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Freshwater fungi play an important role in the decomposition of organic matter of leaf litter in rivers and streams. They also possess the 
necessary mechanisms to endure lower temperatures caused by habitat and weather variations. This includes the production of cold- 
active enzymes and antifreeze proteins. To better understand the physiological activities of freshwater fungi in their natural environment, 
different methods are being applied, and genome sequencing is one in the spotlight. In our study, we sequenced the first genome of the 
freshwater fungus Filosporella fistucella (45.7 Mb) and compared the genome with the evolutionary close-related species Tricladium var-
icosporioides (48.2 Mb). The genomes were annotated using the carbohydrate-active enzyme database where we then filtered for leaf- 
litter degradation-related enzymes (cellulase, hemicellulase, laccase, pectinase, cutinase, amylase, xylanase, and xyloglucanase). Those 
enzymes were analyzed for antifreeze properties using a machine-learning approach. We discovered that F. fistucella has more enzymes 
to participate in the breakdown of sugar, leaf, and wood than T. varicosporioides (855 and 719, respectively). Filosporella fistucella shows 
a larger set of enzymes capable of resisting cold temperatures than T. varicosporioides (75 and 66, respectively). Our findings indicate 
that in comparison with T. varicosporioides, F. fistucella has a greater capacity for aquatic growth, adaptability to freshwater environ-
ments, and resistance to low temperatures.
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Introduction
Aquatic habitats are classified according to their water flow, 
which can be artificial lentic, lotic artificial, or hybrid (Odum 
1969). Lotic ecosystems, which include springs, rivers, and 
streams, are defined as waters that sustain a steady flow. Lentic 
ecosystems are static aquatic ecosystems such as lakes, ponds, 
and swamps (Kuehn 2016). Dams and reservoirs are examples of 
artificial or hybrid habitats (Jones and Pang 2011; Canto et al. 
2022). The water flow is a determinant in the oxygenation of the 
lotic and lentic ecosystems and can influence biological processes 
and biodiversity. In the lotic environment, better water oxygen-
ation contributes to its rich biodiversity (Penaluna et al. 2017; 
Canto et al. 2022).

Freshwater comprises <3% of the total water on earth and can 
include groundwater, streams, rivers, canals, and lakes, as well as 
amphibious habitats such as ditches, peatlands, and swamps 
(Webster 1992; Shearer et al. 2007; Barros and Seena 2022; 
Calabon et al. 2022). Aquatic fungi are investigated more in fresh-
water habitats with cool, clean, well-oxygenated, flowing water 
(Tsui et al. 2016).

The aquatic fungi are a polyphyletic group that comprehends 
over 3,800 species of fungi (Calabon et al. 2022) that have at least 
one life cycle completed in water, and are mostly characterized by 
their propagules (spores, conidia, and sporangia) and are dispersed 

in or above the water. The described filamentous freshwater fungi 
are taxonomically more associated with the Ascomycota phylum, 
and only a small percentage is associated with Basidiomycota 
(Tsui et al. 2016) but comprise taxa from all fungal phyla.

Culture-based studies show that freshwater fungi dominate 
the microbial communities associated with plant litter in streams, 

in both woody and herbaceous debris (Hieber and Gessner 2002; 

Jabiol et al. 2019). They play a crucial role in carbon, nutrient, 

and energy flow in freshwater ecosystems due to their ability to 

secrete exoenzymes that catalyze the turnover of complex carbo-

hydrate molecules such as cellulase, hemicellulase, and laccase, 

and other polysaccharides into smaller units, providing an energy 

source for the cell and organic matter for the aquatic food web, al-

lowing the transfer of energy and nutrients to higher trophic levels 

(Bärlocher 1985; Gessner et al. 2007; Gulis et al. 2019; Graça et al. 
2020).

Ecological—and in particular enzymatic—studies showed 
that freshwater fungi perform differently because they are 

equipped with different sets of enzymes (Suberkropp et al. 

1983). The microbiological composition and extracellular en-

zymatic activity are also affected by an increase in temperature 

in freshwater environments (Fenoy et al. 2022), which can also be 

promoted by climate change (Seena et al. 2023) and likely preju-

diced ecosystem functioning (Parain et al. 2019). On the other 
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hand, fungal communities were functionally richer in the colder 
subregions (Fenoy et al. 2022) and are capable of decomposing 
leaf litter at lower temperatures (Taylor and Chauvet 2014; 
Pérez et al. 2018).

Many freshwater fungi are also equipped with special strat-
egies to survive colder temperatures, and that can include the pro-
duction of antifreeze proteins (AFPs) and cold-active enzymes, 
among other features. Those features contribute to fungi survival 
even in harsh conditions as found in arctic and subarctic streams 
(Brown 1978; Robinson 2001; Gessner and Robinson 2003; Hassan 
et al. 2016; Weinstein et al. 2019). The fungi AFPs in intracellular 
sites and extracellular site keep their cell fluids in the liquid state 
under cold conditions by inhibiting the formation of an ice crystal, 
resulting in a phenomenon called thermal hysteresis (Hoshino 
et al. 2009; Nath et al. 2013). This phenomenon enables the cell 
to endure freezing temperatures, and consequently, cell death 
(Hashim et al. 2013; Białkowska et al. 2020; Yusof et al. 2021). In 
temperate regions, the survival rate of aquatic fungi is less inhib-
ited by water temperatures when near 0°C and can show growth 
peaks at temperatures between 15 and 25°C. The sporulation 
activity is also highest at lower temperatures than in most other 
fungi (Dang et al. 2009).

Genome sequence technology is an important tool to reveal the 
adaptation of organisms to specific environments and is shown to 
be an essential tool for our understanding regarding fungi diver-
sity, mechanisms for plant cell wall degradation, and adaptation 
to cold environments (Morel et al. 2013; Rodrigues et al. 2019; 
Yusof et al. 2021).

The freshwater fungus Filosporella fistucella Marvanová and 
P.J. Fisher was first isolated and described in 1991 as an endo-
phyte from alder roots (Dartmoor National Park, UK; 
Marvanová and Fisher 1991). Since then, this species has been 
reported in microbial ecology studies worldwide such as in 
India (Rajashekhar and Kaveriappa 2003), Germany (Carl et al. 
2022), South Korea (Mun et al. 2019), and Portugal (Duarte 
et al. 2015). The strain F. fistucella CCM F-13091 is the ex-type 
of the species and was obtained from Ludmila Marvanová of 
the Czech Collection of Microorganisms (CCM). This species be-
longs to the Ascomycota class Leotiomycetes, order Helotiales, 
and is affiliated to Drepanopezizaceae (Baschien et al. 2013; 
Johnston et al. 2019).

Materials and methods
Isolation and identification
The F. fistucella culture CCM F-13091 was provided by the CCM and 
was maintained in the liquid nitrogen internal collection of DSMZ 
(Leibniz Institute DSMZ, German Collection of Microorganisms 
and Cell Cultures) under the number DSM 105177. For DNA ex-
traction, the fungus was grown on 2% malt extract (Feelwell, 
Germany) agar (Oxoid, Germany) at 16°C in a cooling room. 
To confirm the identity of the F. fistucella culture, we applied 
Sanger sequencing of the internal transcribed spacer (ITS) 
and partial large subunit gene of the rDNA operon using pri-
mers ITS1F (5′-CTTGGTCATTTAGAGGAAGTAA-3′; Gardes 
and Bruns 1993) and LR5 (5′-TCCTGAGGGAAACTTCG-3′; 
Vilgalys and Hester 1990). The resulting sequences were 
manually curated using Sequencher tool v5.4.6 (http://www. 
genecodes.com), and then BLAST was performed against the 
National Center for Biotechnology Information (NCBI) nucleo-
tide database (https://www.ncbi.nlm.nih.gov/). The ITS se-
quence is deposited under accession NR_153982 in the NCBI 
database.

Cultivation and genome sequencing
After identity confirmation, the biomass of F. fistucella was trans-
ferred to a 1-L flask containing 500 mL of potato-glucose liquid 
medium (Carl Roth, Germany) using a sterile loop and kept in a 
shaker (Bottmingen, Switzerland) at 16°C and 120 RPM. 
Fourteen  g of biomass of cells were used to extract genomic 
DNA (see Supplementary File 1) genome fragment sizes superior 
15 kb were confirmed using Agilent Femto Pulse (Agilent, USA) 
and sent to Hifi genome sequencing at Macrogen, The 
Netherlands.

Genome assembly and gene prediction
The CCS tool (https://ccs.how/) was used to generate the consen-
sus reads from the raw sequencing data before assembly with Flye 
v2.9 (Freire et al. 2022) using the default parameters for PacBio Hifi 
assembly. The genome completeness was evaluated with BUSCO 
v5.3.0 (Simão et al. 2015) using the eukaryota_odb10 database.

Genome repetitive sequences were soft-masked using tantan 
(Frith 2011) before ab initio gene prediction with Funannotate 
v1.8.9 (Palmer and Stajich 2020, github.com/nextgenusfs/funanno-
tate), using Augustus v3.3.3 (Stanke et al. 2006), SNAP (Korf 2004), 
glimmerHMM v3.0.4 (Majoros et al. 2003), and Genemarker-ES 
v4.6.2 (Ter-Hovhannisyan et al. 2008).

Comparative genomics
The F. fistucella genome was compared against the freshwater fun-
gus Tricladium varicosporioides (Tubaki) Johnston and Baschien 
(synonym: Hymenoscyphus varicosporioides) genome (Sivichai et al. 
2003). The genome of T. varicosporioides was obtained from NCBI 
(accession number: GCA_021365295.1). The species T. varicospor-
ioides was selected for the study because it is phylogenetically 
closely related to F. fistucella (Baschien et al. 2013; Johnston and 
Baschien 2020).

Carbohydrate-active enzyme annotation  
and leaf-litter degradation enzymes
The genome annotation was performed in the dbCAN2 database 
(Zhang et al. 2018) using the probabilistic model of hidden 
Markov models (HMMer tool; Finn et al. 2011) to identify 
carbohydrate-active enzymes (CAZys; accessed on 2022 August 
22) in both genomes. The analysis was performed against the 
dbCAN2 database for all 6 available classes of CAZys: 
carbohydrate-binding module (CBM), glycoside hydrolases (GHs), 
polysaccharide lyases (PLs), auxiliary activities (AAs), carbohy-
drate esterases (CEs), and glycosyl transferases (GTs).

The HMMer tool also provided the biochemistry function of the 
enzymes classified in the dbCAN2 by which were filtered for 
leaf-litter degrading enzymes (cellulase, hemicellulase, laccase, 
pectinase, cutinase, amylase, xylanase, and xyloglucanase; de 
Vries et al. 2017; Steindorff et al. 2021).

Cold-adapt and antifreeze enzymes
The leaf-litter enzymes identified were submitted to the random 
forest algorithm of the CryoProtect webtool (Pratiwi et al. 2017) 
to predict whether the identified CAZy sequences associated 
with plant-litter degradation could have antifreeze properties.

Secondary metabolites
Biosynthetic gene clusters (BGCs) were predicted using the unan-
notated genome assembly from the Flye assembler in the 
Antismash v6.1.1 fungal version. The detection strictness was 
set to relax, as default. To detect secondary metabolites in fungal 
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Antismash, all extra feature options were activated, including the 
CASSIS tool (Baudet et al. 2010).

Results
Genome features
The F. fistucella genome assembly (45.7 Mb) has a smaller size than 
T. varicosporioides (48.2 Mb) but with a higher N50 value. Despite 
that completeness and BUSCO fragments present similar values 
between both genomes, as shown in Table 1.

Gene prediction and annotation with CAZys
The ab initio gene prediction with Funannotate identified 12,628 
proteins in T. varicosporioides, and 13,507 proteins for F. fistucella. 
We have analyzed all predicted genes against all 6 classes of 
CAZy available in dbCAN2: CBM, GHs, PLs, AAs, CEs, and GTs, as 
shown in Table 2. The F. fistucella genome has more plant-litter 
degradation enzymes than T. varicosporioides. Respectively, we an-
notated 855 and 719 proteins in the dbCAN2 database for CAZys.

Plant-litter degradation enzymes
The results of CAZys annotation were filtered for the enzymes as-
sociated with the degradation of different plant-based polysac-
charides (cellulose, xylan, xyloglucan, starch, hemicellulose, 
lignin, pectin, and cutin). The F. fistucella genome presented a high-
er number of enzymes associated with leaf-litter degradation 
than T. varicosporioides, 215 and 178, respectively, as shown in 
Table 3.

Antifreeze properties
The sequences classified as plant-litter degrading enzymes were 
analyzed with Cryoprotect, where we identified 75 enzymes in 
F. fistucella and 66 enzymes in T. varicosporioides predicted as 
AFPs, as shown in Table 3.

Secondary metabolites
Using secondary metabolites analysis with Antismash, we identi-
fied a cluster-type terpene in F. fistucella with 40% similarity with 
squalestatin S1 (also found in T. varicosporioides with 40% similar-
ity), a common fungi metabolite (Lebe and Cox 2019). In addition, 
13 nonribosomal peptide synthetase (NRPS) clusters and 14 poly-
ketide synthasis (T1PKS) clusters were found, mostly with 

unknown metabolic functions or with low similarity with known 
fungi metabolites, such as eupenifeldin (Bunyapaiboonsri et al. 
2008; Zhai et al. 2019) and naphthalene (Smith et al. 1976; 
Cerniglia et al. 1978; Hofmann 1986; Sutherland 1992).

We identified fewer BGCs in T. varicosporioides than in F. fistucella. 
In T. varicosporioides, we identified 6 T1PKS (PKS type 1), 7 NRPS, 3 hy-
brid clusters PKS-NRPS, and 1 hybrid cluster terpene-PKS. In F. fistu-
cella, we identified 11 T1PKS (PKS type 1), 10 NRPS, 3 hybrid clusters 
PKS-NRPS, and 1 terpene cluster. Most BGCs identified have un-
known or low similarities within the Antismash secondary metabo-
lites database. The clusters with high similarities were observed on 2 
occasions in each organism. The antimicrobial compound pyranoni-
grin E was predicted in both genomes with 100% similarity to the se-
quence of Aspergillus niger within the Antismash database, and it is 
the only metabolite predicted in both F. fistucella and T. varicospor-
ioides. Apart from this, unique metabolites with high similarity with-
in the database were identified in both genomes. The F. fistucella had 
100% similarity to the 6-methylsalicylic acid. The T. varicosporioides 
had 100% similarity with fusarin.

Discussion
The genome size of the T. varicosporioides (48.2 Mb) and the newly 
assembled F. fistucella (45.7 Mb; Table 1) are slightly similar to pre-
vious aquatic fungi genomes described: Margaritispora aquatica 
(42.5 Mb; Goh, Mun, Park, et al. 2019), Hymenoscyphus tetracladius 
(current name Articulospora tetracladia; 41.8 Mb; Goh et al. 2018), 
Lepidopterella palustris (46 Mb; Peter et al. 2016), Tetracladium march-
alianum (Anderson and Marvanová 2020), Aquanectria penicillioides 
(53.7 Mb; Goh, Mun, Oh, et al. 2019), and Clavariopsis aquatica 
(34.1 Mb; Heeger et al. 2021). We were also able to acquire a gen-
ome with higher quality than the phylogenetically closely related 
genome of T. varicosporioides. Both genomes present a similar level 

Table 1. Genome size, quality, and completeness comparison of 
F. fistucella and T. varicosporioides genomes.

BUSCO data F. fistucella T. varicosporioides

Genome size 45.7 Mb 48.2 Mb
No. of contigs/ 

scaffolds
21 106

N50 2.6 Mb 1.1 Mb
L50 6 15
GC content 45.31% 44.58%
Completeness C: 98.4% (S:98.4%, 

D:0.0%)
C: 98.4% (S:97.6%, 

D:0.8%)
Fragments 1.2% (3 fragmented 

BUSCO)
F: 1.2% (3 fragmented 

BUSCO)
Missing 0.4% (1 missing 

BUSCO)
0.4% (1 missing 

BUSCO)
Max. length of 

scaffold
6,242.644 2,716.377

Mean sequence 
length

2,179,724 455,114

CDS 13,507 12,628

Table 2. Number of CAZys matching the dbCAN2 database using 
the HMMer tool for the 6 classes of enzymes available on the 
database for F. fistucella and T. varicosporioides.

CAZy classes F. fistucella T. varicosporioides

Glycoside hydrolases (GH) 419 342
Auxiliary activities (AA) 158 154
Glycosyl transferases (GT) 122 104
Carbohydrate esterases (CE) 70 64
Carbohydrate-binding module 

(CBM)
62 43

Polysaccharide lyases (PL) 24 12

Table 3. Differences in numbers of CAZys annotated with the 
dbCAN2 database in the genomes of F. fistucella and T. 
varicosporioides and the enzymes associated with plant leaf 
degradation.

F. fistucella T. varicosporioides

Total Antifreeze Total Antifreeze

Cellulose 44 17 44 18
Xylan 58 21 53 19
Xyloglucan 12 3 10 4
Starch 19 6 21 8
Hemicellulose 5 3 3 1
Lignin 35 15 28 7
Pectin 37 9 32 9
Cutin 5 1 2 0
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of completeness and quality, although T. varicosporioides genome 
has an inferior quality to F. fistucella (Table 1).

Although having a smaller genome size than T. varicosporioides, 
we detected more genes through ab initio prediction in F. fistucella. 
A vast number of genes encoding CAZys were identified in both 
freshwater fungi (855 in F. fistucella and 719 in T. varicosporioides).

Aquatic fungi are major decomposers of plant litter in aquatic 
environments and can use a wide range of carbohydrates (such as 
starch, cellulose, cellobiose, sucrose, mannose, xylose, maltose, 
glucose, and galactose), through the breakdown of cell polysac-
charides present in the cell wall and inside the cell 
(Abdel-Raheem and Ali 2004; Sati and Bisht 2017; Bärlocher et al. 
2020). These cell components can be divided into 3 groups: (1) 
water-soluble amino acids and sugars, (2) the polysaccharides 
hemicellulose, cellulose, cutin, and pectin, (3) lignin and other 
aromatic compounds (Fioretto et al. 2005; Bani et al. 2018). The 
polysaccharides can be reduced into monosaccharides through 
enzymatical activities by fungi and be used for energy or as pre-
cursors for the biosynthesis of biomolecules (Wang et al. 2020).

Fungi that use plant tissue as a carbon source acquired a large 
diversity of plant cell wall-degrading or wall-modifying enzymes 
(Hage et al. 2021). There are 5 different CAZy classes associated 
with the breakdown of carbohydrates, namely, GHs, PLs, AAs, 
CEs, and GTs. These enzymes provide control of chemical reac-
tions for the breakdown of oligo- and polysaccharides (Lombard 
et al. 2014). In our analysis, F. fistucella had more CAZys in all 6 cat-
egories of enzymes in the dbCAN2 database, which show a higher 
capacity to degrade plant cell wall and their components than 
T. varicosporioides.

Pectin is an important class of plant cell wall polysaccharides. 
It is located in the middle lamella of the leaf and constitutes of 
D-galacturonic acid as the main component (Broxterman and 
Schols 2018; Marić et al. 2018). Pectin is reported to account for 
up to 20–25% of the total dry weight in some plants (Schmitz 
et al. 2019). Lignin is a complex aromatic heteropolymer and an 
important organic component of plant litter, accounting for ∼5– 
35% of leaf-litter dry mass. Despite being so abundant in the 
cell, they are slowly decomposed because of their structural prop-
erties. Their degradation is an important process because lignin 
protects most of the cellulose and hemicellulose from enzymatic 
hydrolysis (Boerjan et al. 2003; Jabiol et al. 2019).

Cellulose is the most abundant polysaccharides component in 
plants and one of the most abundant polysaccharides in the world 
(Chundawat et al. 2011; Dadwal et al. 2021). The breakdown of cel-
lulose is made through cellulase production, which may be en-
hanced by external hemicellulose (Wang et al. 2020). 
Hemicelluloses are diverse and complex polysaccharides that 
are classified according to the main sugar in the backbone of the 
polymer, i.e. xyloglucan, xylan, galacto(gluco)mannan (Andlar 
et al. 2018; Wang et al. 2020). Among them, the most abundant 
hemicellulose is xylan (Moreira and Filho 2016), by which the fun-
gi can degrade as their primary carbon source (Collins et al. 2005).

Cutin shares a complex barrier together with other biopoly-
mers, such as suberin and sporopollenin, and is involved in water-
proofing the leaves and fruits of higher plants (Heredia 2003; 
Domínguez et al. 2015). Starch is a major storage of polysaccharide 
in plants and is degraded by α-amylase and β-amylase (Papa et al. 
2008) being good sources of carbon for some species of aquatic 
fungi since it is more easily degraded than most other cellular 
components (Abdullah and Taj-Aldeen 1989; Baudy et al. 2021).

In our study, F. fistucella has a richer set of enzymes capable of 
degrading plant biomass than T. varicosporioides with the excep-
tion of cellulose (44 in both organisms) and starch degradation 

(19 and 21, respectively), and more enzymes for xylan, xyloglucan, 
hemicellulose, lignin, pectin, and cutin. Filosporella fistucella has 
shown to have a more complex enzymatic system to act in 
leaf-litter degradation by triggering enzymes involved in leaf 
and wood cell wall degradation, as well as sugar molecules. 
These enzymes participate in the assembly of carbohydrates, 
which suggests a higher potential for growth in the water, and a 
more broad adaptation to the freshwater environment.

The F. fistucella and T. varicosporioides genomes had a similar 
number of AFPs, showing a similar capacity to produce CAZys 
that can help the cell to survive in cold conditions and keep micro-
bial decomposition of leaf litter. AFPs are a vital mechanism for 
adaptation in freshwater. Low freshwater temperatures (below 
4°C) may cause organelle damage and cell death by severely de-
teriorating an organism’s cell membranes (Baskaran et al. 2021). 
Therefore, in order to survive in cold environments, freshwater 
fungi can produce AFPs as one of the survival strategies, protect-
ing cell membranes and their structural integrity (Ustun and 
Turhan 2015).

Freshwater fungi provide essential ecosystem services in 
aquatic systems (Seena et al. 2023). Besides their key functional 
adaptations to leaf material degradation, they promise to be po-
tent sources of compounds such as peptides, polyketides, ter-
penes, and alkaloids, although, very much of their biology and 
chemistry are still to be known (Hernández-Carlos and 
Gamboa-Angulo 2011; Bills and Gloer 2017; El-Elimat et al. 
2021). In our study, many BGCs are not yet identified or had 
low similarities in both organisms’ genomes against the 
Antishmash database. This can be indicative that an important 
group of microorganisms is worth to be further studied which 
could potentially have a vast number of commercial and scientif-
ic applications (Goh and Hyde 1996; Hernández-Carlos and 
Gamboa-Angulo 2011; Hassan et al. 2022).

Microbial natural products from freshwater aquatic fungi pre-
sent exciting opportunities to discover natural alternatives for 
commercial antimicrobial products (El-Elimat et al. 2021; Canto 
et al. 2022). Many studies identified antimicrobial compounds in 
several aquatic fungi (Poch et al. 1992; Harrigan et al. 1995; Oh 
et al. 1999, 2001, 2003; Mudur et al. 2006; Gloer 2007). The second-
ary metabolite pyranonigrin E is an antimicrobial compound 
found in both aquatic fungi genomes approached in this study. 
The pyranonigrin E compound is a PKS-NRPS hybrid metabolite 
and has a considerable interest as a potent antioxidant 
(Awakawa et al. 2013).

Many ascomycete fungi produce squalestatins (Bills et al. 1994). 
The squalestatins, identified in both genomes, can inhibit the first 
step of cholesterol biosynthesis by targeting squalene synthase 
(Sidebottom et al. 1992). Due to this characteristic, they have anti-
fungal properties utilized in the development of medicine (Baxter 
et al. 1992; Sidebottom et al. 1992; Bergstrom et al. 1995).

New microbial compounds are being discovered mainly 
through metabolomics and chemistry studies with a variety of 
structural and metabolic capacities and are the basis for bioinfor-
matics predictions. Despite the large use of bioinformatics tools 
such as antiSMASH, SMURF (Khaldi et al. 2010), or CASSIS/SMIPS 
(Wolf et al. 2016) for BGC predictions, they are still far from perfect 
due to limitations in the recognition of metabolites outside the 
clusters PKS and NRPS. Additionally, clusters that are dispersed 
across multiple chromosomes and that are simultaneously 
co-regulated have a chance of being missed by the algorithms 
(Chavali and Rhee 2018). Improvement in secondary metabolite 
isolations and/or metabolomic studies, coupled with genome se-
quencing annotation for BGCs, could help to shed light on the 
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uniqueness of secondary metabolite biosynthesis in freshwater 
fungi (El-Elimat et al. 2021).

Based on the results, F. fistucella has a higher capacity for adap-
tation to the freshwater environment, because of its richness in 
CAZys and AFPs, can indicate that it (1) may be more 
competitive and (2) may have a higher biotechnological potential 
than T. varicosporioides (Kumar et al. 2021; Kumari et al. 2021; 
Palaniappan et al. 2021).

Data availability
The F. fistucella genome assembly presented in this manuscript is 
submitted to the National Center for Biotechnology Information 
(NCBI) under accession number GCA_030077755.1. The raw reads 
and genome assembly can be found at NCBI with Bioproject num-
ber PRJNA924252. The CAZy Genome annotations are available at 
GitHub (https://github.com/rissidaniel/Ffistucella_cazy).

Supplemental material available at G3 online.
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