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Nuclear exchange generates population 
diversity in the wheat leaf rust pathogen 
Puccinia triticina

Jana Sperschneider    1 , Tim Hewitt    1, David C. Lewis1, 
Sambasivam Periyannan1,4, Andrew W. Milgate    2, Lee T. Hickey    3, 
Rohit Mago    1, Peter N. Dodds    1  & Melania Figueroa    1 

In clonally reproducing dikaryotic rust fungi, non-sexual processes such as 
somatic nuclear exchange are postulated to play a role in diversity but have 
been difficult to detect due to the lack of genome resolution between the 
two haploid nuclei. We examined three nuclear-phased genome assemblies 
of Puccinia triticina, which causes wheat leaf rust disease. We found that the 
most recently emerged Australian lineage was derived by nuclear exchange 
between two pre-existing lineages, which originated in Europe and  
North America. Haplotype-specific phylogenetic analysis reveals that 
repeated somatic exchange events have shuffled haploid nuclei between 
long-term clonal lineages, leading to a global P. triticina population 
representing different combinations of a limited number of haploid 
genomes. Thus, nuclear exchange seems to be the predominant mechanism 
generating diversity and the emergence of new strains in this otherwise 
clonal pathogen. Such genomics-accelerated surveillance of pathogen 
evolution paves the way for more accurate global disease monitoring.

Rust fungi (order Pucciniales) cause diseases on important agricultural 
crops and threaten food production and ecosystems. For Puccinia spe-
cies, the asexual (uredinial) phase of their life cycle infects cereal hosts, 
while the sexual phase occurs on different host plants. Thus, rust popu-
lation dynamics varies from highly sexual to exclusively clonal depend-
ing on the presence and abundance of the alternate host1. For instance, 
Puccinia coronata f. sp. avenae (Pca) populations causing oat crown 
rust disease are highly genetically diverse in North America where the 
sexual host buckthorn is prevalent2,3. In contrast, Puccinia graminis 
f. sp. tritici (Pgt) populations that cause wheat stem rust disease are 
clonal in most parts of the world, but local sexual populations occur 
where the alternate host barberry (Berberis spp.) is present4,5. Wheat leaf 
rust disease caused by Puccinia triticina (Pt) results in substantial crop 

losses around the world6,7, with its sexual host, Thalictrum spp., being 
scarce in North America and Europe and absent in Australia8. Genetic 
analyses indicate that global populations of Pt consist of relatively few 
major clonal lineages, with high levels of heterozygosity and linkage 
disequilibrium and low diversity within lineages, consistent with a 
lack of sexual recombination9–12. In Australia, five clonal lineages of Pt 
have been described, apparently derived from exotic incursions13,14.

In the absence of sexual reproduction, evolution of rust fungi is 
limited to mutation and somatic exchange events1. Early laboratory 
studies showed that somatic genetic exchange of virulence genes can 
occur between two rust isolates infecting the same plant15–19, with some 
evidence of somatic hybridization occurring in the field for Pgt and Pt 
based on limited molecular markers20,21. Models proposed for somatic 
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data for 19NSW04 (AU2) and 20QLD87 (AU3) using hifiasm with Hi-C 
integration. Each haplotype assembly was 123–129 Mb in size, highly 
contiguous (L50 > 6 Mb) and with BUSCO completeness of over 95% 
(<5% duplicated) (Supplementary Table 2). The NuclearPhaser pipe-
line24 showed that the haplotype assemblies were nearly perfectly 
nuclear-assigned, with only two contigs larger than 150 kb (1.2 Mb total) 
assigned to the incorrect phase in 19NSW04 and a single mis-assigned 
contig (2.2 Mb) in 20QLD87 (Supplementary Fig. 1), with potential phase 
switches detected in only three contigs from 20QLD87 and none from 
19NSW04. Previously we observed that phase switches occurred at hap-
lotig boundaries22,27 in assemblies generated by Canu28,29, which breaks 
contigs at points of phase ambiguity. However, this was not the case 
in all of these contigs generated by hifiasm which aims to reconstruct 
both homologous haplotypes with high contiguity30. We therefore 
re-assembled the 20QLD87 HiFi reads with HiCanu and found that the 
predicted phase-switch regions in all three hifiasm contigs correspond 
to boundaries between HiCanu haplotigs which also switch phase at 
that site (for example, h1tg000018l; Extended Data Fig. 1a), and these 
coordinates were used as breakpoints to correct the phase switches.

Contig scaffolding resulted in 18 chromosomes for each nuclear 
haplotype of 19NSW04 and 20QLD87 (Supplementary Fig. 2a). Over 
99% of cis and trans Hi-C links occur within a nucleus, supporting 
the correct phasing of homologous chromosomes, with over 90% of 
trans Hi-C links occurring within a nucleus, as previously observed 
for dikaryons22,24,27,31, and supporting the correct nuclear assignment 
of chromosome pairs (Extended Data Fig. 1b–d). The four chromo-
some haplotype assemblies range from 121.8 Mb to 123.8 Mb in length 
(Supplementary Table 3), similar to isolate 19ACT06 (121.6 Mb and 
123.9 Mb) (ref. 24). Additional unplaced contigs are small (L50 of 76.2 
Kb or 38.7 Kb), containing mainly repetitive sequences, especially 
rRNAs, with few genes (Supplementary Table 3). We annotated genes 
in 19NSW04 and 20QLD87 and re-annotated 19ACT06 using a pipeline 
optimized for effector annotation, which identified about 18,000 genes 
in each haploid genotype (Supplementary Table 3). This represented an 
increased number of genes in 19ACT06 from the previously reported 
29,052 (ref. 24) to 36,343 (haplotype A: 17,958 genes; haplotype B: 17,813 
genes), including an increase of 49.1% in annotated genes encoding 
secreted proteins compared with only 18.6% more genes encoding 
non-secreted proteins.

The three lineages share nuclear haplotypes
Genome sequence alignment showed that within each isolate, the two 
separate haplotypes have average sequence identity of 99.50% (diver-
gence 0.50%), with ~303,000 to 334,000 distinguishing SNPs (Fig. 2a 
and Supplementary Table 4). However, one of the 19NSW04 haplotypes 
shares remarkably high sequence similarity with the 19ACT06 B haplo-
type with only 2,966 SNPs and average sequence alignment identity of 
99.99% (divergence 0.01%), while the other 19NSW04 haplotype shares 
similarly high sequence identity (99.99%, 2,182 SNPs) with one of the 
20QLD87 haplotypes. Thus, we assigned the 19NSW04 haplotypes 
as B and C and the 20QLD87 haplotypes as C and D (Supplementary 
Table 2 and Fig. 2a). The 19NSW04 C haplotype contains a transloca-
tion between chromosomes 2 and 6, which is not present in any of the 
other haplotypes, including the 20QLD87 C haplotype (Fig. 2b), and this 
translocation is supported by Hi-C contact maps and HiFi read coverage 
across the breakpoints (Supplementary Fig. 2a). The shared B and C 
haplotypes suggest that these isolates are related by nuclear exchange, 
with the simplest scenario that the AU2 lineage (BC haplotype) arose by 
somatic hybridization between isolates of the AU1 (AB) and AU3 (CD) 
lineages given its most recent detection in Australia13,14,25,26.

Over 80% of SNPs distinguishing the six complete haplotype 
assemblies (including between the two copies of B and C haplotypes) 
occur in repetitive sequences, with only ~10% in coding regions, of 
which ~59% are non-synonymous (Supplementary Tables 5 and 6, and 
Figs. 3–7). This corresponds to coding differences in genes encoding 

hybridization ranged from simple exchange of nuclei of opposite 
mating type to parasexual recombination, but the only genetically 
controlled analysis to discriminate between these possibilities was 
conducted in flax rust (Melampsora lini)17. In this case, no recombina-
tion occurred between several avirulence loci with known nuclear 
genotypes and clear +/− compatibility groups were detected, but this 
was not confirmed in other rust species. However, recent analysis of 
fully nuclear-phased genome assemblies clearly demonstrated that 
somatic exchanges of whole nuclei have contributed to genetic diver-
sity in Pgt22. The Ug99 lineage of Pgt, which emerged in 1998, shares a 
single nucleus-specific haplotype with the much older South African 
Pgt21 lineage, while three other globally dispersed isolates share com-
mon nuclear genotypes with either Pgt21-0 or Ug99. Genome admixture 
analyses suggested that another five Pgt lineages may be derived by 
somatic exchange23. We previously generated a fully nuclear-phased 
chromosome genome assembly for an Australian isolate of Pt (Pt76) 
(ref. 24) and here we extend this to two additional isolates and use 
these references to compare haplotype diversity across a large set of 
sequenced Pt isolates from around the world. This reveals evidence 
of extensive nuclear exchange events underlying the origin of major 
clonal lineages, indicating a very substantial contribution of somatic 
hybridization to population dynamics.

Results
Seven recent Australian Pt isolates form three lineages
Six Australian isolates of Pt collected in 2019 and 2020 exhibited four 
virulence pathotypes (Supplementary Table 1). The 19QLD08 isolate 
shared the same pathotype as Pt76 (=19ACT06) (ref. 24) but with viru-
lence for Lr20. Both of these are identical to pathotypes found in a line-
age derived from pathotype 76-3,5,9,10 + Lr37, first detected in Australia 
in 2005 (refs. 13,14). The 20QLD87 isolate has the same pathotype as a 
lineage (104-1,3,4,6,7,8,9,10,12 + Lr37) first detected in 2014 as an appar-
ent exotic incursion into Australia via New Zealand25. The 20ACT90 
isolate shares a pathotype with the currently predominant lineage 
in Australia (104-1,3,4,5,7,9,10,12 + Lr37), which was first detected in 
2016 (ref. 26), while 19NSW04, 19ACT07 and 20QLD91 share the same 
pathotype but with additional virulence for Lr27/Lr31.

We generated Illumina genomic sequences from these isolates and 
used a k-mer containment analysis to compare their nuclear haplotype 
similarity to the 19ACT06 reference genome24. Figure 1a shows the 
proportion of genome k-mers represented as identical sequences in 
the Illumina data (shared k-mers) against the overall sequence simi-
larity of k-mers to the Illumina data (k-mer identity) for the 19ACT06 
A and B haplotypes. Illumina reads from 19ACT06 and 19QLD08 fully 
contained the k-mers (99.9% shared k-mers and 100.00% overall k-mer 
identity) from both nuclear haplotypes, confirming that these isolates 
are the same clonal lineage. However, while the B haplotype is also fully 
contained in the Illumina reads of 20ACT90, 20QLD91, 19ACT07 and 
19NSW04, the A haplotype is not (only ~94% shared k-mers and 99.80% 
k-mer identity), suggesting that these isolates share the B nuclear 
haplotype with another divergent haplotype (C). Neither the A nor 
the B haplotypes are fully contained in the Illumina reads of 20QLD87 
(94–96% shared k-mers, 99.80–99.87% k-mer identity), suggesting a 
different unknown genomic composition. These relationships were 
confirmed by haplotype-specific phylogenetic trees based on single 
nucleotide polymorphisms (SNPs). In trees based on the full diploid 
genome (Fig. 1b) or the A haplotype (Fig. 1c), these isolates fell into 
three distinct lineages designated AU1 (19ACT06 and 19QLD08), AU2 
(20ACT90, 19NSW04, 19ACT07, 20QLD91) and AU3 (20QLD87). How-
ever, the AU1 and AU2 isolates grouped together in a single closely 
related clade in a tree based on only the B genome SNPs (Fig. 1d).

Nuclear-phased genomes for members of the three lineages
To further analyse haplotype similarity in these isolates, we gener-
ated nuclear-phased genome assemblies with PacBio HiFi and Hi-C 
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~7,600 proteins (~15.5% secreted) between distinct haplotypes, and 122 
(21 secreted) and 60 (5 secreted) proteins between the two copies of the 
B and C haplotype, respectively (Supplementary Data 1). As over 70% 
of these proteins lack functional annotation, further work is required 
to assess the role of this variation in Pt evolution.

Clonal lineages with the AB and CD haplotypes occur globally
To investigate the origin of the Australian lineages, we used previously 
available whole-genome sequencing data from an additional 27 iso-
lates from Australia and New Zealand32,33 and 120 worldwide isolates 
mostly from North America and Europe34 (Supplementary Data 1). 
A phylogeny derived from SNPs called against the 19NSW04 diploid 
genome (Fig. 3) shows very similar topology to a previously reported 
phylogeny for the 120 global isolates34. This largely confirmed the place-
ment of North American isolates into six clades (NA1–6), except for 
five isolates originally classified in clades NA1 (99NC; 7 o’clock), NA2 
(04GA88-03; 2 o’clock), NA3 (11US116-1 and 11US019-2; both 4 o’clock) 
and NA5 (84MN526-2; 3 o’clock). In the previous analysis34, these isolates 
were basal to and significantly diverged from these clusters, consist-
ent with belonging to distinct lineages. We classified the 11US116-1 
and 11US019-2 isolates as a separate clade NA7, since results below 
indicate that they contain a novel haplotype combination relevant to 
the evolution of the North American population. The Australian iso-
late 20QLD87 (AU3; CD haplotype) was placed within the NA3 group, 
indicating that it represents a clonal lineage that arrived in Australia 
as a result of intercontinental migration. The AU1 (AB) lineage closely 
groups with a Turkish isolate collected in 2009 (09TUR23-1), previ-
ously placed in the European group EU2 (ref. 11), suggesting a European 

origin of this lineage. The AU2 group (BC) did not cluster with other 
global isolates, consistent with an origin by hybridization in Australia. 
The older Australian isolates cluster in two clonal groups separate 
from the recent isolates; AU4 containing isolates collected between 
1974 and 1990 (ref. 33); and AU5 containing isolates collected between 
1984 and 1992 and representing a clonal lineage derived from patho-
type 104-1,2,3,(6),(7),11 first detected as an exotic incursion in 1984  
(refs. 32,33). The AU5 group is closely related to a French isolate (FR56) 
collected in 2004 and part of European clade EU7 (ref. 11).

Clonal lineages share haplotypes in distinct combinations
We also constructed phylogenies using SNPs from the individual  
A, B, C and D haplotypes to identify lineages sharing these haplotypes  
(Fig. 4 and Extended Data Figs. 4–7). In an A haplotype phylogenetic 
tree (Fig. 4a and Extended Data Fig. 4), the AU1 isolates (AB) again form 
a clonal clade with the Turkish isolate (09TUR23-1, EU2), but also with 
an isolate collected in 2009 from Czech-Slovakia (CZ10-09, EU5), as well 
as with the AU5 group and the closely related FR56 isolate (EU7 group), 
suggesting that these groups all share a nucleus with very high similar-
ity to the A haplotype of 19ACT06. In a B haplotype phylogenetic tree 
(Fig. 4b and Extended Data Fig. 5), the AU1 (AB) and AU2 (BC) groups 
form a clonal clade with isolate 09TUR23-1, again confirming that this 
EU2 isolate contains both the A and B haplotypes. In a C haplotype 
phylogenetic tree (Fig. 4c and Extended Data Fig. 6), the AU2 (BC) and 
20QLD87 (CD) isolates form a clonal group with isolates from the North 
American clade 3 (NA3), again confirming their shared C haplotype. The 
C haplotypes of the AU2 isolates are most closely related to 20QLD87, 
which is consistent with 20QLD87 representing the parental lineage 
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Fig. 1 | Three distinct lineages and four haplotypes are present in a collection 
of seven Australian Pt isolates. a, k-mer genome containment scores of 
Illumina sequencing reads against the Pt76 (19ACT06) haplotypes. Identity is the 
percentage of bases that are shared between the genome and the sequencing 
reads. Shared k-mers is the percentage of k-mers shared between the genome and 
the sequencing reads. Two red lines indicate thresholds above which we consider 
a haplotype genome to be fully contained in the sequencing reads of an isolate 
(identity ≥99.99%, shared k-mers ≥99.5%). The A haplotype is fully contained in 

the sequencing reads of two isolates (19ACT06, 19QLD08) and the B haplotype 
is fully contained in the sequencing reads of 6 isolates (19ACT06, 19QLD08, 
19ACT07, 19NSW04, 20QLD91, 20ACT90). The 20QLD87 isolate contains neither 
A nor B haplotypes. b, The phylogenetic tree against the combined haplotypes 
19ACT06 A and B indicate three lineages. c, The phylogenetic tree against the 
19ACT06 haplotype A shows that two isolates share the A haplotype. d, The 
phylogenetic tree against the 19ACT06 haplotype B shows that six isolates share 
the B haplotype. Bootstrap values of over 80% are indicated with blue circles.
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that donated the C nucleus to this hybrid lineage. Likewise, 20QLD87 
(CD) again formed a clonal group including the NA3 isolates in a D  
haplotype phylogenetic tree (Fig. 4d and Extended Data Fig. 7). However,  
this group also included isolates from the North American clades NA4, 
NA5 and NA6, suggesting that they all share a common D haplotype. 
The NA3 group (CD) branches from within the NA5 group, indicating 
that the D genome in NA3 is probably derived from a parental isolate 
from NA5. The NA4 and NA6 groups branch from older nodes in this 
clade, indicating that their D genomes diverged earlier. In addition, 
three other North American isolates (99NC, 03VA190, 84MN526_2) 
that form singleton branches in the other phylogenetic trees were 
closely related and basal to this D genome-containing group, suggest-
ing that they may contain versions of the D haplotype with even older 
divergence times (Extended Data Fig. 7). Notably, the two isolates in 
group NA7 (11US116-1 and 11US019-2) cluster with the 20QLD87 and 

NA3 isolates in the C haplotype phylogenetic tree only, suggesting 
that they share the C haplotype (Fig. 4c,d). The basal position to the 
NA3 clade in this tree with strong bootstrap support is consistent with 
these isolates representing the other parental lineage donating the C 
nuclear haplotype to the NA3 (CD) hybrid. Close examination of the 
D genome phylogenetic tree indicates that the NA5 group is divided 
into two separate branches with strong bootstrap support (Fig. 4d). 
Branch 1 is ancestral to NA3 consistent with being the D haplotype 
donor, while branch 2 diverged more recently from within the NA3 
group. This suggests that a subsequent nuclear exchange event may 
have occurred in which the D genome of an NA3 isolate was swapped 
back into an NA5 isolate to recreate a similar haplotype combination 
but with a different evolutionary history for the D haplotype. A k-mer 
containment analysis (Table 1, Extended Data Fig. 8 and Supplemen-
tary Data 1) confirmed these haplotype relationships, with Illumina 
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reads from isolates postulated to contain shared haplotypes showing 
>99.5 shared k-mers and >99.99% k-mer identity for those haplotypes. 
Thus, numerous clonal lineages share these four nuclear haplotypes 
in various combinations, suggesting that somatic nuclear exchange is 
common in Pt populations.

Hybrid lineages of Pt have spread worldwide
Because the whole-genome sequence data used above are biased 
towards North American and Australian isolates, we combined this 
with a restriction site-associated genotyping by sequencing (GBS) SNP 
analysis of 559 isolates representing 11 global regions (North America, 
South America, Middle East, Central Asia, Europe, East Africa, Russia, 
China, Pakistan, New Zealand and South Africa)35. A phylogenetic tree 
constructed from this data (Extended Data Fig. 9) showed an overall 

similar topology to the whole-genome tree (Fig. 3) for the isolates and 
clades common to both data sets, confirming that this analysis with a 
reduced SNP set is robust.

This expanded phylogenetic tree places the AU1 isolates (AB hap-
lotype) into a clonal clade containing all 19 isolates of the EU2 lineage, 
including 09TUR23-1 (Extended Data Fig. 2a). Although these EU2  
isolates were collected in 2009, previous studies identified isolates of this 
pathotype group in Europe in the 1990s (refs. 36–38), suggesting that 
it was present before its first detection in Australia in 2005. In addition, 
isolates of the Central Asian clade CA1 and Pakistan clade PK3 collected 
in 2002 and 2003 fall within this lineage group, suggesting that the  
AB genotype lineage is common to Europe, Asia and Australasia.  
The AU3/NA3 clonal group included isolates from the European EU8  
(5 isolates) and South American SA3 clades (22 isolates) (Extended Data 
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in disagreement with the clade assignment given in ref. 34. Pt isolates with fully 
phased haplotype genome references are highlighted in grey. Bootstrap values 
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http://www.nature.com/naturemicrobiology


Nature Microbiology | Volume 8 | November 2023 | 2130–2141 2135

Article https://doi.org/10.1038/s41564-023-01494-9

Fig. 2b), indicating that the CD genotype lineage is common to the Ameri-
cas, Europe and Australasia. However, the previously defined EU8 clade 
is split into two groups in this tree, with the second group (11 isolates) 
forming a clonal group with the AU2 (BC) isolates and some isolates 
from Pakistan (PK-2 clade). The shared C genome between these two 
EU8 subgroups may explain why they were not separated previously 
on the basis of simple sequence repeat (SSR) analysis11. Importantly, 
this suggests that there may have been hybrid BC haplotype isolates in 
Europe in 2009 before they were detected in Australia, indicating either 
independent hybridization events in both continents or migration of a 
hybrid strain from Europe to Australia. This tree also supports a clonal 
relationship between the AU5 group and all eight isolates of the EU7 
clade, confirming the relationship seen with the single EU7 isolate by 
FR56 (Fig. 3), consistent with introduction of this A haplotype-containing 
lineage from Europe to Australia (Extended Data Fig. 2c).

Genetic diversity of the mating type loci in Pt
Mating compatibility in many basidiomycetes is controlled by two 
loci. The a locus encodes a pheromone/receptor pair and the b locus 
encodes two homeodomain transcription factors, bEast and bWest 
 (bE and bW)39. However, the role of these loci in either sexual or asexual 
compatibility in rust fungi has not been directly determined. Two alleles 
(+ and −) of the a locus receptor (STE3.2 and STE3.3 genes, respectively) 
are present in each of the Pt genome assemblies on chromosome 9, 
with the B and D haplotypes encoding identical + alleles and the A and 
C haplotypes the − allele. Whole-genome SNP data showed that all 154 
Pt isolates contain both alleles with no more than one or two SNPs in 
either gene (Supplementary Data 1). The universal heterozygosity of 
these two alleles is consistent with successful dikaryon formation after 
somatic hybridization, requiring the presence of different a locus alleles 

in the two nuclear haplotypes. In contrast, multiple divergent alleles 
of the b locus on chromosome 4 were detected, with the A haplotype 
containing the same b2 allele defined from de novo RNAseq assemblies 
in race 1 (ref. 40) and the B, C and D haplotypes containing additional 
allelic variants designated as b3, b4 and b5, respectively (Extended 
Data Fig. 3 and Supplementary Fig. 8). SNP calling against the 19ACT06 
(genotype b2/b3) and 20QLD87 (b4/b5) diploid reference genomes, as 
well as k-mer containment analysis, confirmed that isolates sharing 
the A, B, C or D haplotypes contain the same b locus alleles (b2 to b5) 
as these reference haplotypes (Supplementary Table 7), in some cases 
along with an additional undefined divergent allele.

Discussion
Pt is a widely distributed fungus that shows asexual reproduction in 
most parts of the world8, with a number of clonal groups common to 
Europe, Asia, the Americas and Africa34,35. Although somatic genetic 
exchange between rust strains was well established in laboratory 
infections, its contribution to population diversity in the field has 
been largely unknown and debates over whether such exchanges 
involved transfer of whole nuclei or parasexual recombination remain 
unresolved. Here we found by nuclear haplotype comparisons that 
extensive nuclear exchange events without recombination have 
occurred in natural populations of the wheat leaf rust fungus Pt and 
have given rise to many of the long-term clonal lineages of this patho-
gen common around the world (Fig. 5). Whole-genome comparison of 
haplotype-resolved assemblies showed that the most recently emerged 
Australian lineage, AU2 (BC nuclear genotype), is derived by nuclear 
exchange between members of the AU1 (AB) and AU3 (CD) lineages, 
representing the European and North American lineages EU2 and NA3, 
respectively. Haplotype-specific phylogenetic and k-mer containment 
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analysis further revealed numerous nuclear exchange events between 
major clonal lineages. For instance, the NA3 group (CD), which was first 
detected in 1996 as a newly emerged pathotype with a novel virulence 
combination41, most probably arose from a nuclear exchange event 
involving an isolate of the NA5 group donating the D genome. The NA4, 
NA5 and NA6 lineages all share the D haplotype, and include isolates  
collected in the 1950s and 1960s (refs. 9,34), with similar pathotypes 
first described in 1920/1921 (ref. 42), suggesting that these lineages were 
already prevalent a hundred years ago. The NA5 lineage also occurred in 

South America dating back to at least 1981 (refs. 10,35), while NA3 isolates 
were first detected there in 1999. Thus, our data are consistent with a 
proposal10 that the NA3 group migrated to the Northern US and South 
America from Mexico, where similar pathotypes had been detected 
earlier in the 1990s, making this a likely location for the hybridization 
event giving rise to NA3. Two other North American isolates (NA7) con-
tain the C haplotype and could represent the other parental lineage 
of NA3, as suggested by their basal position to NA3 in the C haplotype 
phylogeny (Fig. 4c). However, it is also possible that they are derived 

Table 1 | k-mer genome containment scores against sequencing reads of various Pt isolates and clades

Pt isolate/clades k-mer identity (%) / shared k-mers (%)

19ACT06 haplotype A 19NSW04 haplotype B 19NSW04 haplotype C 20QLD87 haplotype D Haplotypes present

AU1 100 / 99.9 100 / 99.9 99.82 / 94.4 99.89 / 96.5 A,B

AU2 99.82 / 94.4 100 / 100 100 / 100 99.91 / 97.1 B,C

20QLD87 (AU3) 99.81 / 94.0 99.88 / 96.2 100 / 100 100 / 100 C,D

AU5 99.99 / 99.7 99.87 / 96.0 99.87 / 95.9 99.88 / 96.1 A

AU4 99.87 / 95.8 99.87 / 95.9 99.87 / 95.8 99.90 / 96.9 Unidentified

09TUR23_1 99.99 / 99.8 99.99 / 99.9 99.90 / 96.9 99.94 / 98.1 A,B

FR56 99.99 / 99.7 99.93 / 97.8 99.90 / 97.0 99.92 / 97.4 A

CZ10_09 99.99 / 99.7 99.95 / 98.3 99.92 / 97.3 99.94 / 98.2 A

NA1 99.85 / 95.5 99.91 / 97.2 99.91 / 97.3 99.94 / 98.1 Unidentified

NA2 99.88 / 96.1 99.89 / 96.4 99.93 / 97.8 99.92 / 97.4 Unidentified

NA3 99.80 / 93.7 99.87 / 96.0 99.99 / 99.8 99.99 / 99.7 C,D

NA4 99.74 / 92.1 99.88 / 96.3 99.78 / 93.2 99.99 / 99.6 D

NA5 branch 1 99.80 / 93.9 99.88 / 96.1 99.90 / 97.0 99.99 / 99.6 D

NA5 branch 2 99.83 / 94.5 99.89 / 96.5 99.93 / 97.7 99.99 / 99.6 D

NA6 99.81 / 94.1 99.87 / 96.0 99.86 / 95.6 99.99 / 99.6 D

NA7 99.79 / 93.6 99.86 / 95.7 99.99 / 99.5 99.91 / 97.3 C

Durum 99.78 / 93.1 99.66 / 89.9 99.77 / 92.8 99.67 / 90.0 Unidentified

Middle East (ISR173B) 99.79 / 93.6 99.91 / 97.0 99.78 / 93.0 99.86 / 95.7 Unidentified

Other European isolates 99.87 / 96.1 99.92 / 97.6 99.85 / 95.5 99.89 / 96.4 Unidentified

We report both the fraction of bases in the k-mers that are shared between the genome and the sequencing reads (termed ‘k-mer identity’) and the k-mers that are shared between the genome 
and the sequencing read set (termed ‘shared k-mers). Bold entries indicate a haplotype genome considered to be fully contained in the sequencing reads of an isolate (k-mer identity ≥99.99%, 
shared k-mers ≥99.5%).
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from NA3 given their isolation in 2011. NA3 is now the most commonly 
isolated pathotype group in US surveys12, and some isolates from Europe 
(collected in 2004 and 2009) and Pakistan (2010–2014) clustered with 
NA3 by both SSR and GBS SNP genotypes (Extended Data Figs. 2 and 9), 
indicating that this hybrid lineage has spread worldwide.

In addition to the above, two European lineages (EU5 and EU7, the 
latter including the Australian AU5 lineage) contain the A haplotype,  
expanding the set of global lineages related by nuclear exchange events 
to at least 13 of the 17 major lineages examined here. Thus, these events 
seem to be very common in global populations of Pt, which are domi-
nated by isolates with different combinations of a relatively small 
number of haploid genotypes. Given this high frequency of nuclear 
exchange, there is the potential for repeated shuffling of haplotypes 
within populations re-creating the same haplotype combinations 
in different locations or times. For example, Fig. 4 suggests that one 
branch of the NA5 group may contain a D nucleus derived from the 
NA3 (CD) group by a subsequent hybridization event, effectively 
exchanging related but slightly diverged D genomes between these 
lineages. Indeed, the NA3 lineage phylogenies derived from the C and D  
haplotypes (Fig. 4c,d) show several incongruities, which could occur 
if members of this lineage have undergone repeated exchanges of the  
C and D nuclei. Furthermore, Extended Data Fig. 2a suggests that some 
European isolates from 2009 are closely related to the AU2 (BC) group, 
suggesting that this haplotype combination may have been generated 
independently in Europe and Australia, although it is also possible that 
the hybrid lineage originated in Europe and coincidently migrated to 
Australia after the AB and CD parental linages.

Early studies on laboratory-induced somatic exchange resulted in 
competing hypotheses involving exchange of intact nuclei of opposite 
mating types (M. lini, P. coronata f. sp. avenae and P. recondita)17,18 or 
parasexual recombination (P. recondita)43. Hybrids obtained in flax 
rust M. lini contained only parental nuclear combinations of alleles of 
several Avr loci, consistent with the former hypothesis, but the lack 
of molecular markers meant that this could not be resolved in other 
rust fungi. The haplotype-specific genome data here show clearly 
that no recombination occurred in the generation of the BC genotype 
(AU2 lineage) in either of the parental isolates before donation of 
their nuclei, or in the hybrid line subsequent to the exchange event. 
Likewise, the presence of the C and D haplotypes in separate nuclei of 
20QDL87, along with the entire D haplotype in NA4 and NA6, indicates 
no recombination either in the parental or hybrid isolates. Similar con-
siderations apply to the shared A haplotype in AU1, EU5 and EU7/AU5, 
as well as the hybrid lineages of Pgt including Ug99 (ref. 22). All of the 
Pt isolates related by hybridization contain two opposite alleles (+/−) at 
the a mating type locus, consistent with this being a requirement for a 
viable hybrid. Thus, it appears that somatic hybridization in Pt and Pgt 
typically involves whole nuclear exchange without recombination. The 
high impact of nuclear exchange in these species may be a consequence 
of the absence of sexual hosts in most wheat growing areas, resulting 
in populations consisting of long-lived clonal lineages.

Generating haplotype-phased genome references for additional 
global rust isolates will help to confirm the proposed origins of nuclear 
haplotypes and identify other prevalent haplotypes. The latest ver-
sion of hifiasm30 incorporating Hi-C data into PacBio HiFi assembly 
greatly facilitates rapid generation of accurate nuclear haplotypes, 
with only three phase-switch artefacts detected by NuclearPhaser24 
across the three raw Pt genome assemblies. This compares to 31 and 
33 phase-switch contigs in the PacBio Canu assemblies of Pgt21-0 
and Pca203, respectively22,27, and 14 and 17 phase-switch contigs in 
the PacBio-HiFi assemblies of 19ACT06 using hifiasm (without Hi-C 
data) and HiCanu, respectively24. FALCON-Phase44 can also incorpo-
rate Hi-C data, but a chromosome-level haplotype-separated assem-
bly generated for Pt64 (ref. 45) with this assembler was not assessed 
for potential phase switches and chromosomes were assigned to 
pseudo-haplotypes without using Hi-C contact information, which 

may therefore contain chromosomes from each nucleus. Another Pt 
isolate chromosome-scale reference was assembled using Hi-C reads 
from Pt76 and Pt64 and is thus not phased46.

Although duplicated pycnial fertilization events during sexual 
reproduction could give rise to progeny sharing a single common 
nucleus47, this is an untenable explanation for the multiple haplotypes 
shared between global lineages in Pt and Pgt22 since it requires that 
all such lineages were generated by simultaneous cross-fertilization 
events. This is not consistent with the recent emergence of the CD 
and BC lineages of Pt in the 1990s and 2010s, compared with the NA4, 
NA5 and NA6 lineages dating back over 100 yr. The phylogenetic data 
also support different divergence times of the common haplotypes in 
these lineages, rather than divergence from a single common ances-
tor. Similar observations apply to shared haplotypes in Pgt lineages22.

Methods
Sampling and pathotyping of the Pt isolates
Rust-infected samples from wheat cultivar Morocco were collected in 
2019 and 2020 from the CSIRO field site in Canberra, Australian Capital 
Territory (19ACT07 and 20ACT90) and from the wheat cultivar Gre-
nade in a field at the Department of Primary Industries, Wagga Wagga,  
New South Wales (19NSW04). Three samples were collected in 2019/20 
from an unknown wheat cultivar in Warwick, Queensland (20QLD87) or 
Gatton, Queensland (19QLD08 and 20QLD91). The 19ACT06 isolate was 
sampled as previously described24. Pt cultures were purified through 
single pustule isolation and pathotyped using the standard Australian 
wheat differential sets carrying unique resistance genes and nomen-
clature for leaf rust48 (Supplementary Table 8).

PacBio HiFi DNA and Hi-C sequencing
High molecular DNA from urediniospores was extracted as previously 
described22,49. DNA quality was assessed with a Nanodrop spectro-
photometer (Thermo Scientific) and the concentration quantified 
using a broad-range assay in a Qubit 3.0 fluorometer (Invitrogen). DNA 
library preparation (10–15 kb fragments Pippin Prep) and sequencing 
in PacBio Sequel II Platform (One SMRT Cell 8M) were performed by 
the Australian Genome Research Facility (AGRF) (St Lucia, Queensland, 
Australia) following manufacturer guidelines. For DNA crosslinking and 
subsequent Hi-C sequencing, 100 mg of urediniospores was suspended 
in 4 ml 1% formaldehyde, incubated at r.t. for 20 min with periodic 
vortexing. Glycine was added to 1 g per 100 ml and the suspension 
was centrifuged at 1,000 g for 1 min and the supernatant was removed. 
Spores were then washed with H2O, centrifuged at 1,000 g for 1 min and 
the supernatant removed. The spores were then transferred to a liquid 
nitrogen-cooled mortar and ground before being stored at −80 °C or 
on dry ice. After treatment, spores were shipped to Phase Genomics  
(Seattle, Washington, USA) for Hi-C library preparation and sequencing.

Illumina short-read whole-genome sequencing of Pt isolates
Genomic DNA was extracted from 30 mg of urediniospores per isolate 
using the Omniprep DNA isolation kit (G-Biosciences). DNA concentra-
tion was determined using a Qubit 3.0 fluorometer (LifeTechnologies) 
before submission for whole-genome sequencing. A transposase-based 
library was prepared for each sample with DNA Prep (M) tagmentation 
kit (Illumina) at the AGRF following manufacturer guidelines. DNA 
sequencing was completed at AGRF using a NovaSeq S4, 300 cycles 
platform (Illumina) to produce 150 bp paired-end reads.

Genome assembly and scaffolding
The HiFi reads of the isolates 19NSW04 and 20QLD87 were assembled 
using hifiasm 0.16.1 in Hi-C integration mode and with default param-
eters (19NSW04: 15.2 Gb HiFi reads and 34.8 Gb Hi-C reads; 20QLD87: 
12.3 Gb HiFi reads and 43.9 Gb Hi-C reads)30. Contaminants were identi-
fied using sequence similarity searches (BLAST 2.11.0 -db nt -evalue 1e-5 - 
perc_identity 75) (ref. 50). HiFi reads were aligned to the assembly with 
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minimap2 2.22 (-ax map-hifi –secondary=no)51 and contig coverage was 
called using bbmap’s pileup.sh tool on the minimap2 alignment file 
(http://sourceforge.net/projects/bbmap/). All contaminant contigs, 
contigs with less than 5x coverage and the mitochondrial contigs were 
removed from the assembly. BUSCO completeness was assessed with 
v.3.0.2 (-l basidiomycota_odb9 -sp coprinus) and Augustus parameters 
pre-trained on the Pt76 (19ACT06) assembly52. The HiFi reads of Pt76 
isolate were re-assembled using hifiasm 0.16.1 in Hi-C integration 
mode and with default parameters to assess improvement in phasing 
compared to the previously published HiCanu assembly24.

Phasing of the assembled haplotypes was confirmed using the 
NuclearPhaser pipeline v.1.1 (MAPQ = 30; https://github.com/JanaSper-
schneider/NuclearPhaser)24. Hi-C data provide a strong nuclear origin 
signal reflecting the physically separate nuclei in the dikaryon, with 
~90% of trans and >99% of cis and trans Hi-C links occurring within a 
nucleus in the Pt assemblies, similar to those of Pgt and Pca22,27 as well 
as other fungal dikaryons31. The low level (<10%) of Hi-C trans read 
pairs mapping across haplotypes could result from disruption of some 
nuclei during chromatin crosslinking, ligation of non-crosslinked DNA 
fragments or mapping of reads to haplotype-collapsed or highly similar 
regions (Supplementary Fig. 2b).

The HiFi reads of the 20QLD87 isolate were also assembled with 
HiCanu 2.2.0 to confirm phase-switch boundaries (genomeSize=120 m 
-pacbio-hifi)29, and contigs were aligned to the hifiasm assembly with 
minimap2 (ref. 51). Per-base consensus quality scores for the assemblies 
were obtained using Merqury (1.3) (ref. 53).

We curated nuclear-phased chromosomes for each assembly by 
scaffolding the two haplotypes separately and then further joined 
scaffolds into chromosomes through visual inspection of Hi-C contact 
maps. For scaffolding of the individual haplotypes, the Hi-C reads were 
mapped to each haplotype using BWA-MEM (0.7.17) (ref. 54) and align-
ments were then processed with the Arima Genomics pipeline (https://
github.com/ArimaGenomics/mapping_pipeline/blob/master/01_map-
ping_arima.sh). Scaffolding was performed using SALSA (2.2) (ref. 55). 
Hi-C contact maps were produced using Hi-C-Pro 3.1.0 (MAPQ = 10) 
(ref. 56) and Hicexplorer (3.7.2) (ref. 57).

Gene prediction and repeat annotation
De novo repeats were predicted with RepeatModeler 2.0.2a and the 
option -LTRStruct58. RepeatMasker 4.1.2p1 (-s -engine ncbi) (http://www.
repeatmasker.org) was run with the RepeatModeler library to obtain 
statistics about repetitive element content. For gene prediction, Repeat-
Masker was run with the RepeatModeler library and the options -s (slow 
search) -nolow (does not mask low_complexity DNA or simple repeats) 
-engine ncbi. RNAseq reads from Pt76 (ref. 24) were aligned to the genome 
using HISAT2 2.1.0 (–max-intronlen 3000 –dta)59, and genome-guided 
Trinity 2.8.4 (–jaccard_clip –genome_guided_bam –genome_guided_
max_intron 3000) was used to assemble transcripts60. We then aligned 
each RNAseq sample to the individual haplotype chromosomes as well as 
the unplaced contigs using HISAT2 (v.2.1.0 –max-intronlen 3000 –dta)59. 
We used StringTie 2.1.6 (-s1 -m50 -M1) to assemble transcripts for each 
sample61. The transcripts of the ungerminated and germinated spore 
samples were merged into a spore transcript set for each haplotype 
chromosome as well as the unplaced contigs using StringTie (–merge). 
The transcripts of the infection timepoint samples were merged into an 
infection transcript set for each haplotype chromosome as well as the 
unplaced contigs using StringTie (–merge).

Funannotate (1.8.5) (ref. 62) was run to train PASA (funannotate 
update) with the preassembled Trinity transcripts as input63. Coding-
Quarry (2.0) (ref. 64) was run in pathogen mode, once on the infec-
tion transcripts and once on the spore transcripts. For the infection 
transcripts, we merged the predicted genes, the predicted pathogen 
genes and the predicted dubious gene set into the final CodingQuarry 
infection gene predictions. For the spore transcripts, we merged the 
predicted genes, the predicted pathogen genes and the predicted 

dubious gene set into the final CodingQuarry spore gene predictions. 
We then ran funannotate predict (–ploidy 2 –optimize_augustus –
busco_seed_species ustilago –weights pasa:10 codingquarry:0) and 
supplied Trinity transcripts and Pucciniomycotina EST clusters down-
loaded from the JGI MycoCosm website (http://genome.jgi.doe.gov/
pucciniomycotina/pucciniomycotina.info.html). We also supplied our 
CodingQuarry predictions to funannotate with the option -other_gff 
and set the weight of the CodingQuarry infection gene predictions to 20 
and the weight of the CodingQuarry spore gene predictions to 2. After 
the funannotate gene predictions, we ran funannotate update followed 
by an open reading frame (ORF) prediction to capture un-annotated 
genes that encode secreted proteins. First, we ran TransDecoder 5.5.0 
(https://github.com/TransDecoder/TransDecoder) on the StringTie 
infection transcripts (TransDecoder.LongOrfs -m50 and TransDe-
coder.Predict –single_best_only). We selected ORFs that have a start 
and stop codon (labelled as ‘complete’) and predicted those that have 
a signal peptide (SignalP 4.1 -u 0.34 -U 0.34) and no transmembrane 
domains outside the N-terminal signal peptide region (TMHMM 2.0) 
(refs. 65,66). We added genes encoding secreted proteins to the annota-
tion using agat_sp_fix_overlaping_genes.pl67, which creates isoforms for 
genes with overlapping coding sequence. In line with funannotate, we 
did not include genes encoding secreted proteins that are >90% con-
tained in a repetitive region in the final annotation. Functional annota-
tion of proteins was predicted using InterProScan (5.56–89.0) (ref. 68).

Genome comparisons and k-mer containment screening
The haplotype chromosomes were compared to each other with mummer 
4.0.0rc1, using nucmer and dnadiff69. The dnadiff VCF files were used in 
SNPeff 5.1 to assess the impact of variants on coding regions70. Genomic 
dot plots were produced using D-GENIES71. Mash (2.3) (ref. 72) was used 
for k-mer containment screening (mash screen with sketch settings -s 
500000 -k 32). Mash returns both the fraction of bases in the k-mers 
that are shared between the genome and the sequencing reads (termed 
‘k-mer identity’) and the k-mers that are shared between the genome and 
the sequencing read set (termed ‘shared k-mers). We also calculated the 
averages of k-mer containment across clades. Genome plots were drawn 
using karyoploteR and gggenes (https://wilkox.org/gggenes/).

Phylogenetic trees and mating type loci
Illumina reads were downloaded from NCBI and cleaned with trim-
momatic (v.0.38) (ref. 73) and then aligned against the diploid 
chromosome assemblies using BWA-MEM (0.7.17) (ref. 54). The align-
ment files of our seven isolates were filtered for minimum quality 
30 as the coverage was substantially higher than for the alignments 
of the other global isolates. SNPs were called using FreeBayes 1.3.5  
(–use-best-n-alleles 6 –ploidy 2) in parallel mode74 against the diploid 
chromosomes and the individual haplotype chromosomes. SNPs were 
filtered using vcffilter of VCFlib 1.0.1 (https://github.com/vcflib/vcflib) 
with the parameter -f ‘QUAL > 20 & QUAL / AO > 10 & SAF > 0 & SAR > 0 & 
RPR > 1 & RPL > 1 & AC > 0’. Bi-allelic SNPs were selected using vcftools 
(–min-alleles 2 –max-alleles 2 –max-missing 0.9 –maf 0.05) (ref. 75) and 
converted to multiple sequence alignment in PHYLIP format using the 
vcf2phylip script76. Phylogenetic trees were constructed using RAxML 
(8.2.12)77. We generated 500 bootstrap trees (-f a -# 500 -m GTRCAT) 
and a maximum-likelihood tree (-D), and incorporated these models 
into a final tree (-f b -z -t -m GTRCAT). Phylogenetic trees were visual-
ized in iTOL (v.6) (ref. 78) with the isolate ISR850 as the outgroup. We 
used the publicly available GBS SNP vcf file (https://conservancy.umn.
edu/handle/11299/208672) and the genomic Illumina data to build 
a phylogenetic tree as follows. Since the GBS SNP data were derived 
from mapping to the Pt ASM15152v1 draft assembly35, we mapped 
the whole-genome sequence data of the 154 isolates onto this refer-
ence and extracted SNP genotypes on a set of 631 polymorphic sites 
that were represented in both data sets. First, we mapped the clean 
Illumina reads to the Pt ASM15152v1 draft assembly downloaded from  
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https://fungi.ensembl.org/Puccinia_triticina/Info/Index35. SNPs were 
called as described above. We intersected the GBS SNP vcf file with the 
Illumina SNP file using bcftools isec79 and kept SNPs shared by both 
files. Phylogenetic trees were constructed as described above.

The b1–b5 proteins were aligned using mafft (7.4.90) (ref. 80) and 
a phylogenetic tree was built using iqtree2 2.2.0.8 (-B 1000 -alrt 1000) 
(ref. 81), visualized and midpoint-rooted in iTOL (v.6) (ref. 78). SNP 
statistics were collected using bcftools stats and coverage statistics 
using samtools coverage79.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
All sequence data and assemblies generated in this study are available 
at NCBI BioProject PRJNA902835. Sequencing reads, assemblies and 
gene annotation files are also available at the CSIRO Data Access Portal 
(https://data.csiro.au/collection/csiro:57097).
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Extended Data Fig. 1 | Percentage of Hi-C contacts that link within and 
between nuclear-separated haplotypes. (a) The % of Hi-C trans contacts that 
link to the haplotypes C (turquoise) and B (brown) in each 100kbp bin (with an 
associated smoothing lines) are shown for hifiasm contig h1tg000018l, which 
contains a phase switch site (indicated by red arrow). HiCanu haplotig alignment 
positions (black segments) are shown at the y-coordinate that corresponds to 

their Hi-C contacts to haplotype C. (b) The % of Hi-C trans contacts that link to 
each haplotype for the fully phased 19NSW04 chromosome 2B. (c and d) Graphs 
showing the % of Hi-C trans contacts (left panel) or cis and trans contacts (right 
panel) that link to each haplotype for the 20QLD87 and 19NSW04 chromosome 
assemblies.
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Extended Data Fig. 2 | Pruned phylogenetic trees of SNP genotypes shared 
between GBS and whole-genome data. The left color strip indicates which 
isolates have whole-sequencing data and their lineage assignment. The right 
color strip indicates which isolates have GBS data and their lineage assignment35. 
(a) The part of the tree that contains the Australian AU1 isolates also contains 
the EU2 lineage as well as clades from Central Asia and Pakistan, suggesting 

this lineage is common to this broad geographical region. The Australian AU2 
isolates cluster with one group of the European clade EU8. (b) The Australian AU3 
isolate is again placed with the North American clade NA3. (c) The Australian AU5 
isolates group with the EU7 lineage, whereas the AU4 isolates group only with 
three isolates from New Zealand. Full tree is shown in Extended Data Fig. 9.
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Extended Data Fig. 3 | Chromosome location and phylogenetic trees of the mating type proteins bE and bW. (a) Five variants of the b genes are present in the 
listed Pt isolates on chromosome 4 and in the race 1 reference genome40. (b) The b2 proteins in race 1 are shared with the 19ACT06 haplotype A. Bootstrap values are 
shown.
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Extended Data Fig. 6 | Haplotype-specific phylogeny of global isolates. Phylogenetic tree of global isolates against 20QLD87 haplotype C.
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Extended Data Fig. 7 | Haplotype-specific phylogeny of global isolates. Phylogenetic tree of global isolates against 20QLD87 haplotype D.
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Extended Data Fig. 8 | k-mer genome containment scores of Illumina 
sequencing reads against the four haplotypes. Identity is the percentage 
of bases that are shared between the genome and the sequencing reads. 
Shared k-mers is the percentage of k-mers shared between the genome and the 

sequencing reads. Two red lines indicate above which thresholds we consider 
a haplotype genome to be fully contained in the sequencing reads of an isolate 
(identity >= 99.99%, shared k-mers >= 99.5%). The averages are shown for clades.
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Extended Data Fig. 9 | Full phylogenetic trees of SNP genotypes shared between GBS and whole-genome data. The top color strip indicates which isolates have 
whole-sequencing data and their lineage assignment. The bottom color strip indicates which isolates have GBS data and their lineage assignment35.
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