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% Check for updates In clonally reproducing dikaryotic rust fungi, non-sexual processes such as

somatic nuclear exchange are postulated to play arole in diversity but have
been difficult to detect due to the lack of genome resolution between the
two haploid nuclei. We examined three nuclear-phased genome assemblies
of Puccinia triticina, which causes wheat leaf rust disease. We found that the
mostrecently emerged Australian lineage was derived by nuclear exchange

between two pre-existing lineages, which originated in Europe and

North America. Haplotype-specific phylogenetic analysis reveals that
repeated somatic exchange events have shuffled haploid nuclei between
long-term clonal lineages, leading to a global P. triticina population
representing different combinations of a limited number of haploid
genomes. Thus, nuclear exchange seems to be the predominant mechanism
generating diversity and the emergence of new strains in this otherwise
clonal pathogen. Such genomics-accelerated surveillance of pathogen
evolution paves the way for more accurate global disease monitoring.

Rust fungi (order Pucciniales) cause diseases onimportant agricultural
cropsand threaten food production and ecosystems. For Puccinia spe-
cies, the asexual (uredinial) phase of their life cycle infects cereal hosts,
while the sexual phase occurs on different host plants. Thus, rust popu-
lation dynamics varies from highly sexual to exclusively clonal depend-
ing onthe presence and abundance of the alternate host'. For instance,
Puccinia coronataf. sp. avenae (Pca) populations causing oat crown
rust disease are highly genetically diversein North Americawhere the
sexual host buckthorn is prevalent®’. In contrast, Puccinia graminis
f. sp. tritici (Pgt) populations that cause wheat stem rust disease are
clonal in most parts of the world, but local sexual populations occur
where the alternate host barberry (Berberis spp.) is present*’. Wheat leaf
rust disease caused by Puccinia triticina (Pt) results in substantial crop

losses around the world®’, withits sexual host, Thalictrum spp., being
scarce in North America and Europe and absent in Australia®. Genetic
analysesindicate that global populations of Pt consist of relatively few
major clonal lineages, with high levels of heterozygosity and linkage
disequilibrium and low diversity within lineages, consistent with a
lack of sexual recombination® ™. In Australia, five clonal lineages of Pt
have been described, apparently derived from exoticincursions™,
In the absence of sexual reproduction, evolution of rust fungi is
limited to mutation and somatic exchange events'. Early laboratory
studies showed that somatic genetic exchange of virulence genes can
occurbetween two rustisolates infecting the same plant ™, with some
evidence of somatic hybridization occurring inthe field for Pgt and Pt
based on limited molecular markers***. Models proposed for somatic
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hybridization ranged from simple exchange of nuclei of opposite
mating type to parasexual recombination, but the only genetically
controlled analysis to discriminate between these possibilities was
conducted in flax rust (Melampsora lini)". In this case, no recombina-
tion occurred between several avirulence loci with known nuclear
genotypes and clear +/- compatibility groups were detected, but this
was not confirmed in other rust species. However, recent analysis of
fully nuclear-phased genome assemblies clearly demonstrated that
somatic exchanges of whole nuclei have contributed to genetic diver-
sity in Pgr®>. The Ug99 lineage of Pgt, which emerged in 1998, shares a
single nucleus-specific haplotype with the much older South African
Pgt21lineage, while three other globally dispersed isolates share com-
monnuclear genotypes with either Pg¢21-0 or Ug99. Genome admixture
analyses suggested that another five Pgt lineages may be derived by
somatic exchange?. We previously generated a fully nuclear-phased
chromosome genome assembly for an Australian isolate of Pt (Pt76)
(ref. 24) and here we extend this to two additional isolates and use
these references to compare haplotype diversity across alarge set of
sequenced Pt isolates from around the world. This reveals evidence
of extensive nuclear exchange events underlying the origin of major
clonal lineages, indicating a very substantial contribution of somatic
hybridization to population dynamics.

Results

Sevenrecent Australian Ptisolates form three lineages

Six Australianisolates of Pt collected in 2019 and 2020 exhibited four
virulence pathotypes (Supplementary Table 1). The 19QLDO8 isolate
shared the same pathotype as Pt76 (=19ACTO06) (ref. 24) but with viru-
lence forLr20.Bothof these are identical to pathotypes foundin aline-
age derived from pathotype 76-3,5,9,10 + Lr37, first detected in Australia
in2005 (refs.13,14). The 20QLD87 isolate has the same pathotype asa
lineage (104-1,3,4,6,7,8,9,10,12 + Lr37) first detected in 2014 as an appar-
ent exotic incursion into Australia via New Zealand®. The 20ACT90
isolate shares a pathotype with the currently predominant lineage
in Australia (104-1,3,4,5,7,9,10,12 + Lr37), which was first detected in
2016 (ref.26), while I9NSW04,19ACTO07 and 20QLD91 share the same
pathotype but with additional virulence for Lr27/Lr31.

We generated Illumina genomic sequences from these isolates and
used a k-mer containment analysis to compare their nuclear haplotype
similarity to the 199ACTO06 reference genome?. Figure 1a shows the
proportion of genome k-mers represented as identical sequences in
the lllumina data (shared k-mers) against the overall sequence simi-
larity of k-mers to the lllumina data (k-mer identity) for the I9ACT06
A and B haplotypes. lllumina reads from 19ACT06 and 19QLDOS fully
contained the k-mers (99.9% shared k-mers and 100.00% overall k-mer
identity) fromboth nuclear haplotypes, confirming that these isolates
arethe same clonal lineage. However, while the B haplotypeis also fully
contained in the Illumina reads of 20ACT90, 20QLD91, 19ACTO07 and
19NSWO04, the A haplotype s not (only ~94% shared k-mers and 99.80%
k-mer identity), suggesting that these isolates share the B nuclear
haplotype with another divergent haplotype (C). Neither the A nor
the B haplotypesare fully contained in the Illumina reads of 20QLD87
(94-96% shared k-mers, 99.80-99.87% k-mer identity), suggesting a
different unknown genomic composition. These relationships were
confirmed by haplotype-specific phylogenetic trees based on single
nucleotide polymorphisms (SNPs). In trees based on the full diploid
genome (Fig. 1b) or the A haplotype (Fig. 1c), these isolates fell into
three distinct lineages designated AU1 (19ACT06 and 19QLD08), AU2
(20ACT90,19NSW04,19ACT07,20QLD91) and AU3 (20QLD87). How-
ever, the AU1 and AU2 isolates grouped together in a single closely
related cladeinatree based on only the Bgenome SNPs (Fig. 1d).

Nuclear-phased genomes for members of the three lineages
To further analyse haplotype similarity in these isolates, we gener-
ated nuclear-phased genome assemblies with PacBio HiFi and Hi-C

data for I9NSWO04 (AU2) and 20QLD87 (AU3) using hifiasm with Hi-C
integration. Each haplotype assembly was 123-129 Mb in size, highly
contiguous (L50 > 6 Mb) and with BUSCO completeness of over 95%
(<5% duplicated) (Supplementary Table 2). The NuclearPhaser pipe-
line** showed that the haplotype assemblies were nearly perfectly
nuclear-assigned, with only two contigs larger than 150 kb (1.2 Mb total)
assignedtotheincorrect phase in1I9NSW04 and a single mis-assigned
contig (2.2 Mb) in20QLD87 (Supplementary Fig. 1), with potential phase
switches detectedin only three contigs from20QLD87 and none from
19NSWO04. Previously we observed that phase switches occurred at hap-
lotigboundaries*?” in assemblies generated by Canu®®*, which breaks
contigs at points of phase ambiguity. However, this was not the case
inall of these contigs generated by hifiasm which aims to reconstruct
both homologous haplotypes with high contiguity*’. We therefore
re-assembled the 20QLD87 HiFireads with HiCanu and found that the
predicted phase-switch regionsinall three hifiasm contigs correspond
to boundaries between HiCanu haplotigs which also switch phase at
thatsite (for example, h1tg000018I; Extended Data Fig.1a), and these
coordinates were used as breakpoints to correct the phase switches.

Contig scaffolding resulted in 18 chromosomes for each nuclear
haplotype of 1I9NSW04 and 20QLD87 (Supplementary Fig. 2a). Over
99% of cis and trans Hi-C links occur within a nucleus, supporting
the correct phasing of homologous chromosomes, with over 90% of
trans Hi-C links occurring within a nucleus, as previously observed
for dikaryons**?*!, and supporting the correct nuclear assignment
of chromosome pairs (Extended Data Fig. 1b-d). The four chromo-
some haplotype assemblies range from121.8 Mb to123.8 Mbinlength
(Supplementary Table 3), similar to isolate 199ACTO06 (121.6 Mb and
123.9 Mb) (ref. 24). Additional unplaced contigs are small (L50 of 76.2
Kb or 38.7 Kb), containing mainly repetitive sequences, especially
rRNAs, with few genes (Supplementary Table 3). We annotated genes
in19NSWO04 and 20QLD87 and re-annotated 199ACT06 using a pipeline
optimized for effectorannotation, whichidentified about 18,000 genes
ineachhaploid genotype (Supplementary Table 3). This represented an
increased number of genes in 199ACTO06 from the previously reported
29,052 (ref. 24)t0 36,343 (haplotype A:17,958 genes; haplotype B: 17,813
genes), including an increase of 49.1% in annotated genes encoding
secreted proteins compared with only 18.6% more genes encoding
non-secreted proteins.

The three lineages share nuclear haplotypes

Genome sequence alignment showed that withineachisolate, the two
separate haplotypes have average sequence identity of 99.50% (diver-
gence 0.50%), with -303,000 to 334,000 distinguishing SNPs (Fig. 2a
and Supplementary Table 4). However, one of the 199NSW04 haplotypes
shares remarkably high sequence similarity with the 1I9ACT06 B haplo-
type withonly 2,966 SNPs and average sequence alignmentidentity of
99.99% (divergence 0.01%), while the other I9NSWO04 haplotype shares
similarly high sequence identity (99.99%, 2,182 SNPs) with one of the
20QLD87 haplotypes. Thus, we assigned the 1I9NSWO04 haplotypes
as Band C and the 20QLD87 haplotypes as C and D (Supplementary
Table 2 and Fig. 2a). The I9NSWO04 C haplotype contains a transloca-
tionbetween chromosomes 2 and 6, whichis not presentin any of the
other haplotypes, including the 20QLD87 C haplotype (Fig. 2b), and this
translocationis supported by Hi-C contact maps and HiFiread coverage
across the breakpoints (Supplementary Fig. 2a). The shared Band C
haplotypes suggest that theseisolates are related by nuclear exchange,
with the simplest scenario that the AU2 lineage (BC haplotype) arose by
somatic hybridization between isolates of the AU1 (AB) and AU3 (CD)
lineages given its most recent detection in Australia®>'*>%,

Over 80% of SNPs distinguishing the six complete haplotype
assemblies (including between the two copies of B and C haplotypes)
occur in repetitive sequences, with only ~-10% in coding regions, of
which ~-59% are non-synonymous (Supplementary Tables 5and 6, and
Figs. 3-7). This corresponds to coding differences in genes encoding
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Fig.1| Three distinct lineages and four haplotypes are presentin a collection
of seven Australian P¢isolates. a, k-mer genome containment scores of
Illumina sequencing reads against the Pt76 (19ACTO06) haplotypes. Identity is the
percentage of bases that are shared between the genome and the sequencing
reads. Shared k-mers is the percentage of k-mers shared between the genome and
the sequencing reads. Two red lines indicate thresholds above which we consider
ahaplotype genome to be fully contained in the sequencing reads of anisolate
(identity 299.99%, shared k-mers >99.5%). The A haplotype is fully contained in

the sequencing reads of two isolates (1I9ACT06,19QLDO08) and the B haplotype

is fully contained in the sequencing reads of 6 isolates (19ACT06,19QLDOS,
19ACTO07,19NSW04,20QLD91,20ACT90). The 20QLD87 isolate contains neither
Anor Bhaplotypes. b, The phylogenetic tree against the combined haplotypes
19ACTO06 A and Bindicate three lineages. ¢, The phylogenetic tree against the
19ACTO6 haplotype A shows that two isolates share the A haplotype.d, The
phylogenetic tree against the I9ACTO6 haplotype B shows that six isolates share
the B haplotype. Bootstrap values of over 80% are indicated with blue circles.

~7,600 proteins (-15.5% secreted) between distinct haplotypes, and 122
(21secreted) and 60 (5secreted) proteins between the two copies of the
B and C haplotype, respectively (Supplementary Data1). As over 70%
ofthese proteins lack functional annotation, further work is required
to assess the role of this variation in Pt evolution.

Clonal lineages with the AB and CD haplotypes occur globally

Toinvestigate the origin of the Australian lineages, we used previously
available whole-genome sequencing data from an additional 27 iso-
lates from Australia and New Zealand*>** and 120 worldwide isolates
mostly from North America and Europe** (Supplementary Data1).
A phylogeny derived from SNPs called against the I9NSW04 diploid
genome (Fig. 3) shows very similar topology to a previously reported
phylogeny for the 120 globalisolates*. This largely confirmed the place-
ment of North American isolates into six clades (NA1-6), except for
five isolates originally classified in clades NA1 (99NC; 7 o’clock), NA2
(04GA88-03;2 0’clock), NA3 (11US116-1and 11US019-2; both 4 o’clock)
and NA5 (84MN526-2; 3 o'clock). Inthe previous analysis®*, these isolates
were basal to and significantly diverged from these clusters, consist-
ent with belonging to distinct lineages. We classified the 11US116-1
and 11US019-2 isolates as a separate clade NA7, since results below
indicate that they contain a novel haplotype combination relevant to
the evolution of the North American population. The Australianiso-
late 20QLD87 (AU3; CD haplotype) was placed within the NA3 group,
indicating that it represents a clonal lineage that arrived in Australia
asaresult of intercontinental migration. The AU1 (AB) lineage closely
groups with a Turkish isolate collected in 2009 (09TUR23-1), previ-
ously placedinthe Europeangroup EU2 (ref. 11), suggesting a European

origin of this lineage. The AU2 group (BC) did not cluster with other
globalisolates, consistent with an origin by hybridizationin Australia.
The older Australian isolates cluster in two clonal groups separate
from the recent isolates; AU4 containing isolates collected between
1974 and 1990 (ref. 33); and AUS containing isolates collected between
1984 and 1992 and representing a clonal lineage derived from patho-
type 104-1,2,3,(6),(7),11 first detected as an exotic incursion in 1984
(refs.32,33). The AUS groupis closely related to a Frenchisolate (FR56)
collected in 2004 and part of European clade EU7 (ref. 11).

Clonallineages share haplotypes in distinct combinations

We also constructed phylogenies using SNPs from the individual
A, B,CandD haplotypes toidentify lineages sharing these haplotypes
(Fig. 4 and Extended Data Figs. 4-7). In an A haplotype phylogenetic
tree (Fig.4aand Extended DataFig. 4), the AUl isolates (AB) again form
aclonal clade with the Turkishisolate (09TUR23-1, EU2), but also with
anisolate collected in 2009 from Czech-Slovakia (CZ10-09, EUS5), as well
aswiththe AUS group and the closely related FR56 isolate (EU7 group),
suggesting that these groups all share anucleus with very high similar-
ity to the A haplotype of 1I9ACTO06. In a B haplotype phylogenetic tree
(Fig. 4b and Extended Data Fig. 5), the AU1 (AB) and AU2 (BC) groups
formaclonal clade withisolate 09TUR23-1, again confirming that this
EU2 isolate contains both the A and B haplotypes. In a C haplotype
phylogenetictree (Fig. 4c and Extended DataFig. 6), the AU2 (BC) and
20QLD87 (CD)isolates form a clonal group withisolates from the North
Americanclade 3 (NA3), again confirming their shared C haplotype. The
Chaplotypes of the AU2 isolates are most closely related to 20QLD87,
which is consistent with 20QLD87 representing the parental lineage
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Fig.2|Pt76 (19ACT06) and 1I9NSWO04 share a near-identical copy of haplotype B, and 19NSW04 and 20QLD87 share a near-identical copy of haplotype C.
a, Diagram showing the average identity of genomic alignments and total number of SNPs among haplotypes of 199ACT06,19NSW04 and 20QLD87.b, Dot plot of

genomic alignments showing a single translocation in the I9NSW04 C haplotype.

that donated the C nucleus to this hybrid lineage. Likewise, 20QLD87
(CD) again formed a clonal group including the NA3 isolatesina D
haplotype phylogenetictree (Fig.4d and Extended DataFig.7). However,
thisgroup alsoincluded isolates from the North American clades NA4,
NAS and NA6, suggesting that they all share acommon D haplotype.
The NA3 group (CD) branches from within the NAS5 group, indicating
that the D genome in NA3 is probably derived from a parental isolate
from NAS. The NA4 and NA6 groups branch from older nodes in this
clade, indicating that their D genomes diverged earlier. In addition,
three other North American isolates (99NC, 03VA190, 84MN526 2)
that form singleton branches in the other phylogenetic trees were
closely related and basal to this D genome-containing group, suggest-
ing that they may contain versions of the D haplotype with even older
divergence times (Extended Data Fig. 7). Notably, the two isolates in
group NA7 (11US116-1 and 11US019-2) cluster with the 20QLD87 and

NA3isolates in the C haplotype phylogenetic tree only, suggesting
that they share the C haplotype (Fig. 4c,d). The basal position to the
NA3cladeinthis tree with strongbootstrap supportis consistent with
these isolates representing the other parental lineage donating the C
nuclear haplotype to the NA3 (CD) hybrid. Close examination of the
D genome phylogenetic tree indicates that the NAS group is divided
into two separate branches with strong bootstrap support (Fig. 4d).
Branch 1is ancestral to NA3 consistent with being the D haplotype
donor, while branch 2 diverged more recently from within the NA3
group. This suggests that a subsequent nuclear exchange event may
have occurred in which the D genome of an NA3 isolate was swapped
backinto an NAS isolate to recreate a similar haplotype combination
butwith a different evolutionary history for the D haplotype. A k-mer
containment analysis (Table 1, Extended Data Fig. 8 and Supplemen-
tary Data 1) confirmed these haplotype relationships, with Illumina
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speltoides, outgroup), 03VA190 (unassigned in ref. 34) and three others which are
indisagreement with the clade assignment givenin ref. 34. Pt isolates with fully
phased haplotype genome references are highlighted in grey. Bootstrap values
over 80% are indicated with blue circles. The year of collection for eachisolate is
shown next to the blue bars which indicate time passed since 1950.

reads fromisolates postulated to contain shared haplotypes showing
>99.5shared k-mers and >99.99% k-mer identity for those haplotypes.
Thus, numerous clonal lineages share these four nuclear haplotypes
invarious combinations, suggesting that somatic nuclear exchangeis
commonin Pt populations.

Hybrid lineages of Pt have spread worldwide

Because the whole-genome sequence data used above are biased
towards North American and Australian isolates, we combined this
with arestriction site-associated genotyping by sequencing (GBS) SNP
analysis of 559 isolates representing 11 global regions (North America,
South America, Middle East, Central Asia, Europe, East Africa, Russia,
China, Pakistan, New Zealand and South Africa)®. A phylogenetic tree
constructed from this data (Extended Data Fig. 9) showed an overall

similartopology to the whole-genome tree (Fig. 3) for theisolates and
clades common to both data sets, confirming that this analysis with a
reduced SNP set is robust.

This expanded phylogenetic tree places the AUl isolates (AB hap-
lotype) into a clonal clade containing all 19 isolates of the EU2 lineage,
including 09TUR23-1 (Extended Data Fig. 2a). Although these EU2
isolates were collected in2009, previous studiesidentified isolates of this
pathotype group in Europe in the 1990s (refs. 36-38), suggesting that
itwas present before its first detectionin Australiain 2005. In addition,
isolates of the Central Asian clade CAland Pakistan clade PK3 collected
in 2002 and 2003 fall within this lineage group, suggesting that the
AB genotype lineage is common to Europe, Asia and Australasia.
The AU3/NA3 clonal group included isolates from the European EU8
(Sisolates) and South American SA3 clades (22 isolates) (Extended Data
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A, B, Cand D haplotypes. a-d, Phylogenetic trees were constructed on the basis
of SNPs called against the single haplotypes (Extended Data Figs. 4-7) and sub-
branches of the trees containing isolates with the relevant haplotype reference
are displayed. a,19ACTO06 haplotype A.b, 199NSW04 haplotype B. c,20QLD87

Tree scale: 0.1  ——
D Haplotype B
SCPBJ ISR173B
FCPNS CZ18 09
@FCPSS F95
—— * FCPQQ 95SK2 2
FCPSQ 09TUR23 1
- 19QLDO8
19ACTO6
20ACT90
20QLD91
19NSWO4
19ACTO7
Tree scale: 0.01 =y
PR
D Haplotype D
D NAS5 branch 1

[ NAS5 branch 2

TCPSS 04KS213
MCISS 0aNDaa7
1087

haplotype C.d,20QLD87 haplotype D. Bootstrap values over 80% are indicated
withbluecircles. Clades are indicated next to the name of each isolate (ME,
Middle East; EU, European; AU1-AUS, Australian 1-5; NA1-7, North American 1-7).
The year of collection for each isolate is shown next to the blue bars.

Fig.2b), indicating thatthe CD genotype lineage iscommon to the Ameri-
cas, Europe and Australasia. However, the previously defined EU8 clade
is splitinto two groups in this tree, with the second group (11 isolates)
forming a clonal group with the AU2 (BC) isolates and some isolates
from Pakistan (PK-2 clade). The shared C genome between these two
EU8 subgroups may explain why they were not separated previously
on the basis of simple sequence repeat (SSR) analysis". Importantly,
this suggests that there may have been hybrid BC haplotype isolatesin
Europein2009 before they were detected in Australia, indicating either
independent hybridization events in both continents or migration ofa
hybrid strain from Europe to Australia. This tree also supports a clonal
relationship between the AUS group and all eight isolates of the EU7
clade, confirming the relationship seen with the single EU7 isolate by
FR56 (Fig.3), consistent with introduction of this A haplotype-containing
lineage from Europe to Australia (Extended Data Fig. 2c).

Genetic diversity of the mating type lociin Pt

Mating compatibility in many basidiomycetes is controlled by two
loci. The a locus encodes a pheromone/receptor pair and the b locus
encodes two homeodomain transcription factors, bEast and bWest
(bEand bW)*. However, the role of these loci in either sexual or asexual
compatibility inrust fungi has not been directly determined. Two alleles
(+and-) ofthealocusreceptor (STE3.2and STE3.3 genes, respectively)
are present in each of the Pt genome assemblies on chromosome 9,
with the Band D haplotypes encodingidentical +allelesand the A and
Chaplotypesthe - allele. Whole-genome SNP data showed that all 154
Ptisolates contain both alleles with no more than one or two SNPs in
either gene (Supplementary Data 1). The universal heterozygosity of
these two allelesis consistent with successful dikaryon formation after
somatic hybridization, requiring the presence of different alocus alleles

in the two nuclear haplotypes. In contrast, multiple divergent alleles
of the b locus on chromosome 4 were detected, with the A haplotype
containing the same b2 allele defined from de novo RNAseq assemblies
inracel(ref. 40) and the B, Cand D haplotypes containing additional
allelic variants designated as b3, b4 and bS5, respectively (Extended
DataFig.3 and Supplementary Fig. 8). SNP calling against the 1I9ACT06
(genotype b2/b3) and 20QLD87 (b4/b5) diploid reference genomes, as
well as k-mer containment analysis, confirmed that isolates sharing
the A, B, C or D haplotypes contain the same b locus alleles (b2 to b5)
asthesereference haplotypes (Supplementary Table 7),in some cases
along with an additional undefined divergent allele.

Discussion

Ptis awidely distributed fungus that shows asexual reproduction in
most parts of the world®, with a number of clonal groups common to
Europe, Asia, the Americas and Africa®**. Although somatic genetic
exchange between rust strains was well established in laboratory
infections, its contribution to population diversity in the field has
been largely unknown and debates over whether such exchanges
involved transfer of whole nuclei or parasexual recombination remain
unresolved. Here we found by nuclear haplotype comparisons that
extensive nuclear exchange events without recombination have
occurred in natural populations of the wheat leaf rust fungus Pt and
have given rise to many of the long-term clonal lineages of this patho-
gen common around the world (Fig. 5). Whole-genome comparison of
haplotype-resolved assemblies showed that the most recently emerged
Australian lineage, AU2 (BC nuclear genotype), is derived by nuclear
exchange between members of the AU1 (AB) and AU3 (CD) lineages,
representing the European and North American lineages EU2 and NA3,
respectively. Haplotype-specific phylogenetic and k-mer containment
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Table 1| k-mer genome containment scores against sequencing reads of various Pt isolates and clades

Ptisolate/clades

k-mer identity (%) / shared k-mers (%)

19ACTO6 haplotype A 19NSWO4 haplotype B  19NSWO04 haplotype C 20QLD87 haplotype D Haplotypes present

AU1 100/99.9 100/99.9 99.82/94.4 99.89/96.5 AB

AU2 99.82/94.4 100/100 100/100 99.91/971 B.C
20QLD87 (AU3) 99.81/94.0 99.88/96.2 100/100 100/100 CD

AU5 99.99/99.7 99.87/96.0 99.87/95.9 99.88/96.1 A

AU4 99.87/95.8 99.87/95.9 99.87/95.8 99.90/96.9 Unidentified
09TUR231 99.99/99.8 99.99/99.9 99.90/96.9 99.94 /981 A.B

FR56 99.99/99.7 99.93/97.8 99.90/97.0 99.92/974 A

CZ10_09 99.99/99.7 99.95/98.3 99.92/97.3 99.94 /98.2 A

NA1 99.85/95.5 99.91/97.2 99.91/97.3 99.94 /981 Unidentified
NA2 99.88/96.1 99.89/96.4 99.93/97.8 99.92/97.4 Unidentified
NA3 99.80/937 99.87/96.0 99.99/99.8 99.99/99.7 CD

NA4 9974 /921 99.88/96.3 9978 /93.2 99.99/99.6 D

NA5 branch 1 99.80/93.9 99.88/96.1 99.90/97.0 99.99/99.6 D

NA5 branch 2 99.83/94.5 99.89/96.5 99.93/977 99.99/99.6 D

NA6 99.81/941 99.87/96.0 99.86/95.6 99.99/99.6 D

NA7 99.79/93.6 99.86/95.7 99.99/99.5 99.91/97.3 C

Durum 9978 /931 99.66 /89.9 99.77/92.8 99.67/90.0 Unidentified
Middle East (ISR173B) 99.79/93.6 99.91/97.0 99.78 /93.0 99.86/95.7 Unidentified
Other European isolates 99.87/96.1 99.92/976 99.85/95.5 99.89/96.4 Unidentified

We report both the fraction of bases in the k-mers that are shared between the genome and the sequencing reads (termed ‘k-mer identity’) and the k-mers that are shared between the genome
and the sequencing read set (termed ‘shared k-mers). Bold entries indicate a haplotype genome considered to be fully contained in the sequencing reads of an isolate (k-mer identity 299.99%,

shared k-mers 299.5%).

exchange
~1990

~2012

Fig. 5| Nuclear exchange events have shaped global Pt lineages. The North
American 3 (NA3) lineage most probably arose from somatic hybridization
involving anisolate of the North American 5 (NA5) group which donated the

D genome. The North American 7 (NA7) clonal group contains the C haplotype
and could represent the parental lineage donating this haplotype to NA3. The

NA3 lineage subsequently spread to other parts of the world, including Australia.
The Australian 2 lineage (AU2, BC nuclear genotype) probably arose from somatic
hybridization of the AB lineage (European 2, EU2) with the CD (Australian 3, AU3)
lineage.

analysis further revealed numerous nuclear exchange events between
major clonallineages. Forinstance, the NA3 group (CD), which was first
detected in 1996 as a newly emerged pathotype with a novel virulence
combination*, most probably arose from a nuclear exchange event
involving anisolate of the NA5S group donating the D genome. The NA4,
NAS5 and NAG6 lineages all share the D haplotype, and include isolates
collected in the 1950s and 1960s (refs. 9,34), with similar pathotypes
firstdescribedin1920/1921 (ref. 42), suggesting that these lineages were
already prevalentahundred years ago. The NAS lineage also occurredin

South Americadatingback to atleast1981(refs.10,35), while NA3isolates
were first detected there in 1999. Thus, our data are consistent with a
proposal’ that the NA3 group migrated to the Northern US and South
America from Mexico, where similar pathotypes had been detected
earlier in the 1990s, making this a likely location for the hybridization
eventgiving rise to NA3. Two other North Americanisolates (NA7) con-
tain the C haplotype and could represent the other parental lineage
of NA3, as suggested by their basal position to NA3 in the C haplotype
phylogeny (Fig. 4c). However, it is also possible that they are derived
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from NA3 given theirisolationin 2011. NA3 is now the most commonly
isolated pathotype group in US surveys®, and someisolates from Europe
(collectedin2004 and 2009) and Pakistan (2010-2014) clustered with
NA3 by both SSRand GBS SNP genotypes (Extended DataFigs.2and 9),
indicating that this hybrid lineage has spread worldwide.

Inaddition to the above, two European lineages (EU5 and EU7, the
latter including the Australian AU5 lineage) contain the A haplotype,
expanding the set of global lineages related by nuclear exchange events
toatleast13 of the 17 major lineages examined here. Thus, these events
seem to be very common in global populations of Pt, which are domi-
nated by isolates with different combinations of a relatively small
number of haploid genotypes. Given this high frequency of nuclear
exchange, there is the potential for repeated shuffling of haplotypes
within populations re-creating the same haplotype combinations
in different locations or times. For example, Fig. 4 suggests that one
branch of the NAS5 group may contain a D nucleus derived from the
NA3 (CD) group by a subsequent hybridization event, effectively
exchanging related but slightly diverged D genomes between these
lineages.Indeed, the NA3 lineage phylogenies derived fromthe Cand D
haplotypes (Fig. 4c,d) show several incongruities, which could occur
ifmembers of this lineage have undergone repeated exchanges of the
CandDnuclei. Furthermore, Extended Data Fig. 2a suggests that some
Europeanisolates from 2009 are closely related to the AU2 (BC) group,
suggesting that this haplotype combination may have been generated
independently in Europe and Australia, althoughitis also possible that
the hybrid lineage originated in Europe and coincidently migrated to
Australia after the AB and CD parental linages.

Early studies onlaboratory-induced somatic exchange resultedin
competing hypothesesinvolving exchange of intact nuclei of opposite
mating types (M. lini, P. coronata f. sp. avenae and P. recondita)"® or
parasexual recombination (P. recondita)*’. Hybrids obtained in flax
rust M. lini contained only parental nuclear combinations of alleles of
several Auvr loci, consistent with the former hypothesis, but the lack
of molecular markers meant that this could not be resolved in other
rust fungi. The haplotype-specific genome data here show clearly
thatnorecombination occurredinthe generation of the BC genotype
(AU2 lineage) in either of the parental isolates before donation of
their nuclei, or in the hybrid line subsequent to the exchange event.
Likewise, the presence of the C and D haplotypes in separate nuclei of
20QDL87,along with the entire D haplotypein NA4 and NA6, indicates
norecombination either inthe parental or hybrid isolates. Similar con-
siderations apply to the shared A haplotypein AU1, EU5and EU7/AUS,
as well as the hybrid lineages of Pgt including Ug99 (ref. 22). All of the
Ptisolatesrelated by hybridization contain two opposite alleles (+/-) at
the a mating type locus, consistent with this being arequirement for a
viable hybrid. Thus, itappears that somatic hybridizationin Pt and Pgt
typically involves whole nuclear exchange without recombination. The
highimpactof nuclear exchange inthese species may be aconsequence
of the absence of sexual hosts in most wheat growing areas, resulting
in populations consisting of long-lived clonal lineages.

Generating haplotype-phased genome references for additional
globalrustisolates will help to confirm the proposed origins of nuclear
haplotypes and identify other prevalent haplotypes. The latest ver-
sion of hifiasm*® incorporating Hi-C data into PacBio HiFi assembly
greatly facilitates rapid generation of accurate nuclear haplotypes,
with only three phase-switch artefacts detected by NuclearPhaser*
across the three raw Pt genome assemblies. This compares to 31 and
33 phase-switch contigs in the PacBio Canu assemblies of Pgt21-0
and Pca203, respectively”>”, and 14 and 17 phase-switch contigs in
the PacBio-HiFi assemblies of 199ACTO06 using hifiasm (without Hi-C
data) and HiCanu, respectively**. FALCON-Phase** can also incorpo-
rate Hi-C data, but a chromosome-level haplotype-separated assem-
bly generated for Pt64 (ref. 45) with this assembler was not assessed
for potential phase switches and chromosomes were assigned to
pseudo-haplotypes without using Hi-C contact information, which

may therefore contain chromosomes from each nucleus. Another Pt
isolate chromosome-scale reference was assembled using Hi-C reads
from Pt76 and Pt64 and is thus not phased*.

Although duplicated pycnial fertilization events during sexual
reproduction could give rise to progeny sharing a single common
nucleus®, thisis an untenable explanation for the multiple haplotypes
shared between global lineages in Pt and Pgt** since it requires that
all such lineages were generated by simultaneous cross-fertilization
events. This is not consistent with the recent emergence of the CD
and BClineages of Ptin the 1990s and 2010s, compared with the NA4,
NAS5 and NA6 lineages dating back over 100 yr. The phylogenetic data
also supportdifferent divergence times of the common haplotypesin
these lineages, rather than divergence from a single common ances-
tor. Similar observations apply to shared haplotypesin Pgtlineages®.

Methods

Sampling and pathotyping of the Ptisolates

Rust-infected samples from wheat cultivar Morocco were collected in
2019 and 2020 from the CSIRO field sitein Canberra, Australian Capital
Territory (19ACTO7 and 20ACT90) and from the wheat cultivar Gre-
nadeinafield atthe Department of Primary Industries, Wagga Wagga,
New South Wales (1I9NSWO04). Three samples were collected in2019/20
from anunknown wheat cultivar in Warwick, Queensland (20QLD87) or
Gatton, Queensland (19QLD08 and 20QLD91). The 19ACTO6isolate was
sampled as previously described. Pt cultures were purified through
single pustuleisolation and pathotyped using the standard Australian
wheat differential sets carrying unique resistance genes and nomen-
clature for leaf rust*® (Supplementary Table 8).

PacBio HiFi DNA and Hi-C sequencing

High molecular DNA from urediniospores was extracted as previously
described**’. DNA quality was assessed with a Nanodrop spectro-
photometer (Thermo Scientific) and the concentration quantified
using abroad-range assay ina Qubit 3.0 fluorometer (Invitrogen). DNA
library preparation (10-15 kb fragments Pippin Prep) and sequencing
in PacBio Sequel Il Platform (One SMRT Cell 8M) were performed by
the Australian Genome Research Facility (AGRF) (St Lucia, Queensland,
Australia) following manufacturer guidelines. For DNA crosslinking and
subsequent Hi-C sequencing, 100 mg of urediniospores was suspended
in 4 ml 1% formaldehyde, incubated at r.t. for 20 min with periodic
vortexing. Glycine was added to 1 g per 100 ml and the suspension
was centrifuged at1,000 gfor 1 minand the supernatant was removed.
Spores were then washed with H,O, centrifuged at1,000 gfor 1 minand
the supernatantremoved. The spores were then transferred to aliquid
nitrogen-cooled mortar and ground before being stored at -80 °C or
ondry ice. After treatment, spores were shipped to Phase Genomics
(Seattle, Washington, USA) for Hi-Clibrary preparation and sequencing.

Illuminashort-read whole-genome sequencing of Ptisolates
Genomic DNA was extracted from 30 mg of urediniospores per isolate
using the Omniprep DNA isolation kit (G-Biosciences). DNA concentra-
tionwas determined using a Qubit 3.0 fluorometer (LifeTechnologies)
before submission for whole-genome sequencing. A transposase-based
library was prepared for each sample with DNA Prep (M) tagmentation
kit (Ilumina) at the AGRF following manufacturer guidelines. DNA
sequencing was completed at AGRF using a NovaSeq S4, 300 cycles
platform (Illumina) to produce 150 bp paired-end reads.

Genome assembly and scaffolding

The HiFireads of theisolates1I9NSW04 and 20QLD87 were assembled
using hifiasm 0.16.1in Hi-C integration mode and with default param-
eters (1I9NSW04:15.2 Gb HiFireads and 34.8 Gb Hi-C reads; 20QLD87:
12.3 Gb HiFireads and 43.9 Gb Hi-C reads)*°. Contaminants were identi-
fiedusing sequence similarity searches (BLAST 2.11.0-dbnt-evalue le-5-
perc_identity 75) (ref. 50). HiFi reads were aligned to the assembly with
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minimap22.22 (-ax map-hifi —secondary=no)* and contig coverage was
called using bbmap’s pileup.sh tool on the minimap2 alignment file
(http://sourceforge.net/projects/bbmap/). All contaminant contigs,
contigs with less than 5x coverage and the mitochondrial contigs were
removed from the assembly. BUSCO completeness was assessed with
v.3.0.2 (-Ibasidiomycota_odb9 -sp coprinus) and Augustus parameters
pre-trained on the Pt76 (19ACT06) assembly**. The HiFi reads of Pt76
isolate were re-assembled using hifiasm 0.16.1 in Hi-C integration
mode and with default parameters to assess improvement in phasing
compared to the previously published HiCanu assembly*.

Phasing of the assembled haplotypes was confirmed using the
NuclearPhaser pipeline v.1.1 (MAPQ = 30; https://github.com/JanaSper-
schneider/NuclearPhaser)*. Hi-C data provide a strong nuclear origin
signal reflecting the physically separate nuclei in the dikaryon, with
~90% of trans and >99% of cis and trans Hi-C links occurring within a
nucleus in the Pt assemblies, similar to those of Pgt and Pca™* as well
as other fungal dikaryons®. The low level (<10%) of Hi-C trans read
pairs mappingacross haplotypes could result from disruption of some
nuclei during chromatin crosslinking, ligation of non-crosslinked DNA
fragments or mapping of reads to haplotype-collapsed or highly similar
regions (Supplementary Fig. 2b).

The HiFi reads of the 20QLD87 isolate were also assembled with
HiCanu 2.2.0 to confirm phase-switch boundaries (genomeSize=120 m
-pacbio-hifi)?’, and contigs were aligned to the hifiasm assembly with
minimap2 (ref. 51). Per-base consensus quality scores for the assemblies
were obtained using Merqury (1.3) (ref. 53).

We curated nuclear-phased chromosomes for each assembly by
scaffolding the two haplotypes separately and then further joined
scaffoldsinto chromosomes through visual inspection of Hi-C contact
maps. For scaffolding of the individual haplotypes, the Hi-C reads were
mapped to each haplotype using BWA-MEM (0.7.17) (ref. 54) and align-
ments were then processed with the Arima Genomics pipeline (https://
github.com/ArimaGenomics/mapping_pipeline/blob/master/01_map-
ping_arima.sh). Scaffolding was performed using SALSA (2.2) (ref. 55).
Hi-C contact maps were produced using Hi-C-Pro 3.1.0 (MAPQ =10)
(ref.56) and Hicexplorer (3.7.2) (ref. 57).

Gene prediction and repeat annotation

De novo repeats were predicted with RepeatModeler 2.0.2a and the
option-LTRStruct™. RepeatMasker 4.1.2p1 (-s-engine ncbi) (http:/www.
repeatmasker.org) was run with the RepeatModeler library to obtain
statistics aboutrepetitive element content. For gene prediction, Repeat-
Masker was run with the RepeatModeler library and the options -s (slow
search) -nolow (does not mask low_complexity DNA or simple repeats)
-enginencbi. RNAseq reads from Pt76 (ref.24) were aligned to the genome
using HISAT2 2.1.0 (-max-intronlen 3000 -dta)*, and genome-guided
Trinity 2.8.4 (—jaccard_clip -genome_guided_bam -genome_guided_
max_intron 3000) was used to assemble transcripts®. We then aligned
eachRNAseqsampletotheindividual haplotype chromosomesaswellas
the unplaced contigs using HISAT2 (v.2.1.0 -max-intronlen 3000 -dta)*.
We used StringTie 2.1.6 (-s1-m50 -M1) to assemble transcripts for each
sample®. The transcripts of the ungerminated and germinated spore
samples were merged into a spore transcript set for each haplotype
chromosome as well as the unplaced contigs using StringTie (-merge).
Thetranscripts of theinfection timepoint samples were merged intoan
infection transcript set for each haplotype chromosome as well as the
unplaced contigs using StringTie (-merge).

Funannotate (1.8.5) (ref. 62) was run to train PASA (funannotate
update) with the preassembled Trinity transcripts as input®’. Coding-
Quarry (2.0) (ref. 64) was run in pathogen mode, once on the infec-
tion transcripts and once on the spore transcripts. For the infection
transcripts, we merged the predicted genes, the predicted pathogen
genes and the predicted dubious gene setinto the final CodingQuarry
infection gene predictions. For the spore transcripts, we merged the
predicted genes, the predicted pathogen genes and the predicted

dubious gene setinto the final CodingQuarry spore gene predictions.
We then ran funannotate predict (-ploidy 2 —optimize_augustus -
busco_seed_species ustilago -weights pasa:10 codingquarry:0) and
supplied Trinity transcripts and Pucciniomycotina EST clusters down-
loaded from the JGI MycoCosm website (http://genome.jgi.doe.gov/
pucciniomycotina/pucciniomycotina.info.html). We also supplied our
CodingQuarry predictions to funannotate with the option -other_gff
and set the weight of the CodingQuarry infection gene predictions to 20
and the weight of the CodingQuarry spore gene predictions to 2. After
the funannotate gene predictions, we ran funannotate update followed
by an open reading frame (ORF) prediction to capture un-annotated
genesthatencode secreted proteins. First, weran TransDecoder 5.5.0
(https://github.com/TransDecoder/TransDecoder) on the StringTie
infection transcripts (TransDecoder.LongOrfs -m50 and TransDe-
coder.Predict -single_best_only). We selected ORFs that have a start
and stop codon (labelled as ‘complete’) and predicted those that have
asignal peptide (SignalP 4.1 -u 0.34 -U 0.34) and no transmembrane
domains outside the N-terminal signal peptide region (TMHMM 2.0)
(refs. 65,66). We added genes encoding secreted proteins to the annota-
tionusing agat_sp_fix_overlaping_genes.pl®’, which createsisoforms for
genes withoverlapping coding sequence. Inline with funannotate, we
did notinclude genes encoding secreted proteins that are >90% con-
tainedinarepetitive regioninthefinal annotation. Functional annota-
tion of proteins was predicted using InterProScan (5.56-89.0) (ref. 68).

Genome comparisons and k-mer containment screening
Thehaplotype chromosomes were comparedto each other withmummer
4.0.0rcl, using nucmer and dnadiff®. The dnadiff VCF files were used in
SNPeff5.1to assess the impact of variants on coding regions’. Genomic
dot plots were produced using D-GENIES™. Mash (2.3) (ref. 72) was used
for k-mer containment screening (mash screen with sketch settings -s
500000 -k 32). Mash returns both the fraction of bases in the k-mers
that are shared between the genome and the sequencing reads (termed
‘k-mer identity’) and the k-mersthat are shared betweenthe genome and
thesequencingread set (termed ‘shared k-mers). We also calculated the
averages of k-mer containment across clades. Genome plots were drawn
usingkaryoploteR and gggenes (https://wilkox.org/gggenes/).

Phylogenetic trees and mating type loci

lllumina reads were downloaded from NCBI and cleaned with trim-
momatic (v.0.38) (ref. 73) and then aligned against the diploid
chromosome assemblies using BWA-MEM (0.7.17) (ref. 54). The align-
ment files of our seven isolates were filtered for minimum quality
30 as the coverage was substantially higher than for the alignments
of the other global isolates. SNPs were called using FreeBayes 1.3.5
(-use-best-n-alleles 6 —ploidy 2) in parallel mode™ against the diploid
chromosomes and the individual haplotype chromosomes. SNPs were
filtered using vcffilter of VCFlib1.0.1 (https://github.com/vcflib/vcflib)
with the parameter -f‘QUAL >20 & QUAL/AO >10 & SAF > 0 &SAR>0 &
RPR>1&RPL>1&AC > 0’. Bi-allelic SNPs were selected using vcftools
(-min-alleles 2 -max-alleles 2 -max-missing 0.9 -maf 0.05) (ref. 75) and
converted tomultiple sequence alignmentin PHYLIP format using the
vef2phylip script™. Phylogenetic trees were constructed using RAXML
(8.2.12)”". We generated 500 bootstrap trees (-f a-# 500 -m GTRCAT)
and a maximume-likelihood tree (-D), and incorporated these models
into afinal tree (-fb -z -t -m GTRCAT). Phylogenetic trees were visual-
ized iniTOL (v.6) (ref. 78) with the isolate ISR850 as the outgroup. We
used the publicly available GBS SNP vcffile (https://conservancy.umn.
edu/handle/11299/208672) and the genomic Illumina data to build
a phylogenetic tree as follows. Since the GBS SNP data were derived
from mapping to the Pt ASM15152v1 draft assembly®, we mapped
the whole-genome sequence data of the 154 isolates onto this refer-
ence and extracted SNP genotypes on a set of 631 polymorphic sites
that were represented in both data sets. First, we mapped the clean
llluminareadsto the Pt ASM15152v1 draft assembly downloaded from
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https://fungi.ensembl.org/Puccinia_triticina/Info/Index®.SNPs were
calledas described above. We intersected the GBS SNP vcffile with the
Illumina SNP file using beftools isec’” and kept SNPs shared by both
files. Phylogenetic trees were constructed as described above.

Thebl-b5proteins were aligned using mafft (7.4.90) (ref. 80) and
aphylogenetic tree was built using iqtree22.2.0.8 (-B1000 -alrt 1000)
(ref. 81), visualized and midpoint-rooted in iTOL (v.6) (ref. 78). SNP
statistics were collected using bcftools stats and coverage statistics
using samtools coverage’.

Reporting summary
Furtherinformation onresearch designisavailableinthe Nature Port-
folio Reporting Summary linked to this article.

Data availability

Allsequence dataand assemblies generated in this study are available
at NCBI BioProject PRJNA902835. Sequencing reads, assemblies and
gene annotation filesare also available at the CSIRO Data Access Portal
(https://data.csiro.au/collection/csiro:57097).
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(A)
Extended Data Fig. 2| Pruned phylogenetic trees of SNP genotypes shared
between GBS and whole-genome data. The left color strip indicates which
isolates have whole-sequencing data and their lineage assignment. The right

color strip indicates which isolates have GBS data and their lineage assignment™.

(a) The part of the tree that contains the Australian AUl isolates also contains
the EU2 lineage as well as clades from Central Asia and Pakistan, suggesting

FBPSQFRES =Y
ISk -1 THDSQ $1350
|GBRG3.1.1 FBMSQ S1315
[EGY-31.C THISO S1336
IKEN 11D17.2 TCBSS $1373

this lineage is common to this broad geographical region. The Australian AU2
isolates cluster with one group of the European clade EUS. (b) The Australian AU3
isolate is again placed with the North American clade NA3. (c) The Australian AU5
isolates group with the EU7 lineage, whereas the AU4 isolates group only with
threeisolates from New Zealand. Full tree is shown in Extended Data Fig. 9.
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Extended Data Fig. 3| Chromosome location and phylogenetic trees of the mating type proteins bE and bW. (a) Five variants of the b genes are present in the
listed Ptisolates on chromosome 4 and in the race 1 reference genome*. (b) The b2 proteins in race 1are shared with the 19ACT06 haplotype A. Bootstrap values are

shown.
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Extended Data Fig. 4| Haplotype-specific phylogeny of global isolates. Phylogenetic tree of global isolates against I9ACTO6 haplotype A.
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Extended DataFig. 5| Haplotype-specific phylogeny of global isolates. Phylogenetic tree of global isolates against I9NSWO04 haplotype B.
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Extended Data Fig. 6 | Haplotype-specific phylogeny of global isolates. Phylogenetic tree of global isolates against 20QLD87 haplotype C.
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Extended Data Fig. 7| Haplotype-specific phylogeny of global isolates. Phylogenetic tree of global isolates against 20QLD87 haplotype D.
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Extended Data Fig. 8 | k-mer genome containment scores of [llumina
sequencing reads against the four haplotypes. Identity is the percentage
ofbases that are shared between the genome and the sequencing reads.
Shared k-mersis the percentage of k-mers shared between the genome and the

sequencing reads. Two red lines indicate above which thresholds we consider
ahaplotype genome to be fully contained in the sequencing reads of anisolate
(identity >=99.99%, shared k-mers >=99.5%). The averages are shown for clades.
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Extended Data Fig. 9 | Full phylogenetic trees of SNP genotypes shared between GBS and whole-genome data. The top color strip indicates which isolates have
whole-sequencing data and their lineage assignment. The bottom color strip indicates which isolates have GBS data and their lineage assignment™.
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Data collection  We used the following software as described in the Methods section:
hifiasm 0.16.1 , BLAST 2.11.0, minimap2 2.22, BUSCO 3.0.2, HiCanu 2.2.0, Merqury 1.3, BWA-MEM 0.7.17, bbmap, SALSA 2.2, HiC-Pro 3.1.0,
Hicexplorer 3.7.2, RepeatModeler 2.0.2a, RepeatMasker 4.1.2p1, HISAT2 2.1.0, Trinity 2.8.4, StringTie 2.1.6 , Funannotate 1.8.5, CodingQuarry
2.0, TransDecoder 5.5.0, SignalP 4.1, TMHMM 2.0, InterProScan 5.56-89.0, mummer 4.0.0rc1, SNPeff 5.1, bbmap, Mash 2.3, FreeBayes 1.3.5,
trimmomatic v0.38, RAXML 8.2.12, mafft 7.4.90, igtree2 2.2.0.8

Data analysis Phasing of the assembled haplotypes was confirmed with the NuclearPhaser pipeline version 1.1 (https://github.com/JanaSperschneider/
NuclearPhaser) (Duan et al., 2022).
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- For clinical datasets or third party data, please ensure that the statement adheres to our policy

All sequence data and assemblies generated in this study are available at the NCBI BioProject PRINA902835 (https://www.ncbi.nlm.nih.gov/bioproject/
PRINA902835). Sequencing reads, assemblies and gene annotation files are also available at the CSIRO Data Access Portal (https://data.csiro.au/collection/
csiro:57097).
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Reporting on sex and gender N/A

Population characteristics N/A
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Ethics oversight N/A
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Sample size No sample size calculation was performed, instead we collected leaf rust samples from the field which represent the three prevalent lineages
of leaf rust in Australia. We supplemented this with all publicly available sequencing data from different global regions.

Data exclusions  We checked all publicly available sequencing data for quality (coverage, allele frequencies). No data was excluded.
Replication All computational analysis was successfully replicated multiple times, and code review was undertaken.
Randomization | For analysis of the sequencing data, randomization is not applicable.

Blinding Not applicable.
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