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Diffuse midline gliomas (DMGs) harboring loss of 
H3K27me3 due to H3K27M/I mutations  or EZHIP 
overexpression comprise a World Health Organization 
(WHO) defined subtype of pediatric diffuse high-grade 
gliomas (H3K27-altered DMG), which carries a poor prog‑
nosis with median overall survival (OS) of 12 months [2, 
3]. H3K27M-mutant DMGs (H3K27M-DMGs) addition‑
ally develop somatic alterations in driver genes (eg, TP53, 
PPM1D, ATRX, PIK3CA, ACVR1) during tumor evolution. 
DNA methylation profiling of H3K27M-DMGs reveals dis‑
tinct clustering in comparison to other pediatric-type dif‑
fuse high-grade gliomas. Despite the generally poor prog‑
nosis, long-term survivors (LTS) have been reported with 
distinct molecular profiles such as somatic FGFR1 muta‑
tions [6] and rare cases with non-diffuse (circumscribed) 
histology patterns [4]. Here, we aim to identify clinical, 
genomic, and epigenomic characteristics of LTS patients 
with H3K27M-DMG.

Through a comprehensive multi-site and literature case 
review, we identified 85 patients with confirmed H3K27M-
DMG (by DNA sequencing or IHC) and LTS, defined as 
OS of at least 36 months from initial diagnosis (Online 
Resource [OR] Table S1). We extracted available demo‑
graphic, diagnostic, genomic, therapeutic, and clinical out‑
come data and performed DNA methylation analysis when 
tissue was available (30 samples from 26 patients). A con‑
trol cohort of 453 patients with confirmed H3K27M-DMG 
and OS < 18  months (short-term survival [STS]) with 
detailed histology, demographic, and CNS tumor location 
from Pratt et al. [4] was utilized. We further assembled 
two molecular cohorts with 258 H3K27M-DMG patients 
(208 STS patients) with clinical and genomic profiles 
(see OR) and 20 STS H3K27M-DMG patients (MNP2.0 
cohort) with clinical, genomic, and tumor DNA methyla‑
tion profiles.

The median age of our LTS cohort was 13.2  years 
(interquartile range [IQR] 7–30 years), 64.7% of patients 
were females, and the median OS was 51.6 months (IQR 
40.7–63.8 months). Clinically, patients received a variety 
of therapy types of various durations and timing throughout 

disease courses (Fig. 1a). At diagnosis, LTS patients had a 
greater frequency of non-infiltrative/circumscribed tumors 
(18.7% vs 1.7%, P < 0.0001) and were more frequently 
diagnosed with tumors in the thalamus (42.3% vs 14.7%, 
P < 0.0001) compared to STS patients. No statistical asso‑
ciation was found between H3.1 vs H3.3K27M and survival 
(12.3% STS vs 14.2% LTS with H3.1, P = 0.85; OR Fig. S1).

Evaluation of the genomic landscape of LTS patients 
(OR Fig. S2) revealed a high frequency of MAPK pathway 
alterations (69.0%, 38/55) compared to STS patients (12.0%, 
25/208, P < 0.001). Clonality of mutations is included for 
five patients with available variant allele frequency (VAF) 
data (sub-clonal defined as VAF < 10%) in OR Table S2. 
The most frequently mutated MAPK pathway genes in 
LTS patients were BRAF (23.6%, n = 13/55), NF1 (23.6%, 
n = 13/55), and FGFR1 (21.8%, n = 12/55; Fig. 1b, OR 
Table S1). In addition, seven LTS patients presented with 
MAPK-associated mutations in PTPN11 (9.1%, n = 5/55) 
and KRAS (5.5%, n = 3/55). In contrast, individual MAPK 
genes were rarely mutated in STS patients (7.7% NF1, 
2.4% FGFR1, 1.4% BRAF, 1.4% PTPN11, 1.0% KRAS). 
Moreover, we observed a striking absence of somatic TP53 
mutations in LTS patients (16.4%, 9/55 vs 65.4%, 136/208, 
P < 0.0001). A combined survival analysis of our LTS and 
molecular control cohort (n = 310) revealed that MAPK 
pathway alterations are associated with LTS (MAPK-altered 
vs wildtype, OS at 36 months 51.3% vs 7.6%; Fig. 1c). A 
univariate and multivariate (sex, age, H3.1/H3.3, TP53, 
MAPK) survival analysis that was restricted to our molecu‑
lar control cohort (n = 258 patients) further demonstrated 
that MAPK pathway alterations are associated with LTS (OS 
at 36 months 7.4% vs 0%; OR Figs. S3, S4). This combined 
retrospective molecular cohort may be a closer reflection of 
the prevalence of patients with LTS and MAPK alterations 
in the general H3K27M-DMG population (5–10%).

We further investigated the tumor evolution of three cases 
with multiple biopsies for histology review and molecular 
profiling (Fig. 1d–g). UM-607 was diagnosed with a tectal-
thalamic H3K27M-DMG with diffuse, low-grade histology 
(see Fig. 1d inlay “1”, Fig. 1e) but developed progression 
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3.5 years later, and re-biopsy showed high-grade features 
(Fig. 1d inlay “2”, Fig. 1e) and a significantly altered tumor 
genomic profile, ultimately surviving 79 months from diag‑
nosis. UM-443 had a spinal cord glioma initially diagnosed 
as low-grade glioma (LGG) on histology review with no 
tumor sequencing performed, and later was interpreted as 
high-grade on histology and with H3K27M mutation with 
intra-tumoral genomic heterogeneity as evidenced by phylo‑
genetic analysis (Fig. 1f and OR Fig. S5). UM-495 presented 
with a thalamic mass, presumed to be LGG on imaging so 
biopsy was deferred; however, biopsy five years later con‑
firmed H3K27M-DMG, and subsequent biopsy one year 
later of a cortical metastasis revealed additional molecular 
alterations (Fig. 1g). As these phylogenetic trees demon‑
strate, H3K27M mutations were the founding events in all 
patients and MAPK alterations were either clonal or sub-
clonal. Also, both patients (UM-607, UM-443) with initial 
low-grade histology lacked TP53 mutations.

Finally, DNA methylation-based classification of LTS 
DMGs (26 patients; n = 30 tumors) against 40 reference glio‑
mas, glioneuronal tumors, and neuronal tumors described by 

Capper et al. [1] showed closest association with H3K27M-
DMGs (OR Fig. S6). Three LTS samples mapped closest to 
healthy brain tissues and were presumably of low tumor con‑
tent. We next performed a joint analysis of LTS (n = 23 patients) 
and STS H3K27M-DMG samples (n = 20 patients, MNP2.0 
cohort) and discovered two clusters that separate LTS and STS 
patients (Fig. 1h). Strikingly, MAPK pathway mutations were 
exclusively seen in the LTS methylation cluster (Fig. 1i). The 
LTS cluster included three STS cases, all with MAPK altera‑
tions. This data suggests that the LTS DNA methylation cluster 
is potentially defined by MAPK alterations. DNA methylation 
of multi-timepoint LTS samples from UM cases revealed that 
all map into the MAPK H3K27M-DMG cluster (OR Fig. S7).

In summary, we identify enrichment of alterations in MAPK 
pathway genes in patients with LTS compared to those with 
typical survival. Furthermore, H3K27M-DMGs with MAPK 
alterations demonstrate a unique DNA methylation signature, 
even in some cases without a MAPK in initial sample, thus 
raising the possibility of a unique evolutionary trajectory that 
selects for subsequent MAPK alteration (eg, UM-443 and 
UM-495). The current WHO classification includes the entity 
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Fig. 1   Characteristics of LTS patients. a Swimmer plot for 13 LTS 
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and molecular control (OS < 18  months, n = 208) cohorts highlights 
the higher frequency of MAPK pathway alterations in the LTS 
cohort. c Kaplan–Meier curve for combined LTS and molecular con‑
trol cohort (n = 310) reveals that MAPK pathway genetic alterations 
are associated with improved OS at 36  months and shows differen‑
tial survival among MAPK oncogenes. d Clonal map demonstrates 
molecular evolution of UM-607 from time of initial and subsequent 

biopsies, with thin lines for sub-clonal (< 10%) and thick lines for 
clonal branching events. e Histology stains demonstrate histologic 
evolution from low- to high-grade. f–g Clonal maps demonstrate the 
molecular evolution of UM-443 and UM-495 at various timepoints 
and tumor samples. h–i Joint analysis using t-SNE dimensional‑
ity reduction of LTS (23 patients, 27 tumors) and STS (20 patients; 
MNP2.0 cohort) H3K27M-DMGs reveals two clusters separating 
tumors from LTS/STS patients (h) and tumors with/without MAPK 
pathway alterations (i)
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“diffuse low-grade glioma, MAPK pathway-altered”, which is 
defined by genetic alterations in BRAF and FGFR1. Moreover, 
circumscribed astrocytic gliomas include “high-grade astro‑
cytomas with piloid features” with recurrent MAPK (NF1, 
FGFR1) alterations [3, 5]. Our data demonstrates distinct 
clinical outcomes, DNA methylation patterns, MAPK muta‑
tions, and absence of TP53 mutations that supports a distinct 
LTS-associated subtype of H3K27M-DMG, which we pro‑
pose as “diffuse midline glioma, H3K27M-mutant and MAPK 
pathway-altered”. As a few MAPK-wildtype cases clustered 
with the “MAPK-altered” group, methylation analysis should 
be considered with other clinical and molecular diagnostic 
elements. Our study also confirms that a subset of H3K27M-
DMGs show circumscribed histology, and this contradiction 
with the diagnostic category “diffuse” midline glioma may need 
to be re-addressed in the future.

Limitations of our study include a relatively small sam‑
ple of patients with LTS and clinical data limited by avail‑
ability in the literature in many cases. Further investigation 
into the biology of H3K27M/MAPK-altered tumors is war‑
ranted to confirm our findings. Overall, our results suggest 
that numerous factors contribute to LTS in patients with 
H3K27M-DMG, particularly low-grade and non-infiltra‑
tive histology, thalamic/non-brainstem location, absence of 
somatic TP53 mutations, and enrichment of MAPK pathway 
alterations. These findings further support the use of biopsy 
in these patients for clarification of H3K27M-DMG subtype, 
prognosis, and treatment.

Supplementary Information  The online version contains supplemen‑
tary material available at https://​doi.​org/​10.​1007/​s00401-​023-​02640-7.
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