Skip to main content
. 2023 Oct 24;17:1253438. doi: 10.3389/fncel.2023.1253438

Table 3.

Mechanism of acupuncture on the regulation of brain regions in peripheral nerve injury.

Study Acupoint Intervention and acupuncture type/parameters Control intervention Method Major effects
Matsumoto-Miyazaki et al. (2016) GV 26, Ex-HN 3, bilateral LI 4, ST 36 MA/10 min No treatment TMS MEP amplitude↑, MEP/Mmax ↑, CMCTs↓, the CST activity of patients with chronic DOC after severe TBI↑
Zhao N. et al. (2018) At the middle 2/5 of the MS6 line in the affected hemisphere SA/40 min + LF-rTMS 20 min SA/40 min DTI FMA↑, MBI↑, FAvalue↑, MDvalue↓
Yang et al. (2017) LI-11, LI-10, TB-5, LI-4, ST-36, GB-34, SP-6, EX-UE9 MA/Deqi, later hold the needle still for 30 min No stimulation TMS Left MEP↓, right MEP↑, IHI↑
Chen et al. (2015) GB34 MA/1.5 Hz, 1 min baseline-30 s Stimulation-three blocks Non-acupoint fMRI Motor-cognition connectivity↑, compensation of unaffected motor cortex and homolateral synkinesis↓
Napadow et al. (2007a,b) LI-4 MA/1 Hz, 2 min rest-1 min stimulation-7-min block paradigm Non-insertive cutaneous stimulation fMRI Functional connectivity between the hypothalamus and amygdala: amygdala deactivation↓, hypothalamus activation↑, and vice versa
Wang et al. (2016) RN12, RN10, RN6, RN4, KL17, ST24, Qipang Abdominal acupuncture/20 min Non-insertive cutaneous stimulation fMRI MADRS scores↓, SDS scores↓, rsFC between the left amygdala and sgACC/ pgACC↑
Napadow et al. (2005) ST-36 MA/1 Hz; EA/2 Hz, 100 Hz, 2 min rest-1 min stimulation-7-min block paradigm Tactile control stimulation fMRI Acu, EA: anterior insula hemodynamic signal↑, limbic and paralimbic structures hemodynamic signal ↓ only EA: anterior middle cingulate cortex signal↑, pontine raphe area signal↑
Yan et al. (2005) Liv3 LI4 MA/1 Hz Non-acupoints fMRI Liv3, LI4: middle temporal gyrus and cerebellum↑, middle frontal gyrus and inferior parietal lobule↓ Liv3: postcentral gyrus, posterior cingulate, parahippocampal gyrus, BA 7, 19 and 41↑, inferior frontal gyrus, anterior cingulate, BA 17 and 18↓ LI4: temporal pole↑, precentral gyrus, superior temporal gyrus, pulvinar and BA 8, 9 and 45↓
Kong et al. (2002) LI4 EA, MA/3 Hz, 1 min baseline-1 min stimulation-5-min block paradigm fMRI EA: precentral gyrus, postcentral gyrus/inferior parietal lobule, and putamen/insula fMRI signal ↑ Acu: posterior cingulate, superior temporal gyrus, putamen/insula fMRI signal↓
Hui et al. (2000) LI4 MA/120 times per min, 2 min baseline-2 min stimulation-4 min rest-16 min scan time Tactile stimulation fMRI Modulates the activity of the limbic system and subcortical structures
Hui et al. (2005) ST36 MA/1 Hz, 2 min baseline-2 min stimulation-3 min rest-10 min scan time Sensory control stimulation fMRI An integrated response of the human cerebro-cerebellar and limbic systems to acupuncture stimulation that correlates with the psychophysical response
Li et al. (2015) SJ5 MA/twirled ± 180°, 60 times per minutes, 30s stimulation-30s rest-6 min scan time fMRI The clinical effect of Deqi during acupuncture is based on brain functional changes
Lu et al. (2014) ST36 MA Non-point PET Bilateral amygdalae activation↑, left temporal lobe activation↑, blood perfusion↑, glycol metabolism↑
Shi et al. (2016) BL40 MA/depth 2 mm, 5 min MA/depth 10–20 mm, 5 min fMRI Acupuncture modulates the limbic-paralimbic-neocortical network to produce its Deqi effects; The similarity of LPNN and DMN suggests that deep needing may mobilize an important intrinsic brain network for its multiple modulation effects
Wang et al. (2013) LV3 MA/rotated 180°, 1 Hz, 2 min baseline-2 min stimulation-3 min rest-10 min scan time Tactile stimulation fMRI Pressure was contributing to negative activation of a LPNN; modulatory effects of different needling sensations contribute to acupuncture modulations of LPNN network
Napadow et al. (2009) PC6 MA/0.5 Hz, 30s stimulation-30s rest-5.5 min scan time Non-invasive cutaneous stimulation fMRI Cognitive load↑, dmPFC activity↑
Fang et al. (2009) LV3, LV2, ST44 MA/160 times per min, 180°, 1 min stimulation- 1 min rest-6 min scan time Sham acupoint stimulation fMRI Limbic-paralimbic-neocortical system extensive deactivation↓; sensorimotor cortices, thalamus and occasional paralimbic structures activated↑
Dhond et al. (2008) PC6 MA/twirled ± 180°, 0.5 Hz, 5.5 min baseline-5.5 min stimulation-31.5 min scan time Non-insertive cutaneous stimulation fMRI DMN connectivity↑, SMN connectivity↑, post-stimulation spatial extent of resting brain networks to include anti-nociceptive, memory, and affective brain regions↑
He et al. (2014) LI4 MA/Deqi, 10 min baseline-10 min stimulation-10 min postacupuncture resting state fMRI Connectivity in the primary somatosensory region of both early and late recovery groups↑
Zhang et al. (2016) LR3, KI3 MA/90–180°, 60–90 times per min, lifted and thrust 0.3–0.5 cm, 30 min Non-acupoint fMRI Number of brain regions with altered brain activity after acupuncture at acupoint combinations↑
Jung et al. (2015) PC6, HT7 MA/1 Hz Pseudo-stimulation fMRI Salience network↑, default mode network↓
Lee et al. (2013) ST36 MA/1 min baseline-30s stimulation-30s rest-5 min scan time Non-acupoint fMRI Blood oxygenation level-dependent signal intensity in basal ganglia, limbic system, and cerebellum↓
Napadow et al. (2009) PC6 MA/0.5 Hz, 30s baseline-30s stimulation-30s rest-5.5 min scan time Non-insertive cutaneous stimulation fMRI Anterior dmPFC activity↑, posterior dmPFC activity↑
Long et al. (2016) ST36 MA/6 min stimulation-6 min rest-4 min break Non-acupoint fMRI Centrality in parahippocampal gyrus↑, centrality in middle temporal gyrus↑, DMN↑
Lin et al. (2016) LI4 SNA + MS/twirled rotated, 180°, 1 Hz, 20s for15min SNA, TNA/15 min; TENS/1 Hz, 20s for 15 min fMRI Enhance the acupuncture dose induce different DMN modulatory effects; TNA induces the most extensive DMN modulation
Dhond et al. (2008) PC6 MA/twirled (∼ ± 180°), 0.5 Hz, 5.5 min rest-5.5 min stimulation-31.5 min scan time Non-insertive cutaneous stimulation fMRI DMN connectivity with pain, affective and memory related brain regions↑, SMN connectivity with pain-related brain regions ↑
Ren et al. (2008) Neiguan, Waiguan, Sanyinjiao, Zusanli EA/1 mA, 10 Hz, 30 min Dendritic spine density↑, ephrin-A5↑, neural plasticity at the peri-infarct cerebral cortex in acute cerebral ischemia rat↑
Liang et al. (2017) ST36, LI11 EA/2 mA, 1/20 Hz, 30 min The modified neurologic severity scores↑, neural activity of motor function-related brain regions↑
Wu et al. (2018a,b) GB30, ST36 EA/0.2 mA, 1/20 Hz, 15 min Limbic/paralimbic areas fluctuated↑
Maeda et al. (2017) TW5 PC7 + three additional acupoints EA/2 Hz, 20 min Sham acupuncture fMRI Primary somatosensory cortex somatotopy↑

MA, manual acupuncture; TMS, transcranial magnetic stimulation; MEP, motor-evoked potential; CMCT, Central motor conduction time; CST, cortico spinal tract; DOC, disorders of consciousness; TBI, traumatic brain injury; DTI, Diffusion tensor imaging; FA, fractional anisotropy; MD, mean diffusion; LF-rTMS, low frequency repetitive transcranial magnetic stimulation; IHI, interhemispheric inhibition; SA, scalp acupuncture; Deqi, a characteristic sensation of aching and tingling; 7-min block paradigm including a 2-min rest, 1-min stimulation, 2-min rest, 1-min stimulation, 1-min rest block; MADRS, Montgomery–Åsberg Depression Rating Scale scores; SDS, Self-Rating Depression Scale scores; sgACC, subgenual anterior cingulate cortex; pgACC, preguenual anterior cingulate cortex; rsFC, resting state functional connectivity; DMN, default mode networks; LPNN, limbic-paralimbic-neocortical network; dmPFC, dorsomedial prefrontal cortex; SMN, sensorimotor network; SNA, single needle acupuncture; TENS, transcutaneous electrical nerve stimulation; TNA, three needle acupuncture; MS, manual stimulation.