T cell, B cell, and myeloid

cell, the ‘‘resolution” parameter used in ‘‘FindCluster” was
set from 0.5 to 0.8.
Differential expression analysis

The differential expression analysis for deriving cell type mark-
ers and differentially expressed genes between different sample
groups such as tumor and normal was performed with

‘‘wilcoxauc” function in Presto [27].
Pathway/gene set analysis

Pathway/gene set enrichment analysis was performed using the

Correlation Adjusted MEan RAnk gene set test (CAMERA)
[28], which was implemented in the singleseqgset (version
0.1.2) R package. In brief, the log2 fold change in the mean

expression level of a specific gene between the specific cell clus-
ter and other cells was used as the test statistic. The 50 hall-
mark gene sets in the MSigDB database (https://www.gsea-

msigdb.org/gsea/msigdb) were used for the CAMERA
analysis.

Correlation analysis

Spearman’s rank or Pearson’s correlation coefficient was used
to evaluate the correlation between different gene pairs in a
specific cell type.

Trajectory analysis

Monocle 2 [29] was used to reconstruct the single-cell trajecto-
ries. Briefly, the ‘‘negbinomial.size” function was used to cre-

ate a ‘‘CellDataSet” object from the unique molecular
identifier (UMI) count matrices with default settings. The vari-
able genes were defined using the following cutoff: dispersion_

empirical > dispersion_fit, and mean expression > 0.001.
Dimensional reduction was performed using the ‘‘DDRTree”
method, and cell ordering was performed using the ‘‘order-
Cells” function.

Cell–cell communication analysis

CellPhoneDB (version 2.0.6) was used for ligand–receptor
analysis to investigate potential cell–cell communication

between different cell types [30]. The algorithm used by Cell-
PhoneDB only considers receptors and ligands that are highly
expressed in the test cell type and then calculates the cell type-

specific likelihood of a given receptor–ligand complex with a
sufficient number of arrangements. In addition, we permuted
the change in cell type label for each cell 1000 times to calcu-

late the significance of each pair. The P value of the cell–cell
communication was calculated using the ratio of the mean
for a particular receptor–ligand pair to the mean distribution

for a random arrangement.

Analysis of bulk gene expression data

Data preprocessing

TCGA raw data were preprocessed using the UCSC Xena pro-
ject. The bulk RNA-seq raw data from other sources were pre-

processed using FastQC to check the quality of the sequencing
reads. Samples with low sequencing quality were removed.
Sequencing reads were processed using Cutadapt [31] to

remove adapters and low-quality end bases. The processed
reads were aligned to human reference genomes (hg38 and
GRCh38) using STAR [24]. featureCounts [32] was used to

derive the read counts for each gene, which were normalized
to fragments per kilobase of transcript per million (FPKM)
values.

Differential expression analysis

For the bulk RNA-seq and gene expression microarray data,
differential expression analysis was performed using the Wil-

coxon rank-sum test. The value of the interactive heatmap in

https://www.gsea-msigdb.org/gsea/msigdb
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the differential expression analysis of the immunotherapy
response module was calculated using the following formula:
�SIGNðlog2 FCð ÞÞ � log10ðPÞ, where FC represents the fold

change and P represents the P value derived from the Wil-
coxon rank-sum test.

Survival analysis

The association between gene expression and overall survival
in the immunotherapy data was calculated using univariate
Cox regression analysis. The value of the interactive heatmap

in the survival analysis of the immunotherapy response module
was calculated using the following formula:
�SIGNðlog2 HRð ÞÞ � log10ðPÞ, where HR represents the haz-

ard ratio and P represents the P value derived from univariate
Cox regression analysis.

Correlation analysis

The correlation between the expression of gene–gene pairs was
calculated using Spearman’s rank or Pearson’s correlation
coefficient.

Gene set score

The average expression of all the genes in the gene set repre-
sents the gene set score.

Prediction of immunotherapy response

The gene signatures for predicting immunotherapy responses
were obtained from the literature. The score of each gene sig-

nature was calculated according to the parameters used in the
original study. We applied a robust rank aggregation algo-
rithm [33] to integrate all gene signature scores in an unbiased

manner. The aggregation rank score was used to predict the
immunotherapy response in patients with cancer.
Web server implementations

All data in TIGER were stored and managed in MySQL
tables, JSON files, Rds, and RData files. Web interfaces
were implemented using PHP, HTML, JavaScript, and CSS.

Statistical diagrams were generated using ECharts and
Rscripts.
Results

Data summary

TIGER contains bulk transcriptome gene expression data of

1508 tumor samples of 8 cancer types with clinical
immunotherapy information from 20 published studies and
11,057 tumor/normal samples of 33 cancer types without the
clinical immunotherapy information of TCGA. Moreover,

TIGER contains scRNA-seq data of 2,116,945 immune cells
from 655 samples of 25 cancer types, including clinical
immunotherapy information of 119,039 immune cells from

63 samples. In addition, we collected 31 CRISPR screening
datasets from studies that identified genes responsible for the
anti-tumor immune response.
Web interface and usage

TIGER integrates the collected data into four modules: single-
cell immunity, immunotherapy response, response signature,
and immune screening. It provides user-friendly web interfaces

to access the four modules (Figure 1; Video S1).

Single-cell immunity

This module provides users with plentiful scRNA-seq data

analysis functions in six tabs, including ‘‘overview”, ‘‘cell type
marker”, ‘‘differential expression analysis”, ‘‘co-expression
analysis”, ‘‘trajectory analysis”, and ‘‘cell–cell communica-

tion” tabs. We provided a total of 40 datasets of 18 cancer
types for user selection (Figure 2A). First, users can obtain
basic information regarding the selected dataset and number
of immune cells of each type in the dataset (Figure 2B). Users

can obtain the dataset source, cell number, cell type informa-
tion, and quality control density graph in the ‘‘overview”
tab. In the ‘‘cell type marker” tab, an interactive heatmap in

a sub-tab showing the fold changes in gene expression between
a cell cluster and other cells is presented to allow users to
explore the markers and functions of each cell type (Figure 2C).

In the interactive heatmap, a selection box is provided to allow
users to quickly locate the main lineage cell types of interest,
and a text box is provided to allow users to search for genes
of interest (Figure 2C). Moreover, users can sort genes based

on fold changes in the cell type of interest. By clicking on a cell
in the interactive heatmap, users will obtain detailed informa-
tion on the expression of the selected gene in the selected cell

type. For detailed information, UMAP plots and a boxplot
are available to visualize the clustering results of selected main
lineage cells and the expression of selected genes in the selected

main lineage cells (Figure 2C). To further help users explore
the functions of each cell type, an interactive heatmap is imple-
mented in a sub-tab to display the pathway enrichment score

for each cell type. In the ‘‘differential expression analysis”
tab, an interactive heatmap in a sub-tab showing the differen-
tial expression of genes in each cell type between tumor and
normal or between immunotherapy responders and non-

responders is presented to allow users to explore anti-tumor
immunity and immunotherapy biomarkers (Figure 2D). For
detailed information, UMAP plots and barplots are available

to visualize the differential expression of the selected gene
between different groups in the selected cell type (Figure 2D).
Similarly, an interactive heatmap is implemented in a sub-tab

to display the difference in pathway enrichment scores between
different groups in each cell type. In the ‘‘co-expression analy
sis” tab, users can calculate the correlation between the expres-
sion of a gene of interest and that of other genes or calculate

the expression of gene pairs in different cell types (Figure 2E).
In the ‘‘trajectory analysis” tab, users can obtain the expres-
sion of genes of interest in the pseudotemporal ordering of cells

inferred by Monocle 2 (Figure 2F). The ‘‘cell–cell communica
tion” tab allows users to obtain crosstalk between different cell
types inferred by receptor–ligand expression (Figure 2G).

Immunotherapy response

This module provides many functions for the analysis of bulk
transcriptome gene expression data using clinical immunother-

apy information. This module consists of three tabs including



Figure 1 Overall design and construction of TIGER

TIGER aims to help researchers unearth potential mechanisms in anti-tumor immunity and discover potential biomarkers by integrating

tumor immunology-related bulk transcriptome, single-cell transcriptome, and immune screening data. TIGER provides four functional

analysis modules, including single-cell immunity, immunotherapy response, response signature, and immune screening, to allow users to

access the resources in TIGER. TIGER, tumor immunotherapy gene expression resource; RNA-seq, RNA sequencing; scRNA-seq,

single-cell RNA sequencing; AUC, area under the curve; FC, fold change; FPKM, fragments per kilobase of transcript per million.
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‘‘differential expression analysis”, ‘‘survival analysis”, and

‘‘gene set query”. In the ‘‘differential expression analysis”
tab, users can browse the data source information and obtain
an overview of the differential expression analysis results. Two
interactive heatmaps displaying differentially expressed genes

between responders and non-responders or between pre- and
post-therapy conditions are presented to allow users to explore
immunotherapy response biomarkers and resistance mecha-

nisms (Figure 3A). By clicking a cell on the heatmap, users will
obtain detailed information on the differential expression of
the selected gene between responders and non-responders or

between pre- and post-therapy conditions in the selected data-
set. For detailed information, a boxplot is presented to visual-
ize the differential expression (Figure 3A). In addition, users
can adjust parameters, such as group, gene normalization, data

scale, and clinical classification for differential expression anal-
ysis (Figure 3A). A table is displayed to allow users to compare
the performance of the selected gene with that of the known

immunotherapy prediction signature (Figure 3A). In the
‘‘survival analysis” tab, users can browse the data source
information and obtain an overview of the survival analysis

results (Figure 3B). The ‘‘survival analysis” tab presents an
interactive heatmap displaying the survival analysis results to
allow users to evaluate immunotherapy response biomarkers
(Figure 3B). Detailed information is presented when users click

on a cell in the interactive heatmap. For detailed information,
a Kaplan–Meier (KM) plot is provided for visualization (Fig-
ure 3B). Moreover, users can adjust the survival analysis

parameters and compare their performance with those of
known signatures (Figure 3B). To allow users to evaluate their
own gene signatures using our collected immunotherapy gene

expression datasets, we designed the ‘‘gene set query” tab.

Response signature

The ‘‘response signature” module contains analysis functions

for exploring cancer immunotherapy using known
immunotherapy response signatures collected from public lit-
erature. Users can select a published signature and click on

the details to determine the performance of the signature in
23 independent datasets. The area under the curve (AUC)



Figure 2 Web interface and usage of ‘‘single-cell immunity” module in TIGER

A. The interface for users to select the ones that they are interested in. B. Overview tab. First in the first row: dataset information. Second

in the first row: density plot showing quality control. Third in the first row: UMAP plot showing the pre-analyzed clustering results of

selected main lineage cells. Fourth in the first row: pie plot showing the proportion of each of main lineage cells. Fifth in the first row:

heatmap showing the classical cell markers of each of the main lineage cells. Sixth in the first row: boxplot comparing the percentage of cell

number of the main lineage cells between normal and tumor. C. Cell type marker tab. First in the first row: heatmap showing the

expression of gene markers in each cell type. Second in the first row: UMAP plot showing the cell types of the main lineage cells (color-

coded for cell types). First in the second row: UMAP plot showing the expression of the selected gene in the selected main lineage cells

(color-coded for gene expression abundance). Second in the second row: boxplot showing the differential expression of the selected gene in

different cell types of the selected main lineage cells. Third in the second row: gene information. D. Differential expression analysis tab.

First in the first row: heatmap showing the differential expression of all genes in each cell type between tumor and normal or between

response and non-response. Second in the first row: UMAP plot showing the cell types of the selected main lineage cells (color-coded for

cell types). Third in the first row: UMAP plot showing the tissue types of the selected main lineage cells (color-coded for tissue types). First

in the second row: UMAP plot showing the expression of the selected gene in the selected main lineage cells (color-coded for gene

expression abundance). Second in the second row: barplot showing the selected cell type distribution difference between tumor and

normal. Third in the second row: barplot showing the differential expression of the selected gene between tumor and normal. Fourth in the

second row: gene information. E. Co-expression analysis tab. Top: table of the correlation of the selected gene and relevant gene in

selected dataset. Bottom: a plot visualizing the correlation of the selected gene and relevant gene. F. Trajectory analysis tab. The trajectory

analysis showing the expression of the genes of interest in the pseudotemporal ordering of cells. G. Cell–cell communication tab. UMAP,

uniform manifold approximation and projection.
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metric was used (Figure 3C). First, users can check whether the

genes of interest correlate with the known immunotherapy
response signature using TCGA gene expression data without
clinical immunotherapy information (Figure 3D). Second,

users can compare the performance of their own biomarkers
with known immunotherapy response signatures using gene
expression data with clinical immunotherapy information
(Figure 3E and F). Third, users can predict patient
immunotherapy responses by applying published gene signa-

tures to user-provided baseline gene expression profiles
(Figure 3G).
Immune screening

The ‘‘immune screening” module presents the basic informa-
tion of all immune screens in a table. This table contains



Figure 3 Web interface and usage of ‘‘immunotherapy response”, ‘‘response signature”, and ‘‘immune screening” modules in TIGER

A.Differential expression analysis tab in the ‘‘immunotherapy response” module. First in the first row: data source information. Second in

the first row: overview of differential expression analysis results. Third in the first row: heatmap showing the results of differential

expression analysis between responder and non-responder or between pre-treatment and post-treatment. First in the second row: panel

showing the parameter options. Second in the second row: boxplot visualizing the differential expression of the selected gene. Third in the

second row: table displaying the performance of the known immunotherapy prediction signature. B. Survival analysis tab in the

‘‘immunotherapy response” module. First in the first row: data source information. Second in the first row: overview of the survival

analysis results. Third in the first row: heatmap displaying the survival analysis results in all datasets. First in the second row: panel

showing the parameter options. Second in the second row: KM plot visualizing the survival difference of the selected gene in the selected

dataset. Third in the second row: table displaying the performance of the known immunotherapy prediction signature. C. Overview tab in

the ‘‘response signature” module. Left panel showing an overview of known immunotherapy response signature. Right panel showing an

overview of AUC table in 40 datasets receiving immunotherapy. D. Interface of the ‘‘response signature” module for the correlation

analysis between the gene of interest and the known gene signature using the TCGA gene expression data. E. Interface of the

‘‘response signature” module for comparing the performance of user-defined biomarkers with known immunotherapy response signatures

using the immunotherapy gene expression data by AUC metric. F. Interface of the ‘‘response signature” module for comparing the

performance of user-defined biomarkers with known immunotherapy response signatures using the immunotherapy gene expression data

by HR. KM plot visualizing the survival difference of the selected gene in the selected dataset is shown at the lower-right corner. G.

Interface of the ‘‘response signature” module for predicting the immunotherapy response based on user-provided gene expression data. H.

Interface of the ‘‘immune screening” module for exploring CRISPR datasets related to immunotherapy. KM, Kaplan–Meier; TCGA, The

Cancer Genome Atlas; HR, hazard ratio; GEP, gene expression profile; CAF, cancer-associated fibroblast; TLS, tertiary lymphoid

structure; TAM M2, tumor-associated macrophage M2; CRISPR, clustered regularly interspaced short palindromic repeats.
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‘‘Screen ID”, ‘‘Article name”, ‘‘PMID”, ‘‘Cancer type”,
‘‘Dataset type”, ‘‘Cell line”, ‘‘Species”, ‘‘Condition”, ‘‘Analy-
sis”, and ‘‘Size”. Users can view the specific content on the
screen by selecting a screen ID. After selection, the article

source of the data and specific information of the article are
displayed to the user. Because the screen data are mainly ana-
lyzed using two different pipelines, different display schemes
for the data from different analysis sources have been provided
(Figure 3H).

Quick search

Users can quickly obtain comprehensive analytical results of
the aforementioned four modules by searching for a gene of
interest.



Figure 4 Tumor-enriched CD4
+

T cells revealed by pan-cancer analysis of TIGER resource

A. UMAP plots showing the cell types of CD4+ T cells derived from the clustering of scRNA-seq data of eight cancer types. B. Heatmap

showing the hierarchical clustering of all the cell types of CD4+ T cells of the eight cancer types. The 10 super cell types are highlighted in

black boxes. C. Heatmap showing the expression of classical immune cell markers for naı̈ve, memory, effector, exhausted, Treg, and

proliferating cells in each super cell type. D. Boxplots showing the two CD4+ cell types (SC-10 and SC-2) that are universally found in all

cancer types and consistently enriched in tumor samples. *, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001; ns, not significant

(t-test). E. Genes that are significantly up-regulated in the SC-2 CD4+ T cells in at least four cancer types (FC > 1.5, P < 0.05). F. The

difference in TMB between TCGA tumor samples with low and high SC-2 gene signature scores. G. The correlation between TLS gene

signature (CCL9, CCL21, CXCL13, CCR7, SELL, LAMP3, CXCL4, CD86, and BCL6) and SC-2 signature. BTCC, bladder transitional

cell carcinoma; CRC, colorectal cancer; HNSCC, head-neck squamous cell carcinoma; NSCLC, non-small-cell lung carcinoma; NPC,

nasopharyngeal carcinoma; UCEC, uterine corpus endometrial carcinoma; BC, breast cancer; ESCC, esophageal squamous cell

carcinoma; TMB, tumor mutational burden; TLS, tertiary lymphoid structure.
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Integrative analysis using TIGER reveals an effective predictor

of immunotherapy response

We next performed a systematic analysis using TIGER to
show its value in facilitating research related to cancer

immunotherapy. Current immunotherapy studies have mainly
focused on CD8+ T cells to explore the mechanisms of
immunotherapy-induced anti-tumor immunity and discover
effective immunotherapy response biomarkers. Among the

tumor-infiltrating T lymphocytes (TILs), apart from CD8+

T cells, it is also known that CD4+ T cells play important roles
in anti-tumor immunity, e.g., the activation and growth of

cytotoxic CD8+ T cells. However, the role of CD4+ T cell
response to immunotherapy in TME has seldom been studied.
Figure 5 A gene signature of a subset of tumor-enriched CD4
+

T cel

A. UMAP plot showing the clustering results of CD4+ T cells of BC

subsets of CD4+ T cells of BCC. C. Differentially expressed genes betw

D. Significantly enriched pathways in post-therapy SC-2 cells. E. D

responders between pre-therapy and post-therapy non-responder sa

immunotherapy response ORR and SC-2 score. G. The differential SC-

CTLA4) responders and non-responders. H. Survival difference betwe

performance comparison among SC-2 score, CD8 (average of CD8A an

cell carcinoma; ORR, objective response rate.
Here, we integrated bulk and single-cell transcriptome gene
expression data in TIGER to comprehensively explore the
anti-tumor immunity of CD4+ T cells under immunotherapy.

To this end, we selected cancer types with at least 10,000
CD4+ T cells for pan-cancer analyses. As a result, 176,371
CD4+ T cells from 8 cancer types were used for downstream

analysis. We could determine 79 cell types by separately clus-
tering the CD4+ T cells in each cancer type, ranging from 7
to 12 cell types in each cancer type (Figure 4A). Unsupervised

clustering of the 79 CD4+ T cell types revealed 10 super cell
types across different cancer types (Figure 4B). Differential
expression analysis revealed that SC-1 cells are effector cells,
as they highly express effector markers (GZMA, IFNG, and

GNLY); SC-4 cells are naı̈ve cells, as they highly express naı̈ve
ls predicts immunotherapy response

C. B. The expression of marker genes for SC-2 and SC-10 in the

een SC-2 cells of post-therapy and pre-therapy responder samples.

ifferential expression of the up-regulated genes upon therapy in

mples. ****, P < 0.0001 (t-test). F. The correlation between

2 gene signature score between immunotherapy (anti-PD-1 or anti-

en patients with high and low SC-2 scores. I. Response prediction

d CD8B) expression, and PD-L1 (CD274) expression. BCC, basal
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markers (TCF7 and CCR7); SC-9 cells are proliferating cells,
as they highly express proliferating markers (MKI67 and
STMN1); and SC-10 cells are Treg cells, as they highly express

Treg markers (FOXP3 and IL2RA) (Figure 4C). SC-2, SC-9,
and SC-10 cells were exhausted, as indicated by the high
expression of exhaustion markers (TOX2 and TIGIT) (Fig-

ure 4C). Interestingly, in addition to SC-10 cells (Treg cells),
SC-2 cells were universally found in all cancer types and were
consistently enriched in tumor samples (Figure 4D). SC-2 cells

are enriched and exhausted in tumors, suggesting that these
cells might play a regulatory role in anti-tumor immunity.
Then, a pan-cancer differential expression analysis was per-
formed, and we found that genes such as CXCL13, ITM2A,

NR3C1, SRGN, COTL1, and PDCD1 were significantly up-
regulated in SC-2 cells compared with other cells in at least five
cancer types, but not in SC-10 cells (Figure 4E). These genes

were used as gene signatures to represent the SC-2 cells. By
applying this SC-2 gene signature to TCGA dataset, we found
that patients with higher SC-2 gene signature scores had a sig-

nificantly higher tumor mutation burden (Figure 4F), further
indicating the regulatory role of SC-2 cells in anti-tumor
immunity. Interestingly, we also observed the expression of

effector markers, such as IFNG in SC-2 cells (Figure 4C), indi-
cating that SC-2 cells might function as cytotoxic T cells to
directly kill tumor cells, as reported in a previous study [8].
Moreover, CXCL13 is highly expressed in the tertiary lym-

phoid structure (TLS) and plays a central role in its formation.
TLS has been found to modulate anti-tumor immune activity
and is associated with immunotherapy responses [34–36]. We

hypothesized that SC-2 CD4+ cells with high CXCL13 expres-
sion might also regulate anti-tumor immunity by assisting TLS
formation. Indeed, we found that the SC-2 gene signature was

strongly positively correlated with the TLS gene signature in
TCGA pan-cancer datasets (Pearson’s correlation = 0.803)
(Figure 4G).

Next, we explored whether SC-2 CD4+ T cells played a role
in response to immunotherapy. By analyzing 16,194 CD4+

cells from scRNA-seq data of basal cell carcinoma (BCC)
and immunotherapy response data, we revealed that the SC-

2 CD4+ cells existed in the TME of BCC (Figure 5A and B).
Differential expression analysis between pre- and post-
therapy conditions in SC-2 CD4+ T cells of immunotherapy

responders revealed that effector genes such as GNLY and
IFITM3 were significantly up-regulated in post-therapy cells
(Figure 5C). Moreover, immune activation pathways such as

T cell activation and response to type I interferon were obvi-
ously enriched in SC-2 CD4+ T cells after immunotherapy
(FC = 1.38) (Figure 5D). However, these genes were only
slightly up-regulated in the SC-2 CD4+ T cells of non-

responders after immunotherapy (FC = 1.06) (Figure 5E).
These results suggest that SC-2 CD4+ T cells may play an
important role in response to immunotherapy. By applying

the gene signature of SC-2 CD4+ T cells to TCGA dataset,
we found that the average gene signature score of cancer types
was significantly associated with the objective response rate

(ORR) of the corresponding cancer types (Pearson correla-
tion = 0.66) (Figure 5F). We then applied the SC-2 gene sig-
nature to five melanoma immunotherapy datasets, including

263 samples with anti-PD1 or anti-CTLA4 therapies, and
found that a higher gene signature score was not only signifi-
cantly associated with better responses (Figure 5G), but was
also significantly associated with better survival under
immunotherapy (Figure 5H). This gene signature was superior
to that of other known biomarkers, such as CD8 and PD-L1

(Figure 5I). Taken together, we discovered a subset of CD4+

T cells that can modulate anti-tumor immunity and predict
immunotherapy responses by the integrative analysis of the

resources in TIGER.

Discussion

TIGER is an interactive web-accessible portal for the integra-
tive analysis of bulk and single-cell transcriptomic gene expres-
sion data related to cancer immunotherapy.

Compared with other existing tools, such as TCIA, TIDE,
and TISCH, TIGER has several advantages. First, TIGER is
the first web server to integrate bulk and single-cell gene

expression data to discover anti-tumor immunity mechanisms
and response biomarkers in cancer immunotherapy. Second,
TIGER holds the most comprehensive transcriptomic gene

expression data related to cancer immunotherapy, with non-
immunotherapy bulk gene expression data for 11,057 tumor/
normal samples across 33 cancer types, immunotherapy bulk
gene expression data for 1508 tumor samples across 8 cancer

types, and single-cell gene expression data for 2,116,945 cells
of 655 samples across 25 cancer types. Third, TIGER contains
more analysis and visualization functions for both bulk and

single-cell gene expression analyses than the other tools. In
particular, differential analysis between tumor and normal
cells and between different cell types using scRNA-seq data

allows users to explore anti-tumor immunity and develop gene
signatures of specific cell types. The analysis of immunother-
apy gene expression data, together with public gene signatures,

allows users to comprehensively evaluate biomarkers of
immunotherapy responses.

In conclusion, the analysis of bulk and single-cell data in
the same platform specialized for cancer immunotherapy

research will facilitate users to gain more insights into cancer
immunotherapy. In the future, we will continually update the
TIGER database by integrating new bulk and single-cell gene

expression data. We plan to add T cell receptor (TCR) and B
cell receptor (BCR) sequencing data to TIGER to further facil-
itate the understanding of tumor immunology. Continuous

efforts will be made to implement new analytical and visualiza-
tion functions to improve the performance of TIGER.
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