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A convenient method for evaluation of biochemical reaction rate coefficients and their uncertainties is
described. The motivation for developing this method was the complexity of existing statistical methods for
analysis of biochemical rate equations, as well as the shortcomings of linear approaches, such as Lineweaver-
Burk plots. The nonlinear least-squares method provides accurate estimates of the rate coefficients and their
uncertainties from experimental data. Linearized methods that involve inversion of data are unreliable since
several important assumptions of linear regression are violated. Furthermore, when linearized methods are
used, there is no basis for calculation of the uncertainties in the rate coefficients. Uncertainty estimates are
crucial to studies involving comparisons of rates for different organisms or environmental conditions. The
spreadsheet method uses weighted least-squares analysis to determine the best-fit values of the rate coefficients
for the integrated Monod equation. Although the integrated Monod equation is an implicit expression of
substrate concentration, weighted least-squares analysis can be employed to calculate approximate differences
in substrate concentration between model predictions and data. An iterative search routine in a spreadsheet
program is utilized to search for the best-fit values of the coefficients by minimizing the sum of squared
weighted errors. The uncertainties in the best-fit values of the rate coefficients are calculated by an approxi-
mate method that can also be implemented in a spreadsheet. The uncertainty method can be used to calculate
single-parameter (coefficient) confidence intervals, degrees of correlation between parameters, and joint
confidence regions for two or more parameters. Example sets of calculations are presented for acetate
utilization by a methanogenic mixed culture and trichloroethylene cometabolism by a methane-oxidizing mixed
culture. An additional advantage of application of this method to the integrated Monod equation compared
with application of linearized methods is the economy of obtaining rate coefficients from a single batch
experiment or a few batch experiments rather than having to obtain large numbers of initial rate measure-
ments. However, when initial rate measurements are used, this method can still be used with greater reliability
than linearized approaches.

The evaluation of bacterial and enzymatic reaction rates
requires representative rate data and a valid method for fitting
appropriate rate equations to the data. In addition, estimation
of uncertainties in rate coefficients is crucial for informed com-
parisons between cultures or environmental conditions. Non-
linear least-squares analysis of nonlinear equations, such as the
Monod and Michaelis-Menten equations, can provide accurate
estimates of rate coefficients and reliable estimates of the un-
certainties in the coefficients.

Transformations of the nonlinear rate equations to linear
forms, such as Lineweaver-Burk and Eadie-Hofstee plots, are
undesirable for numerous reasons that have been discussed
repeatedly (3, 5, 9, 10). The deficiencies in the use of linearized
forms have been recognized for many years (6) but have often
been overlooked due to the time-consuming calculations and
complexity of nonlinear least-squares analysis.

The integrated Monod equation is useful in many applica-
tions for evaluation of bacterial transformation rate coeffi-
cients. Coefficients can be evaluated from progress curves from

a few batch experiments or even one batch experiment of a
reaction. This fact can be very important when data are costly
to obtain, such as in animal studies or human studies.

However, the integrated Monod equation is somewhat cum-
bersome to use because it is a nonlinear implicit expression
for substrate and organism concentrations. Weighted least-
squares analysis is an approach that can be used to minimize
differences between experimental data and model predictions
when it is necessary to use an implicit expression in the model.
This paper describes a simple method for determining the
best-fit values for rate coefficients in the Monod equation and
their uncertainties by using weighted least-squares analysis.
The method is straightforward and is designed for easy imple-
mentation in a computer spreadsheet program. As examples,
results from two rate studies were used together with an inte-
grated Monod equation weighted least-squares analysis to
determine rate coefficients and their uncertainties. A simple
example involving a data set for acetate utilization by a metha-
nogenic mixed culture is described. A second, more complex
data set for trichloroethylene (TCE) cometabolism by a meth-
ane-oxidizing mixed culture is used to illustrate application of
this method to cometabolism and verification of the method by
comparison with a more rigorous numerical model. The exper-
imental techniques used are described elsewhere (7, 12).
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MATERIALS AND METHODS

Integrated Monod equation. An integrated form of the Monod equation for
utilization or cometabolism of a substrate in a batch reactor can be obtained. The
Monod equation for the substrate reaction rate in a bacterial culture is

2 ~dCL/dt! 5 kXaCL/~KS 1 CL! (1)

where CL is the liquid-phase concentration of the rate-limiting substrate (in
milligrams per liter), t is time (in days), k is the maximum specific rate of
substrate utilization (in milligrams of substrate per milligram of active cells per
day), Xa is the concentration of active cells (in milligrams per liter), and KS is the
half-velocity coefficient (in milligrams of substrate per liter).

The active cell concentration with growth substrate utilization can be de-
scribed by

Xa 5 Xa0 1 Y~CL0 2 CL! (2)

where Y is the cell yield coefficient (in grams of active cells per gram of substrate)
and the subscript 0 denotes time zero.

Equations 1 and 2 can be combined to eliminate Xa and can be integrated to
obtain the integrated Monod equation for a growth substrate

t 5
1
k HS KS

Xa0 1 YCL0
1

1
YDln[Xa0 1 Y~CL0 2 CL!]

1 S KS

Xa0 1 YCL0
DlnS CL0

Xa0CL
D 2

1
Y

ln~Xa0!J (3)

Alternatively, when a volatile nongrowth substrate, such as TCE, is cometabo-
lized in the absence of growth substrate, it is necessary to account for the
gas-liquid partitioning of the substrate and the effect of TCE transformation
product toxicity. For gaseous substrates, a mass balance on a closed system gives

M 5 CLVL 1 CGVG (4)

where M is the mass of substrate present (in milligrams), CG is the gas-phase
substrate concentration (in milligrams per liter), VL is the liquid volume (in
liters), and VG is the gas volume (in liters).

Henry’s Law (11) can be used to account for the distribution of the substrate
between the liquid and gas phases, if an assumption of gas-liquid equilibrium is
valid

HC 5 CG/CL (5)

where HC is the Henry’s constant of the substrate (2).
Adequate mass transfer conditions can be verified by various means, such as

calculation of the Damkohler number (Da) or comparison of samples having
different biomass concentrations at a high substrate concentration. An increase
in biomass concentration results in a proportional increase in the substrate
reaction rate if the system is not mass transfer limited. Da is defined as follows

Da 5
maximum reaction rate

maximum mass transfer rate 5
kXa

kLa CL
(6)

where kLa is the mass transfer rate coefficient (per hour). If Da is !1, then the
system is reaction rate limited, and if Da is @1, the system is mass transfer limited
(2).

The biomass concentration decreases due to TCE transformation product
toxicity (1, 8), and the mass of cells inactivated is proportional to the mass of
TCE transformed

Xa 5 Xa0 2
1

TCVL
~MTCE0 2 MTCE ! (7)

where TC is the TCE transformation capacity (in grams of TCE per gram of
active cells) (1).

Equations 1, 4, 5, and 7 can be combined to eliminate CG, CL, and Xa and can
be integrated (when Da is !1) to obtain the integrated Monod equation for
cometabolism of TCE (a volatile nongrowth substrate with transformation prod-
uct toxicity)

t 5
1

kTCE5
KS,TCE~VL 1 HCVG!

VLSMTCE0

TCVL
2 Xa0D ln3

MTCEXa0

MTCE0FXa0 2
1

TCVL
~MTCE0 2 MTCE!G4

1 TC ln3
Xa0

Xa0 2
1

TCVL
~MTCE0 2 MTCE!46 (8)

Equation 8 can also be applied to the simpler case of nonvolatile substrates by
setting HC equal to zero.

The best estimates of the rate coefficients, such as k and KS, or other constants,
such as CL0, can be determined by comparing model predictions to observed

values of CL (or M) and t by using the known values for Y, VL, VG, HC, etc.,
together with initial estimates of the coefficients that are sought in equation 3 or
8. The rate coefficients and other constants estimated by fitting the integrated
Monod equation to experimental data are referred to as model fitting parame-
ters. The estimates of the parameters are successively revised through trial and
error or other more sophisticated searching techniques (9) to minimize the sum
of the squared weighted errors (SSWE)

SSWE 5 O
i51

n

@wi~ti
obs 2 ti

pred!#2 (9)

where wi is an appropriate weighting factor, ti
obs is the time of the ith observation,

and ti
pred is the t value predicted by the model for the measured CL value, of CLi

obs.
Ideally, it would be desirable to minimize the differences between the mea-

sured and predicted CL values (CLi
obs 2 CLi

pred) because the errors in the mea-
surement of CL are generally much larger than the errors in the measurement of
t. However, for implicit equations, such as equations 3 and 8, only the differences
between predicted and observed t values (ti

obs 2 ti
pred) can be calculated explicitly.

The differences between predicted and observed CL values can be estimated by
multiplying ti

obs 2 ti
pred by the local slope of the substrate disappearance curve,

DCL/Dt. Therefore, we propose that the logical weighting factor is the local slope
of the substrate disappearance curve

wi 5 DCL/Dt (10)

Given this weighting factor, the quantity wi(ti
obs 2 ti

pred) in equation 9 is

wi~ti
obs 2 ti

pred! 5
DCL

Dt
~ti

obs 2 ti
pred! < CLi

obs 2 CLi
pred (11)

which is the error in the predicted CLi
obs. This approach provides an explicit

approximate method to minimize CLi
obs 2 CLi

pred in lieu of an explicit expression
for CL as a function of t.

Uncertainty in fitted parameters. The uncertainties in the best estimates of the
model parameters can be evaluated by an approximate method similar to that
described elsewhere for numerical modeling applications (4, 12).

The mean square error (MSE) of a fitting parameter, which is used to calculate
the 95% confidence interval of a given parameter estimate, is calculated from the
mean square fitting error and the sensitivity of the model to the parameter. In
general, the parameter uncertainty increases with the mean square fitting error
and decreases with increasing sensitivity to the parameter.

The mean square fitting error is

s2 5
1

n 2 p O
i51

n

@wi~ti
obs 2 ti

pred!#2 (12)

where n is the number of observations and p is the number of parameters being
determined.

The model sensitivity to the parameters is evaluated by calculating approxi-
mate first derivatives of the model predictions with respect to the parameters.
Two sets of model predictions are compared, in which one parameter is varied by
a small step. The sensitivity coefficient for the fitting parameter u is evaluated at
each observation as follows

]~witi
pred!

]u
<

witi
pred~û 1 Du! 2 witi

pred~û)
Du

(13)

where û is the best estimate of u, û 1 Du is a nearby value of u, and witi(û) and
witi

pred(û 1 Du) are the weighted predictions for the times corresponding to an
observed substrate concentration for the u values û and û 1 Du, respectively.
Note that although the model predictions are not compared to the observations
in these calculations, the two sets of model predictions are evaluated at the
points corresponding to the observations. Therefore, if the experimental obser-
vations are made at substrate concentrations that are sensitive to the model
parameters, high accuracy of parameter estimates can be ensured.

In cases with only one fitting parameter, the MSE of the parameter is

MSE >
s2

O
i51

n F]~witi
pred!

]u G2

(14)

where the denominator contains the sensitivity coefficients, squared and summed
over all observations.

The square root of the MSE is the standard deviation, and the approximate
95% confidence interval for u [(u)95%] is

~u!95% 5 û 6 2ÎMSE (15)
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For cases involving more than one fitting parameter, the sensitivity of the
model predictions to the parameters is represented by a p 3 p matrix, A, where
p is the number of fitting parameters. Such a matrix is given in equation 16 for
the case involving two parameters, such as u1 and u2. The diagonal elements of
the matrix (e.g., A11 and A22) are the sensitivity coefficients for the individual
parameters, squared and summed over all observation times. The off-diagonal
elements (i.e., A12 and A21) are products of the sensitivity coefficients for pairs of
the parameters, summed over all observation times.
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The single-parameter standard error for each parameter can be calculated
from the diagonal elements of the MSE matrix, V, which is related to the
sensitivity matrix as follows

V 5 s2A21 (17)

where s2 is given by equation 12 and A21 is the inverse of A. The inverse of a
matrix can be calculated by using the MINVERSE function in Microsoft Excel
(Microsoft Corp., Redmond, Wash.). The standard error of u1, for example, is
=V11. The off-diagonal elements of V can be used to compute the correlation
coefficients of the estimation error. The correlation coefficient of u1 and u2 is
V12/=V11V22.

The single-parameter 95% confidence interval of u1 [(u1)95%] is

~u1!95% 5 û1 6 2ÎV11 (18)

The single-parameter confidence intervals should be used with caution because
they do not reflect the joint variability of all of the fitting parameters. Joint
confidence regions are more informative.

The joint confidence region, which contains the set of parameters with a
probability of 95%, is the interior of an ellipse for the case with two parameters.
It is the region where values of the variables u1 and u2 satisfy the inequality

1
s2 @A11~u1 2 û1!

2 1 A22~u2 2 û2!
2 1 2A12~u1 2 û1!~u2 2 û2!# # Z (19)

where û1 and û2 are the best estimates of the parameters. The value of Z is based
on the F distribution for finite sample sizes and is a function of the numbers of
observations and parameters and the selected confidence interval probability as
follows

Z 5 p z F~p, n 2 p, 1 2 a! (20)

where F(p, n-p, 1-a) is taken from an F-distribution table (4) and 1-a is the
fractional probability (0.95 for the 95% probability case) (4). The joint 95%
confidence region can be plotted with the Goal Seek function in Excel by
entering u1 values and using Goal Seek to find u2 values that satisfy equation 19.
Alternatively, a graphics program with a contour plotting function, such as
Mathematica, can be used.

RESULTS

Application. (i) Acetate utilization. Experimental data for
acetate utilization by a methanogenic mixed culture at 25°C (7)
were analyzed to determine the rate coefficients k and KS and
the initial substrate concentration CL0 by fitting equation 3 to
acetate utilization rate data by using a computer spreadsheet
and weighted nonlinear least-squares analysis (equations 9 and
10). CL0 was used as a fitting parameter because it was not
known with greater certainty than the other data points and it
would not be appropriate to force the best-fit curve through
the measured value of CL0. The input value for Y was deter-
mined in separate experiments, and Xa0 was estimated based
on the combined results of several experiments. All of the
calculations were done on an Apple Macintosh computer (Ap-
ple Computer, Cupertino, Calif.) by using a spreadsheet pro-
gram (Microsoft Excel 4.0). The joint 95% confidence regions
were plotted with Mathematica 2.2 for Macintosh (Wolfram
Research Inc., Champaign, Ill.).

An example of a spreadsheet for fitting the integrated
Monod equation to the data is shown in Table 1. The values of
the rate coefficients and other constants, some of which were
used as fitting parameters, are given in rows 1 through 5. The
values of the fitting parameters shown were initial guesses that
were subsequently changed by the program as the model was
fitted to the experimental data. The experimental data are
listed in columns A and B, in order of decreasing CL. Column
C contains the calculated t value for each observed CL value
(equation 3). The calculated values are shown in Table 1 rather
than the equations. Column D contains the CL values used to
calculate the values in column C. These CL values are the same
as the values in column B except for the first value, which is a
variable fitting parameter. The biomass concentrations were
calculated (column E) but were not required for the purpose of
curve fitting. Additional model predictions used to calculate
the weighting factors are shown in columns F and G; the CL
values in column G are slightly lower (0.1 mg/liter lower) than
the values in column D, and the t values in column F were
calculated from the values in column G by using equation 3.
Column H shows the local slope of the model curve, which was
calculated for each observation by using the two sets of model
predictions; for example, the value at H11 (column H, row 11)
equals (D112G11)/(C112F11). The differences between
model and predicted t values (column A 2 column C) were
calculated (column I), and the results were multiplied by the
weighting factors (column H) to give the weighted errors (col-
umn J). The weighted errors were squared (column K), and the
squared weighted errors were summed (cell K36).

The model was fitted to the data by using the Solver function
under the Formula menu in Excel to adjust the parameter
estimates to minimize the SSWE (cell K36). The best fit was
obtained with Solver, which uses an iterative search for the
parameter values that yielded the minimum SSWE, and the
initial estimates of the parameters were automatically replaced
by the best estimates in rows 2, 3, and 5. Solver can search
quickly for a maximum, minimum, or specified value for any
selected cell by varying the values for one or more other se-
lected cells in a spreadsheet. It is also possible to define limits
for the values of the variables, such as KS . 0, if Solver gives
unrealistic results.

The best estimates of the rate coefficients k (7.4 day21) and
KS (23.2 mg/liter), obtained from fitting equation 3 to the data
set in which the CL0 value was 50 mg/liter, yielded a model
curve that is an excellent fit to all three data sets shown in Fig.
1. Since the data were obtained from mixed-culture experi-
ments, these rate coefficients represent the overall values for
the different organisms present and may not be directly com-
parable to other previously published values.

Only one data set was used to estimate the rate coefficients.
The resulting values for the coefficients were used to generate
the two additional curves for comparison with the other two
data sets (CL0 was used as the first data point for the two
additional curves). The two data sets obtained with lower ini-
tial acetate concentrations (Fig. 1) were not very sensitive to
the parameters because CL was less than KS throughout the
experiments, and therefore, these data did not add much in-
formation about the parameters k and KS. If all three data sets
were used in the parameter fitting procedure with five fitting
parameters (k, KS, and a CL0 value for each experiment), the
estimation accuracy would not improve. Robinson (9) gives a
very good explanation of experimental design and substrate
concentrations that yield data that are sensitive to the param-
eters of interest.

The uncertainty calculations were performed by using addi-
tional spreadsheet calculations not shown in Table 1. The
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mean square fitting error was calculated from the SSWE value
in cell K36 and the n and p values (25 data points and 3
parameters, respectively) by using equation 12. The sensitivity
coefficients for each parameter were determined by calculating
a new set of model points by using the best estimates of all
fitting parameters except the parameter of interest, which was
varied by a small increment. The sensitivity coefficient was
evaluated at each point by using equation 13, and the individ-
ual values were squared and summed for use in equation 14 or
for the diagonal elements of the matrix in equation 16. The
off-diagonal elements of equation 16 were calculated by sum-
ming the products of the individual sensitivity values. The
resulting sensitivity coefficients obtained in equation 16 were
used in the equation for the 95% confidence region, equation
19.

Since three fitting parameters were used in this case, the
joint 95% confidence region was a three-dimensional ellipsoid
which represented the region containing k, KS, and CL0 with a
probability of 95%. Three slices of this ellipsoid are shown in
Fig. 2. The slices were taken in the plane CL0 5 ĈL0 and CL0
5 ĈL0 6 sCL0

, where ĈL0 is the best estimate of CL0 and sCL0
is the standard error of CL0, as defined in Materials and Meth-
ods. There were no points in the plane CL0 5 ĈL0 6 2 sCL0

due
to the low correlation of uncertainty between CL0 and the
other two parameters.

(ii) TCE cometabolism. TCE cometabolism rate data were
obtained from batch experiments performed with resting cells
(no methane or other carbon or energy source was present) in
a mixed culture that were transforming TCE. The apparatus
was a closed 2-liter vessel with a headspace present to provide

FIG. 1. Results of fitting the integrated Monod equation to acetate utiliza-
tion rate data by using the weighted nonlinear least-squares spreadsheet method.
The model (heavy solid line) was fitted to one data set (h), which resulted in the
following values: k 5 7.4 day21, KS 5 23.2 mg/liter, and CL0 5 53.5 mg/liter.
Model curves obtained with the same k and KS values are shown for other data
(D and E) for comparison. L, liter; d, day.

TABLE 1. Example spreadsheet for fitting the integrated Monod equation to acetate utilization rate dataa

a d, day; L, liter.
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oxygen from air and for the convenience of headspace analysis
of TCE. The methods are described in detail elsewhere (12).
Gas-liquid equilibrium was verified by mass transfer rate mea-
surements. After the reaction was started by adding cells, the
disappearance of TCE was monitored by periodically measur-
ing the TCE in the headspace and calculating the TCE mass
present (Mi

obs) (Fig. 3). The experimental methods used are
described elsewhere (12).

The integrated Monod equation for a nongrowth substrate
with product toxicity (equation 8) was fitted to the data in Fig.

3. For this data set, it was not possible to obtain unique esti-
mates for kTCE and KS,TCE by using the spreadsheet model
because the coefficients were highly correlated. Many pairs of
kTCE and KS,TCE values that yielded a kTCE/KS,TCE ratio of 0.31
liter/mg/day were found that had SSWE values very near the
same minimum value. Therefore, the kTCE/KS,TCE ratio was
used as a fitting parameter as an alternative approach. The
kTCE/KS,TCE and TC values were varied by Solver until the
minimum SSWE was found. The kTCE/KS,TCE value was varied
by leaving the kTCE value fixed and allowing Solver to vary the
KS,TCE value. As shown in Fig. 3, the spreadsheet fitting
method gave a model curve that is an excellent fit to the data.
As stated above for the acetate utilization data, these results
for mixed cultures represent overall rates for several organisms
and might not be directly comparable to other previously pub-
lished values.

In order to test the reliability of this method, the best esti-
mates and joint 95% confidence regions obtained from the
integrated Monod spreadsheet analysis were compared to es-
timates and confidence regions obtained by fitting a more
rigorous numerical model to the data (12). The numerical
model used included a fourth-order Runge-Kutta solution for
the system of differential equations describing the experimen-
tal conditions, including Monod kinetics, changes in active
organism concentration due to product toxicity and endoge-
nous decay, gas-liquid mass transfer of TCE, and passive losses
of TCE from the apparatus. The numerical model calculated
fitting errors (Mi

obs 2 Mi
pred)2 at the times corresponding to

each data point.
The estimates of kTCE/KS,TCE and TC values obtained by

using the integrated Monod spreadsheet analysis method were
not significantly different than those obtained by using the
more rigorous numerical model, as shown in Table 2 and Fig 3
and 4. For both models, it was assumed that the initial con-
centration of active organisms was equal to 20% of the initial

FIG. 2. Joint 95% confidence region for k and KS for the data in Fig. 1. Slices
of the three-dimensional ellipsoid were taken along the CL0 axis at ĈL0 (large
ellipse) and ĈL0 6 sCL0

(small ellipse; there were two ellipses, but they had the
same size and location). L, liter; d, day.

FIG. 3. Comparison of model fits for TCE cometabolism data. Parameter estimates were obtained by using the integrated Monod equation (——), the numerical
model (— —), and the numerical model with simplifying assumptions (–––). Two of the curves are shown with the same symbol, because they are indistinguishable at
the scale of this graph.
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total suspended-solids concentration, based on the results of
methane utilization rate experiments and modeling results ob-
tained with the mixed culture, as described previously (12).

The most significant differences between the numerical
model and the integrated Monod equation weighted least-
squares approach are the error calculation methods and the
assumptions regarding TCE losses, endogenous decay of the
organisms, and gas-liquid equilibrium. The TCE losses and
endogenous decay were neglected, and gas-liquid equilibrium
was assumed in the integrated Monod equation approach be-
cause the equation cannot be integrated if these processes are
included. In many cases, such assumptions are justified. The
dissolved TCE concentrations predicted by the numerical
model were within 1% of the equilibrium concentrations, and
therefore it was known a priori that the equilibrium assump-
tion was valid for this data set. Justification for this assumption
would be necessary in other applications of this approach.

In order to compare the two models more directly, the
numerical model was fitted to the data assuming that there
were no TCE losses from the reactor and there was no endog-
enous cell decay (Table 2). A comparison of the estimates in
Table 2 indicates that the assumption concerning no TCE
losses and the different methods of error calculations had only
slight effects, while the assumption that there was no endoge-
nous decay had an insignificant effect on the analysis of this
data set. The integrated Monod equation weighted least-
squares analysis and numerical model with simplifying assump-
tions yielded a higher TC estimate than the complete numerical

model because all of the TCE removed was considered biode-
graded in the former two cases, which yielded a higher TC
estimate than the numerical model, which correctly accounted
for the TCE removal due to passive losses. The estimated
kTCE/KS,TCE value obtained from the integrated Monod equa-
tion weighted least-squares approach was somewhat lower,
although the difference was not statistically significant. The
slight difference was due to the different methods of calculating
fitting errors and was verified by comparing the calculated
SSWE (equation 9) for both kTCE/KS,TCE estimates with the

true errors, (
i51

n
~Mi

obs2Mi
pred)2, calculated by trial and error ap-

plication of equation 8 for each kTCE/KS,TCE estimate.
The integrated Monod equation weighted least-squares

analysis method is a good approximation of the more rigorous
numerical model for this data set because the best estimates of
each model were within the bounds of the joint 95% confi-
dence region of the other model (Fig. 4). The differences in the
estimates for the rate coefficient ratio shown in Table 2 and
discussed above are not statistically significant, but they do
illustrate the differences between the modeling techniques. It is
important to recognize that under other conditions, such as
experimental runs of more than 1 day, passive TCE losses and
endogenous decay are likely to be more significant, and the
integrated Monod equation weighted least-squares approach
might then not provide reliable estimates of the rate coeffi-
cients.

DISCUSSION

The integrated Monod equation method is a simple proce-
dure for obtaining reliable estimates of microbiological reac-
tion rate coefficients as long as the requirements of the under-
lying assumptions are met. The fraction of cells lost over the
course of the experiment due to endogenous decay of cells
must be small. Changes in cell concentration due to growth or
product toxicity do not limit the applicability of this method
because they can be included in the integrated form of the
equation. For volatile substrates, the experimental system must
be at gas-liquid equilibrium and the rate of passive loss of
substrates, such as TCE, must be low relative to the transfor-
mation rate.

The weighting method described in this paper has a rational
statistical basis. The difference between the observed and pre-
dicted substrate concentrations is estimated by multiplying the
slope of the substrate disappearance curve by the difference
between measured and predicted sample times. This approach
is appropriate because it approximates the error in the mea-
surement of substrate concentration and such errors are usu-
ally larger than errors in time measurement in biochemical rate
experiments.

FIG. 4. Joint 95% confidence regions for kTCE/KS,TCE and TC for the TCE
cometabolism results shown in Fig. 3, using the numerical model (— – —), the
numerical model with simplifying assumptions (—), and integrated Monod equa-
tion weighted least-squares analysis (– – –). L, liter; d, day.

TABLE 2. Best estimates, approximate 95% confidence intervals, and correlation coefficients for TCE cometabolism rate data shown in Fig. 3

TCE cometabolism
rate coefficient

Best estimate of previous
numerical modela

Present study

Best estimate of numerical
model assuming no cell

decay and no TCE losses

Integrated Monod equation weighted
least-squares analysis

Best estimate
Correlation coefficients

k/KS TC

k/KS (liter/mg/day) 0.35 6 0.08 0.35 6 0.08 0.31 6 0.06 1
TC (g/g) 0.21 6 0.03 0.23 6 0.02 0.23 6 0.02 20.63 1

a Data from reference 12.
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The use of linearized forms of the Monod equation, such as
Lineweaver-Burk and Eadie-Hofstee plots, should be avoided
because several critical assumptions of linear regression are
violated by these methods, which leads to inaccurate parame-
ter estimates and a lack of any way to evaluate the uncertain-
ties in the parameter estimates (9). Because of the availability
of computers and software that are easy to use, the use of
linearized approaches is no longer justified. The weighted non-
linear least-squares method described in this paper is very
straightforward and easy to apply with a computer spreadsheet
program.

Another important advantage of the integrated Monod
equation method over linearized methods is the economy of
obtaining rate coefficients from a single batch experiment or a
few batch experiments rather than having to obtain large num-
bers of initial rate measurements. However, the uncertainty
calculations from a single experiment do not reflect the run-
to-run variability in parameter estimates. When initial rate
measurements are used, the rate coefficients and their uncer-
tainties can be determined more precisely from nonlinear
least-squares analysis (e.g., applied to a plot of 2dCL/dt versus
CL) than from linearized plots of inverted data.

Statistical software packages for personal computers may
also allow convenient application of the integrated Monod
equation if they provide for weighting in the nonlinear least-
squares fitting and uncertainty analysis. In the absence of a
weighting factor, a nonlinear least-squares approach would
minimize the differences between measured and predicted t
values rather than CL values, which would be inappropriate for
an implicit expression, such as the integrated Monod equation.
Users should be careful not to use nonlinear least-squares
fitting software without appropriate provisions, such as a
weighting factor, when they use implicit equations, such as the
integrated Monod equation.

Comparison with a rigorous numerical model validated the
results obtained by the integrated Monod equation spread-
sheet method. One important advantage of the integrated
Monod equation spreadsheet method over a numerical model
is the flexibility that it offers to use the initial substrate con-
centration as a fitting parameter, which is desirable when the
initial substrate concentration data point is known with cer-
tainty equal to that of all other data points.

Rate experiments can be designed to maximize the informa-
tive value of the results. Coefficients, such as Y, that are mea-
sured separately and used as constants in the parameter fitting
process should be measured as accurately as possible. Accurate
measurements of other constants, such as the initial active
biomass concentration, are crucial for minimizing the uncer-
tainties in the fitted parameters. The number of fitting param-
eters should be minimized, and the concentrations of biomass
and substrate should be selected to yield the most information
about the rate parameters of interest. The use of sensitivity
analysis to design experiments has been described by Robinson
(9).

The method described above for calculating the uncertain-
ties in rate coefficients makes great use of the information
available from the data without requiring the use of sophisti-
cated mathematics. When the initial substrate concentration is
not used as a fitting parameter, this method can be used to
describe a confidence region precisely based on numerous data
sets if desired. However, when the initial substrate concentra-
tion is used as a fitting parameter, each data set included in the
analysis adds one fitting parameter, and both the fitting calcu-
lations and the graphical representation of the confidence re-
gion become difficult with three or more data sets. In this
situation, it may be preferable to use the fitting technique
described in this paper to determine the best-fit value of each
rate coefficient for each experiment and use the mean and
standard deviation of the best-fit values from all of the exper-
iments to evaluate the confidence interval for each rate coef-
ficient.

Copies of the spreadsheet are available on diskette from the
corresponding author.
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