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Abstract 

Background  We have proposed that cognitive resilience (CR) counteracts brain damage from Alzheimer’s disease 
(AD) or AD-related dementias such that older individuals who harbor neurodegenerative disease burden suffi-
cient to cause dementia remain cognitively normal. However, CR traditionally is considered a binary trait, capturing 
only the most extreme examples, and is often inconsistently defined.

Methods  This study addressed existing discrepancies and shortcomings of the current CR definition by proposing 
a framework for defining CR as a continuous variable for each neuropsychological test. The linear equations clari-
fied CR’s relationship to closely related terms, including cognitive function, reserve, compensation, and damage. 
Primarily, resilience is defined as a function of cognitive performance and damage from neuropathologic damage. As 
such, the study utilized data from 844 individuals (age = 79 ± 12, 44% female) in the National Alzheimer’s Coordinat-
ing Center cohort that met our inclusion criteria of comprehensive lesion rankings for 17 neuropathologic features 
and complete neuropsychological test results. Machine learning models and GWAS then were used to identify medi-
cal and genetic factors that are associated with CR.

Results  CR varied across five cognitive assessments and was greater in female participants, associated with longer 
survival, and weakly associated with educational attainment or APOE ε4 allele. In contrast, damage was strongly asso-
ciated with APOE ε4 allele (P value < 0.0001). Major predictors of CR were cardiovascular health and social interactions, 
as well as the absence of behavioral symptoms.

Conclusions  Our framework explicitly decoupled the effects of CR from neuropathologic damage. Characterizations 
and genetic association study of these two components suggest that the underlying CR mechanism has minimal 
overlap with the disease mechanism. Moreover, the identified medical features associated with CR suggest modifiable 
features to counteract clinical expression of damage and maintain cognitive function in older individuals.
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Introduction
We hypothesize that cognitive resilience (CR) counteracts 
brain damage from neurodegenerative disease(s) such that 
older individuals who harbor a high burden of disease(s) 
sufficient to cause dementia remain cognitively normal 
[1]. CR to Alzheimer’s disease (AD) has been studied most 
extensively [2], but CR also has been described for preva-
lent, related diseases that can cause dementia, including 
Lewy body disease, vascular brain injury, limbic-associated 
TDP-43 encephalopathy, and hippocampal sclerosis—the 
so-called AD-related dementias (ADRDs) [3–5]. Tradi-
tionally, CR has been defined as an uncommon, categori-
cal trait, i.e., an individual either did or did not meet the 
criteria for CR [6] (henceforth binary-CR); however, this 
approach appears to capture only the most extreme exam-
ples of CR and neglects its likely variable expression by 
different people and across different cognitive domains. 
In addition to these impediments, the overlapping signs 
and symptoms of AD and ADRDs, as well as limited reli-
able biomarkers for most ADRDs, confound the accurate 
assignment of CR [7]. Previously, most of the apparent CR 
assigned during life derives from lower burden of unde-
tectable comorbid ADRD(s), underscoring the unique 
value of autopsy-based studies that permit comprehensive 
assessment of AD and ADRDs and thus assignment of CR 
[2]. Here we tested the hypotheses that CR may be defined 
as a continuous trait that varies across cognitive domains, 
is predicted by modifiable features measurable during life, 
and is associated with genetic variants.

We previously proposed operational definitions and a 
framework for the relationships among cognitive function, 
brain damage from AD and ADRDs, and CR with its two 
subcomponents reserve and compensation [1, 8]. CR can 
be thought of as the combined impact of cognitive reserve 
and compensation (Fig. 1A) [8]. Reserve is assembled early 
in life and is largely unused up to middle age [9, 10]. Later 
in life, as an individual suffers progressively more dam-
age to the brain from AD and ADRD, cognitive function 
decreases as does CR, a balance between drawing down 
reserves and, following a short delay, launching compen-
satory processes (Fig. 1B left) [1]. Individuals with higher 
reserve have a greater premorbid capacity to offset dam-
age and are more likely to preserve cognitive function into 
older ages, an outcome supported by clinical studies show-
ing higher baseline cognitive function is associated with 
reserve [11] and also with higher cognitive function later 
in life [12, 13]. The special case where there was no damage 
is a condition that we have termed resistant (Fig. 1B right) 
[5, 14]. Based on this, in the current study, we derived sim-
ple mathematical relationships to initiate a more rigorous 
approach to this complex topic with varyingly defined 
terms and applied them to the expertly annotated NACC 
dataset. Cognitive function was measured by five cognitive 

assessments (four neuropsychological tests and cognitive 
diagnosis), to solve for CR score once brain damage was 
expressed in the same units as cognitive assessments [9].

Materials and methods
Cohort description
Data were taken from the National Alzheimer’s Coordi-
nating Center (NACC) data freeze in March 2021, which 
included data from all individuals with brain autopsies 
(6518 individuals total) [15]. All participants (or repre-
sentatives) provided written informed consent; all pro-
tocols and assessments were performed with approval 
by the appropriate institutional internal review boards. 
The variable names for neuropathologic lesions (statistics 
summarized in Supplementary Table 1) come from NACC 
Neuropathology Form version 10. The NACC data dic-
tionary linking the NACC acronyms to exact definitions 
and assessment methods is publicly available online [16]. 
From the initial dataset, a cohort of 844 individuals (375 
female, 469 male; 106 with no cognitive impairment or 
NCI, 78 with mild cognitive impairment or MCI, and 660 
with dementia) was selected because they met the follow-
ing three eligibility criteria: (i) comprehensive lesion rank-
ings for 17 neuropathologic features [15], (ii) complete 
neuropsychological test results for five cognitive assess-
ments, and (iii) less than 24-month duration between the 
neuropsychological assessment and brain autopsy (NAC-
CINT < 24). The five cognitive assessments include four 
neuropsychological tests: the total number of animals 
named in a set period of time (ANIMALS), the total num-
ber of story units recalled from the current test adminis-
tration (LOGIMEM), trail-making test B (TRAILB), and 
WAIS-R Digit Symbol (WAIS). The fifth cognitive assess-
ment was cognitive diagnosis (NACCUDSD) as a meas-
ure of overall cognition performance. These specific tests 
were selected to assess multiple cognitive domains while 
maximizing the number of participants based on test data 
availability in this version of the NACC dataset.

For this cohort, the average interval between the last 
research evaluation and death was 9 ± 6  months, a dura-
tion that we have shown previously does not significantly 
impact interval conversion [15]. Summary statistics of the 
cognitive assessments (neuropsychological test results and 
cognitive diagnosis) are shown in Supplementary Table 2. 
An additional 221 demographic and medical features for 
the same individuals also were collected in the NACC 
dataset (Supplementary Table 3).

Equations and derivation of CR score
CR refers to a trait of high-burden neuropathologic changes 
without change in cognitive status and is usually a binary 
categorization. To express CR as a continuous variable, 
each individual i ’s CR was defined as a continuous score 
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and calculated for each cognitive assessment a , since each 
neuropsychological test and cognitive diagnosis reflect the 
influence of multiple overlapping cognitive domains.

CR score was defined by the following equation; note 
that we purposely put cognitive measure on the left side 
of the equation as it makes it easier to follow the pro-
posed concept:

where all variables in Eq. 1 must have the same units as 
the cognitive assessments.

(1)cognitive measurei,a = CR scorei,a − damage estimatei,a

To solve for CR score in each individual i for each cog-
nitive assessment a , we (i) measured cognitive measurei,a 
from the five cognitive assessments and (ii) estimated 
damage estimatei,a from the 17 neuropathologic fea-
tures. Damage estimate

i,a then is a representation of 
each individual’s extent of brain injury as measured by 
neuropathologic lesions from AD and ADRDs.

The damage estimatei,a was calculated by subtracting 
the hypothetical cognitive estimate as if the individuals 
had low-to-no lesions (neuropathologic lesion compos-
ite index [5] (NP) of 0) from the actual cognitive esti-
mate as shown by:

(2)damage estimatei,a = cognitive estimatei,a − cognitive estimatei,a(NP = 0)

Fig. 1  CR score calculation and related terms. A CR has two components, reserve and compensation (currently not measured), that along with 
damage are the result of genetics, aging, and environmental factors. Cognitive function is the outcome of CR minus the impact of brain 
damage. The strategy for calculating the CR score uses measures of cognitive function from cognitive assessments (four neuropsychological 
tests and cognitive diagnosis) and the ML-based estimation of damage from consensus ordinal rankings of 17 neuropathologic features of AD 
and ADRDs. B The hypothetical trajectory of CR score and other related terms across the adult lifespan with damage evidenced by pathological 
changes starting from age of 65. C An example trajectory of resistant individuals, i.e., those rare individuals who did not develop damage into late 
life. D Cognitive function trajectories and categorized cognitive status—NCI/MCI/dementia resulting from different scenarios of low vs. high 
damage, reserve, and compensation
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We used a random forest model to estimate dam-
age by training the model to estimate cognitive per-
formance from the 17 neuropathologic features: 
cognitive estimatei,a . For cognitive estimatei,a(NP = 0), 
the same model was used without retraining but now 
with neuropathologic lesion features of each individ-
ual replaced by the average of those with NP = 0 in the 
cohort while keeping the individual’s sex and age of death 
the same. The process was performed with 5-fold cross-
validation to ensure generalizability. The predictions 
from the test set in each cross-validation iteration were 
aggregated for downstream analysis.

Although not a focus of the present study due to data 
limitation, previously we have defined two components 
of CR to counteract damage: cognitive reserve and com-
pensation, related by the equation:

where cognitive reserve is excess capacity developed 
years or even decades before damage occurs, such as 
the density of neurons or synapses, and compensation 
is adaptive mechanisms deployed after damage begins, 
such as recruiting existing neural circuits to accomplish 
additional tasks. Combining Eqs. 1 and 3, a special case 
can be derived where

when there is no damage, i.e., no neuropathologi-
cal lesions and thereby minimal damage, and hence no 
compensation.

We used a second random forest machine learning 
(ML) model to predict an individual’s CR score based 
on 221 demographic and medical features without using 
brain autopsy data, date of death, or cognitive assess-
ments so as to identify variables important to CR score 
collected during life (Supplementary Table 3). As before, 
a random forest model was used with 5-fold cross-valida-
tion to ensure generalizability. The predictions from the 
test set in each cross-validation iteration were aggregated 
for downstream analysis.

Genetic association study
Of all NACC participants, 3,220 had genotype and 
phenotype available and consisted of 12 genotyped 
freezes across AD Centers (ADC 1–12). Batches were 
genotyped using standard Illumina protocols and per-
formed by the AD Genetics Consortium (ADGC). 
ADC samples were genotyped and analyzed in sepa-
rate batches. ADC1 and ADC2 were genotyped using 
Illumina 660W-Quad arrays, ADCs 3–8 (grouped 
as “OMNI”) using the Illumina OmniExpress, and 
ADCs 9–12 (grouped as “GSA”) using Illumina Global 

(3)CR scorei,a = reservei,a + compensationi,a

(4)CR scorei,a = reservei,a = cognitive measurei,a

Screening Assay (GSA). The demographic of the 
cohort is shown in Supplementary Table 4.

The standardized ADGC quality control pipeline was 
performed on the sample and variant levels. Briefly, 
samples or variants with low call rates (sample missing-
ness > 2%, variant missingness > 5%), sex discordance, or 
deviations from Hardy–Weinberg Equilibrium were fil-
tered out. A relatedness check was carried out with PC-
AiR to avoid false positives [17]. The analysis revealed 
some identical pairs (kinship ≥ 0.480) which were subse-
quently dropped, to avoid the uncertainty of whether it 
was the same person genotyped twice or a pair of twins. 
For pairs of first-degree kinship (0.177 ≤ kinship < 0.480), 
only one individual from each related pair (whichever 
was in a larger ADC batch) was kept. Principal compo-
nents analysis was conducted using PC-AiR to account 
for population substructure [18]. Outliers for genetic 
ancestry (> 5 standard deviations from the mean) were 
dropped. The samples were imputed with the Trans-
Omics for Precision Medicine (TOPMed) program server 
[19]. Genetic variants with MAF > 0.01 and imputation 
quality score R2 > 0.40 were kept for association analysis.

Tests of association between the five CR scores, one 
for each of the five cognitive assessments, and genetic 
variants were conducted in each batch separately (A1, 
A2, OMNI, GSA) by using linear regression performed 
using RVtests, a tool for rare variant association anal-
ysis using sequence data [20]. Association analyses 
included the following covariates: sex, age at death, 
years of education, and the first three PCs. Batch-
specific results were then combined across datasets in 
a fixed-effect meta-analysis with an inverse-variance 
weighted approach, as implemented in METAL [21]. 
Genetic variants appearing in less than 25% of samples 
were excluded from the analysis. QQ plots and genomic 
inflation factors were generated for each resilience score 
measure (Supplementary Fig. 1).

Genome-wide significant loci identified from the meta-
analysis were subjected to functional annotation and scor-
ing using Functional Mapping and Annotation (FUMA, 
v1.5.2), GeneHancer, Protein Atlas, combined annotation-
dependent depletion (CADD), and RegulomeDB [22–24].

Results
Calculating estimated damage and continuous CR scores
Figure  1 displays our approach to defining cognitive 
resilience and its relationship to reserve, compensation, 
and cognitive performance. Through these admittedly 
simple definitions, the traditional binary CR concept is 
transformed into a CR score, deriving from reserve alone 
or combined with compensation. Figure  1C illustrates 
hypothetical trajectories in cognitive function based on 
these linear relationships for different combinations of 
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damage and CR. Supplementary Figure  2 presents the 
trajectories of all terms in this plausible mix of cognitive 
function trajectories over the adult lifespan. To dem-
onstrate this with actual data, we used a random forest 
ML model to calculate the damage estimatei,a by Eq.  2. 
To estimate the damage to the brain, the model was first 
given the 17 neuropathologic profiles, age, and sex as 
input to predict the cognitive assessment results as the 
output ( cognitive estimatei,a in Eq. 2). Then, the trained 
model was used to predict the hypothetical cognitive 
assessment results of each individual now with their 17 
neuropathologic measures altered to be the same as the 
average from those with NP = 0 (n = 62), while maintain-
ing the same sex and age. The latter created an age- and 
sex-specific baseline for each cognitive assessment by 
utilizing NP scores from individuals with no brain dam-
age. Subtracting the two gives an individual’s damage 
estimate expressed in the units of each cognitive assess-
ment (Eq.  2). With known cognitive assessment scores 
and estimated damage expressed in compatible units, an 
individual’s CR score was calculated according to Eq. 1.

The predicted cognitive assessment results from neuro-
pathological features were highly significantly correlated 
to each of the corresponding actual cognitive assessment 
results (Fig.  2A). The correlation was lower when using 
the expanded cohort of 6518 where missing neuropatho-
logic data were imputed with mean values (Supplementary 
Fig.  3); results from this larger cohort were used only in 

GWAS where the larger sample size is essential and use of 
imputed data unavoidable. The distribution of estimated 
damage from AD and ADRDs is shown for each of the five 
cognitive assessments in Supplementary Fig.  4A, where 
larger values indicate more damage.

The distribution of calculated CR scores is shown 
in Supplementary Fig.  4B. CR scores were correlated 
with the corresponding neuropsychological test results 
(Fig.  2B). Generally, higher neuropsychological test 
scores were correlated with higher CR scores, as expected 
by Eq. 1. In all neuropsychological tests, participants who 
were traditionally categorized as resilient (brown dots) 
tended to have higher CR scores, but they were not com-
pletely distinguished from traditionally categorized non-
resilient cases (Supplementary Fig. 4C&D). However, by 
definition, when using the overall cognitive diagnosis, 
NACCUDSD, all traditionally categorized resilient cases 
were classified as having normal cognitive (NC). The 
association between CR scores and damage estimates 
(Fig. 2B) was much weaker than the association with cog-
nitive assessment results.

Characteristics of CR scores and their associations
Correlations among individuals’ CR scores from different 
cognitive assessments are shown in Fig.  2C. CR scores 
calculated from TRAILB and WAIS were the two most 
correlated. CR scores for ANIMALS and LOGIMEM 

Fig. 2  Characteristics of resulting damage and resilience scores. A ML prediction performance (Pearson’s R and P values) of cognitive estimates 
from Eq. 2 using age, sex, and neuropathologic features. B Correlations between CR scores and the corresponding cognitive assessment scores 
or the damage estimate. C Correlation (Pearson’s R) of CR scores and D damage estimates from different cognitive assessments
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were the two most correlated with the CR score for cog-
nitive diagnosis (NACCUDSD), perhaps because cogni-
tive diagnosis relies heavily on memory performance or 
varying sensitivity of these measures. The same analy-
ses of damage estimates were largely similar (Fig.  2D). 
Importantly, the presence of any APOE ε4 allele was 
associated with significantly greater estimated damage 
for all cognitive assessments (Fig.  3A), with the effect 
sizes ranging from 0.31 for NACCUDSD to 0.43 for ANI-
MALS. Damage estimates for APOE ε4 homozygotes 
(n = 60) were similar to any APOE ε4 allele for all five 
cognitive assessments but with larger variance because of 
the limited sample size.

CR scores were higher in individuals diagnosed as cog-
nitively normal (Fig.  3B) and were positively associated 
with age at death, indicating that individuals who lived 
longer tended to have higher CR scores (Fig. 3C). In sharp 
contrast to damage, the effect of APOE ε4 on CR scores 
was not significant for any of the cognitive assessments 
(Fig. 3D), with effect sizes ranging from − 0.17 for WAIS 
test and 0.04 for NACCUDSD test. In the expanded 

cohort of 6518 individuals with mean imputation for the 
missing neuropathological data, the APOE ε4 allele effect 
was significant for two (LOGIMEM and NACCUDSD) of 
the five cognitive assessments; however, the effect size of 
APOE ε4 allele on CR score remained small, ranging from 
0.00 for WAIS to 0.15 for NACCUDSD (Supplementary 
Fig. 5). The protective effect of APOE ε2 also was focused 
more on damage than CR (Supplementary Fig. 6).

Stratifying by sex revealed that female participants 
(who tend to have higher CR [7, 25]) have significantly 
higher CR scores in TRAILB, WAIS, and NACCUDSD 
(Fig.  3E). To minimize the possibility of unknown con-
founders with sex, a linear model was fit using age, sex, 
education, APOE ε4, cognitive status, and severity of AD 
neuropathologic change (ADNC). The p-values of sex in 
some tests were still strongly significant (Supplementary 
Table 5), suggesting an actual sex effect.

Years of education were significantly correlated with 
CR scores as determined for LOGIMEM (P = 0.022) and 
TRAILB (P = 0.002, Fig. 3F); however, the apparent effect 
of educational attainment on CR scores was small with 

Fig. 3  Correlations among CR scores and other features. A Stratification of damage estimates by any APOE ε4 vs. no APOE ε4 (t-test P values) 
for each cognitive assessment (damages were min–max normalized to facilitate visualization). B CR scores for each of the five cognitive assessments 
were stratified by NCI vs. MCI + Dementia groups (t-test P values). C Correlation (Pearson’s R and P values) between age at death and CR score 
as estimated by the five different cognitive assessments. D Comparison of CR scores stratified by any APOE ε4 vs. no APOE ε4 in the main cohort 
with comprehensive cognitive assessments and neuropathologic features (n = 844). E CR score stratified by sex (t-test P values). F Correlation 
between years of education and CR score as estimated from each of the five cognitive assessments
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Spearman’s R ranging from 0.00 to 0.10 for the five cogni-
tive assessments.

Demographic and medical feature prediction of CR scores
CR scores were based on neuropathologic data for 
AD and ADRDs that currently only can be obtained at 
autopsy. To generalize our work, we next built an ML 
model to predict CR scores using demographic and 
medical features obtained during life (excluding cogni-
tive diagnosis and age at death) that were significantly 
correlated with CR scores (Fig.  4A). The predicted CR 
scores correlated with the calculated CR scores much 
more strongly than educational attainment alone. Sort-
ing all items used to predict CR scores by their model 
feature importance indicated that only about the top 
10 features were needed for each of the five cognitive 
assessments (Fig. 4B); the NACC acronyms of all these 
features are listed in Supplementary Table 3. Inspecting 
these top features revealed a pattern of health domains 

that are important for predicted CR scores (Fig.  4C). 
The most dominant factor for predicting higher CR 
scores was related to behavioral symptoms, including 
lack of depressed mood, psychosis, agitation, or person-
ality change. The severity of depression, as measured 
by Geriatric Depression Scale (GDS), was correlated 
with lower predicted CR scores derived from multiple 
cognitive assessments (Fig.  4D). Potentially related to 
depression, factors that indicate greater social interac-
tions, such as living with a partner or marital status, 
also were positively associated with CR scores. Several 
factors highlighted cardiovascular health as an impor-
tant indicator of CR score: greater body weight, BMI, 
heart rate, and diastolic blood pressure were correlated 
with lower CR scores, and lower systolic blood pressure 
was correlated with higher CR scores (Fig. 4C). No need 
for hearing aids or a lower number of medications also 
were indicators of higher CR scores. Finally, as observed 
for CR scores, sex was an important feature in predicted 

Fig. 4  ML prediction of CR values using demographic and medical features and model interpretation results. A The performance (Pearson’s R and P 
value) of the model in predicting CR values based on data collected during life (not including cognitive diagnosis) scores plotted against CR scores 
estimated using brain autopsy data. B The ranking of feature importance from the random forest model indicated around the top 10 features 
was the most critical. C A heatmap showing the top 10 most important features aggregated from all five cognitive assessments. Negative signs 
were assigned to feature importance that was negatively correlated with the predicted CR value. D Geriatric depression scale (GDS) is shown 
as an example of an important feature for each of the five cognitive assessments
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CR scores with female participants having greater CR 
on average than males (Fig. 4C).

Sex-dependent feature importance for CR score was 
assessed by two ML models, one trained on female-only 
data and the other on male-only data (see Supplementary 
Fig. 7 for model performance). The importance for female 
features is proportional to bubble size, whereas the color is 
proportional to feature importance for males (Supplemen-
tary Fig. 8). Therefore, features that were both strong in color 
and had bigger sizes were important for both sexes. The sex-
dependent features still included a similar set related to car-
diovascular health, GDS, and behavioral change as found in 
the previous all-sex model. However, there were other fea-
tures that were significant only for females such as Parkin-
son-related symptoms, and some for males only such as the 
use of antidepressants or anti-coagulant drugs.

GWAS associations for some CR scores
GWAS was performed on the expanded cohort of 6518 
where missing neuropathologic data were imputed with 
mean values. This cohort was 46.5% female and comprised 
individuals with a mean age at death of 82.5 ± 10.2 years and 
years of education of 15.6 ± 2.9 (Supplementary Table 4). The 
top signal from the ANIMALS-derived CR score GWAS 
meta-analysis was in the MYOM2 <  > LOC101927815 locus 
(rs182140222, P = 6.47 × 10−11; Table  1, Supplementary 
Fig. 9). CR scores of both the LOGIMEM and NACCUDSD 
identified strong signals in the APOE region (rs429358, 
P-LOGIMEM = 5.84 × 10−10, P-NACCUDSD = 1.41 × 10−12; 
Table  1, Supplementary Fig.  10). GWAS of CR score 
for NACCUDSD also identified two other hits on the 
LINC02070 <  > VGLL3 (rs148691207, P = 1.33 × 10−8; 
Table  1, Supplementary Fig.  11) and LOC101929692 loci 
(P = 4.44 × 10−14). No genome-wide associations were found 
for the CR score derived from TRAILB or WAIS.

Discussion
CR, as defined by our first generation of simple, solv-
able equations, requires a shift in thinking about AD 
and ADRDs: the ultimate clinical expression of cognitive 

impairment is not solely the impact of neurodegenera-
tion, but rather a balance of damage from disease(s) and 
the counterforce of CR. From this perspective, most clin-
ical, pathologic, and genetic studies of AD and ADRDs 
have, in fact, investigated the combined influence of 
damage and CR. Here we attempted to separate these 
two terms and tested the hypothesis that CR to AD and 
ADRDs may vary continuously, that CR may differ by 
cognitive domain, and that this newly defined continuous 
trait may be predicted by medical features or be associ-
ated with genetic variants.

Currently, binary-CR is used when sufficient infor-
mation on neuropathologic change is present [26, 27]. 
When post-mortem data is unavailable, some have used 
normal cognition at old age as a proxy for CR; however, 
this is confounded by the inclusion of unknown co-mor-
bidities that vary among individuals, and the inclusion 
of individuals resistant to disease [13]. In other cases, 
CR has been misused to mean cognitive performance, 
cognitive reserve, and more, highlighting the impor-
tance of clarifying definitions and differences among 
these related terms [28–30]. Indeed, most of the previ-
ous attempts to quantify CR did not reflect a shared def-
inition of CR, but have included individuals’ cognitive 
scores compared to expected scores at the same patho-
logic severity [31], indices derived from education and 
other life factors [25, 32], or image-based deep learning 
[33, 34] or indices such as brain volume [35]. Impor-
tantly, these methods were at best limited to AD only, 
despite a number of studies suggesting that ADRDs also 
affect CR [3–5]. In the present study, CR and its rela-
tionship to cognitive function and other related terms 
were clearly defined with different hypothetical scenar-
ios presented. Through this simplified first attempt at 
mathematical definitions, we calculated CR score based 
on multiple types of actual cognitive assessment results 
and extensive knowledge of pathologic changes from 
AD and ADRDs.

There were several intriguing characteristics of the 
calculated damage and CR scores. Notably, the level of 

Table 1  Genome-wide association (P < 5 × 10−8) of CR score derived from different cognitive assessments. The 4 symbols per gene 
in the “Direction” column signify the direction of effect in each cohort in the following order: ADC1, ADC2, OMNI, GSA. The symbol 
? indicates that the SNP was not available in the dataset after MAF > 0.01 thresholding,—indicates a negative direction of effect (risk 
effect of alternate allele), and + indicates a positive direction of effect (protective effect of alternate allele)

CR score Chr Position rs ID Closest gene Ref Alt Alt Allele Freq Direction β (SE) P-value

ANIMALS 8 2201568 rs182140222 MYOM2 <  > LOC101927815 C G 0.011 ??? +  0.096 (0.015) 6.47 × 10−11

LOGIMEM 19 44908684 rs429358 APOE T C 0.274 ––  − 0.016 (0.003) 5.84 × 10−10

NACCUDSD 3 86714172 rs148691207 LINC02070 <  > VGLL3 G A 0.015  +  +  +  +  0.054 (0.010) 1.38 × 10−08

NACCUDSD 6 170624470 NA LOC101929692 AC A 0.020  + ?? +  0.161 (0.021) 4.44 × 10−14

NACCUDSD 19 44908684 rs429358 APOE T C 0.274 ––  − 0.017 (0.002) 1.41 × 10−12
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damage is not the same for each type of cognitive assess-
ment, perhaps reflecting individuals’ shifting alignment 
between regions of damage and regions that subserve 
the functions needed for different cognitive assessments. 
In CR scores, resilient individuals categorized by tradi-
tional binary classification did not necessarily have the 
highest CR scores, underscoring our expectation that 
a continuous measure of CR may be more informative, 
especially when comparing across different domains as 
assessed by various neuropsychological tests. CR scores 
varied by cognitive assessment, likely reflecting the dif-
fering amounts of damage to brain regions and neu-
ral circuits that subserve the cognitive functions being 
tested. As expected, CR scores derived from related 
cognitive domains tended to be correlated. While all CR 
scores were positively associated with death at an older 
age, our results highlighted that the CR score related to 
the memory domain (LOGIMEM) was the most strongly 
associated with longer survival (R = 0.72). Further, cogni-
tively normal individuals could exhibit higher CR scores, 
which would indicate higher reserve capacity in our con-
ceptualization. Validating the results of others, CR scores 
were higher in female participants [6, 36]. Finally, CR 
scores showed only a weak correlation with damage esti-
mates, suggesting that there may be only limited overlap 
between mechanisms of CR and mechanisms that drive 
damage as assessed by these pathologic changes.

Educational attainment has been so widely associated 
with CR [36–40] that it is sometimes used as a synony-
mous measure. Our study validated that educational 
attainment was significantly associated with CR score 
as measured by some cognitive assessments; however, 
the effect size was small. Given this modest associa-
tion between CR score and educational attainment, we 
sought other demographic or medical features that were 
strongly predictive of higher CR score in the hope that 
some might be modifiable. Indeed, feature importance 
from the random forest model predicting CR scores 
suggested other life factors might be more important 
than educational attainment, suggesting that there likely 
exists superior intra-vitam measures of CR score. These 
included mental health features such as no behavioral 
symptoms, no depression, and social interactions, as 
well as physical health, including no need for hearing 
aids, cardiovascular health, and the number of medica-
tions taken. Although some of these features possibly 
could represent early symptoms of AD, and thus not be 
true features of cognitive resilience, they are in agree-
ment with recent studies on the benefits to CR from 
maintaining good mental health, such as reduced stress 
at work, conscientiousness [37, 41], and social networks 
[35, 38], as well as having good cardiovascular health 
[42]. The impacts of diastolic and systolic blood pressure 

on our CR scores align with some of the heterogeneous 
reports of the associations of arterial blood pressure 
measurements with cognitive decline in older individu-
als [43]. Although associative and not necessarily deter-
ministic of CR, these data are potentially important 
because they support lifestyle and medical interventions 
that may promote CR rather than the more static view 
of educational attainment, likely a proxy for a complex 
set of historical events, as contributors to CR.

Several groups have attempted to understand 
the molecular underpinnings of CR through omics 
approaches, including genetics [2], epigenetics [44], pro-
teomics [45], and metabolics [29], in order to identify 
potential interventions or therapeutic targets to mitigate 
impairment from AD. Focusing on genetics, others have 
reported a significant association between lower CR and 
APOE ε4, a well-established risk factor for dementia [46, 
47]. Our results suggested APOE ε4 has a large impact 
on the calculated damage from multiple neurodegenera-
tive diseases, especially on ANIMAL test. Indeed, previ-
ous studies show that semantic fluency in non-demented 
APOE ε4 carriers is already reduced compared to non-
carriers [48, 49]. In contrast, we observed a limited 
impact of APOE ε4, or ε2, allele on CR score (no signifi-
cant association (Fig. 3D) except in the imputed original 
cohort, which still has minimal effect size (Table  1 and 
Supplementary Fig. 5). It could be because these studies 
used different definitions that did not clearly define CR 
vs. brain damage [27, 50, 51]. In aggregate, our data sug-
gest that APOE ε4’s impact on CR score is much smaller 
and less pervasive than its impact on damage. This fur-
ther supports the hypothesis that the mechanisms under-
lying CR and damage may not overlap substantially.

The validated association of APOE ε4 with CR 
raises the interesting possibility that CR is somehow 
an indirect measure of less damage from disease(s). 
Our data do not support this hypothesis. First, from 
several perspectives, the association underlying dam-
age estimate and CR score were only partially over-
lapping. Second, the magnitude of the association 
of APOE ε4 with estimated damage was several-fold 
larger than with CR scores in both the main cohort 
with comprehensive data and in the expanded cohort 
with imputed data used for GWAS (Supplementary 
Table  6). Together, our data support that the apoE4 
isoform, a pleiotropic protein with multiple critical 
functions [52], contributes strongly to damage from 
AD and ADRDs and makes a significant but much 
smaller contribution to CR.

Apart from APOE alleles, previous investigations into 
genetic contributions to CR to AD and ADRDs have 
also associated variants in other genes such as NLRP3, 
CNOT7, MEF2, and more [27, 50, 51, 53–55]. Even 
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though our cohort was relatively small, and despite the 
varying definitions of CR across these genetic studies, our 
results confirmed that inheritance of APOE ε4 is asso-
ciated with lower CR score for LOGIMEM and NAC-
CUDSD by both PCR assay and GWAS array, but not 
CR score as determined from the other three cognitive 
assessments. In addition, MYOM2 was tentatively asso-
ciated with CR of ANIMALS test; its epigenetic associa-
tion to AD and neuroinflammatory diseases was reported 
recently [56, 57]. We also tentatively identified an asso-
ciation between CR with VGLL3, which is reported to be 
associated with autoimmune diseases [58, 59]. Together 
our results raise the possibility that demographic, behav-
ioral, and medical features may be more strongly deter-
minant of this trait expressed later in life than are genetic 
variants.

The ML model to estimate damage did not yield a perfect 
correlation between predicted and actual cognitive assess-
ments (Fig. 2A), which is expected given that outcomes of 
cognitive assessment are not simply a function of damage 
but also reflect an individual’s CR (Eq.  1). Therefore, the 
residuals of the ML model, meaning the difference between 
the ground truth (actual cognitive assessment results) 
and the predicted values (predicted cognitive assessments 
based on damage alone), also could be interpreted as a 
measure of CR as suggested by previous studies [41, 60]; 
reassuringly the residuals of the ML model were moder-
ately correlated with CR score (Supplementary Fig.  12). 
However, the residual method has drawbacks in certain 
scenarios that need to be considered. For example, a low 
correlation between neuropathologic features and the cog-
nitive assessment in this method would lead to high corre-
lations (R > 0.8) between cognitive assessment results from 
which the residual was derived [61]. One constraint of our 
proposed equations is that CR approximates reserve in 
cases with no damage (Eq. 4). Under such conditions, we 
observed that an individual’s predicted reserve capacity was 
highly correlated with actual cognitive assessment results 
(Spearman’s R > 0.8), as expected based on Eq.  4. Impor-
tantly, this aligns with others’ hypothesis that premorbid 
cognitive performance is a determinant of CR [28, 62].

Our study has several limitations. Most importantly 
is that our equations are simple, a restriction imposed 
by limited data on the ability to solve for CR. Further, 
we used linear relationships to approximate resilience, 
reserve, damage, and function, which may be inaccu-
rate. If we attain means to measure directly CR, reserve, 
or compensation, then we will be able to solve more 
complex equations. We selected five measures of cogni-
tive assessment that broadly, but not comprehensively, 
reflect cognitive function. The accuracy of the calculated 
CR score hinged on the performance of the ML model 
to estimate damage from neuropathologic features, 

restricting us to autopsy-based studies until compre-
hensive intra vitam biomarkers of AD and ADRDs are 
available. We selected NACC because of its large set of 
consensus neuropathologic assessments, availability of 
genomic data, and our previous work with this data-
set in predicting neuropathologic lesions [15]. How-
ever, this advantage also precluded external validation 
of our initial model training, due to a lack of similarly 
expansive, consensus-driven datasets. The measures of 
damage are based on current consensus neuropatho-
logic guidelines, which have the advantage of providing 
disease specificity, but may not be the most insightful 
measures of damage; for example, they lack measures of 
synaptic injury or rigorous assessment of neuron atro-
phy or degeneration. Future studies may apply our same 
approach to other larger cohorts with more sophisti-
cated brain autopsy data, and eventually to longitudinal 
studies of reliable biomarkers for AD and each ADRD.

The present study outlines a framework to study CR 
as a continuous variable for multiple cognitive assess-
ments. It also establishes a definitive relationship between 
CR and other related terms. The study characterized the 
relationship between damage and CR scores, the balance 
between which ultimately determines the extent of cogni-
tive impairment. Higher CR scores showed the expected 
associations to being female and survival to an older age. 
CR score showed expected associations to APOE and 
educational attainment; however, their effect sizes were 
modest compared to other potentially modifiable medi-
cal and behavioral contributors. Our proposed frame-
work for considering the interaction between damage and 
CR in determining an individual’s cognitive performance 
suggests possible challenges to current pharmaceuti-
cal approaches and potential opportunities for additional 
effective interventions.
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