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Abstract
Clinically symptomatic type 1 diabetes (stage 3 type 1 diabetes) is preceded by a pre-symptomatic phase, characterised by 
progressive loss of functional beta cell mass after the onset of islet autoimmunity, with (stage 2) or without (stage 1) measur-
able changes in glucose profile during an OGTT. Identifying metabolic tests that can longitudinally track changes in beta cell 
function is of pivotal importance to track disease progression and measure the effect of disease-modifying interventions. In 
this review we describe the metabolic changes that occur in the early pre-symptomatic stages of type 1 diabetes with respect 
to both insulin secretion and insulin sensitivity, as well as the measurable outcomes that can be derived from the available 
tests. We also discuss the use of metabolic modelling to identify insulin secretion and sensitivity, and the measurable changes 
during dynamic tests such as the OGTT. Finally, we review the role of risk indices and minimally invasive measures such 
as those derived from the use of continuous glucose monitoring.
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Background

Symptomatic type 1 diabetes (stage 3 type 1 diabetes) is 
preceded by a prolonged pre-symptomatic phase character-
ised by progressive loss of functional beta cell mass after 
the onset of islet autoimmunity, with (stage 2) or without 
(stage 1) dysglycaemia during an OGTT [1]. Even in the 
absence of a measurable change in glucose profile during 
fasting or dynamic tests in early type 1 diabetes (stage 1), 
impairments of insulin secretion [2, 3] and insulin sensi-
tivity [4–6] have been described, suggesting that beta cell 
impairment largely pre-dates increases in glucose and 
affects both insulin secretion and insulin action.

The approval of the first disease-modifying drug—the 
humanised anti-CD3 antibody teplizumab [7–9]—and exten-
sive research on other agents [10] that may impact the tra-
jectory of beta cell function highlight the need to identify 
effective measures of beta cell function. In this review we 
examine the metabolic changes that occur in the early stages 
of type 1 diabetes and the current methods for quantifying 
beta cell function, and discuss the possibility of longitu-
dinally tracking the trajectory of beta cell function before 
progression to stage 3 type 1 diabetes.
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The importance of both insulin secretion 
and insulin sensitivity in evaluating beta cell 
health

Beta cell function relies on two components, insulin 
secretion and insulin sensitivity, or, in other terms, on 
the ability of beta cell functional mass to deliver suf-
ficient insulin to match whole-body requirements and to 
adequately respond to transient metabolic challenges to 
maintain normoglycaemia [11]. It is therefore essential to 
estimate both components to adequately describe beta cell 
health. The dynamic interaction between insulin secretion 
and insulin sensitivity is described by a hyperbolic curve 
that is quantified by the so-called disposition index (DI), 
namely the capacity of insulin to promote glucose dis-
posal in target organs such as liver and muscle [12, 13]. 
The healthy beta cell has a substantial insulin secretory 
reserve that can dynamically match increases in insulin 
resistance throughout life, thus minimising glucose fluc-
tuations. However, even in the absence of measurable 
impairment of the glucose profile, changes in insulin 
secretion and sensitivity have been described in the early 
stages of type 1 diabetes (Fig. 1) [2, 3, 14–16].

Beta cell function in the early stages of type 
1 diabetes : quantifying insulin secretion

First‑phase insulin response The first-phase insulin 
response (FPIR) represents the response to a rapid glucose 
rise and is driven by the release of intracellular preformed 
insulin vesicles following glucose-induced beta cell depo-
larisation and calcium influx. The FPIR is classically 
assessed using an IVGTT, although a frequently sampled 
OGTT, with early samples taken during the first 30 min 
after the oral load, may also provide an accurate estimate 
[17, 18] (Fig. 2a). The loss of the glucose-induced FPIR is 
the most sensitive and earliest marker of beta cell dysfunc-
tion in type 1 diabetes [19–21]. While FPIR loss seems to 
be a marker of functional beta cell mass, some investiga-
tors have suggested that it may be secondary to insulin 
resistance and mild hyperglycaemia, therefore indicating 
that insulin resistance—and not secretion—may also be a 
primary driver for type 1 diabetes; however, this remains 
controversial [19].

The loss of the FPIR occurs 4 to 6 years before clini-
cally symptomatic type 1 diabetes, accompanying islet 
autoantibody seroconversion [2, 22], and its measurement 
has been adopted to stratify diabetes risk in early preven-
tion trials such as the Diabetes Prevention Trial – Type 
1 Diabetes (DPT-1) [14] and the European Nicotinamide 
Diabetes Intervention Trial (ENDIT) study [23].

Late compensatory changes in insulin secretion The FPIR 
is physiologically followed by a second, delayed release of 
insulin in newly formed vesicles, which is represented by 
the biphasic insulin profile observed during an OGTT in 
an individual without diabetes [24, 25]. A compensatory 
increase in C-peptide secretion during this late phase of the 
OGTT (after 60 min) has been described following the initial 
loss of the FPIR [3, 26, 27] (Fig. 2b).

Data from the TrialNet Pathway to Prevention (TNPTP) 
study in relatives with at least two islet autoantibodies of 
people with type 1 diabetes describe a biphasic trend in AUC 
C-peptide during an OGTT before the clinical onset of type 
1 diabetes, with a prolonged period of apparent stability 
of C-peptide or, in some studies, a ‘paradoxical’ increase 
in C-peptide levels [28]. This reaches a critical point ~6 
months before the diagnosis of stage 3 type 1 diabetes, 
when the pattern changes to a rapid decline in C-peptide 
levels (Fig. 2b–d) [27, 28]. The compensatory increase in 
the late phase of insulin secretion probably accounts for 
the early stability or increase in overall AUC C-peptide 
release, masking a progressive decline in functional beta 
cell mass (Fig. 2b) [28]. While during stage 1 type 1 diabetes 
(Fig. 2b) the glucose excursion after an oral load resem-
bles the healthy response, shown by biphasic glucose and 
C-peptide excursions, during stage 2 the compensatory 
delayed secretory response results in delayed glucose and 
C-peptide peaks, with monophasic glucose and C-peptide 
excursions (Fig. 2c). This is supported by the observation 
that a time to peak glucose >30 min [29] is associated with a 
higher risk of metabolic progression. A monophasic glucose 
curve (with one peak) was also more frequent in progressors 
to type 1 diabetes than non-progressors among antibody-
positive individuals with serial OGTTs in the TNPTP study 
[30] (Fig. 2c).

Beta cell function in the early stages of type 
1 diabetes : quantifying insulin resistance

The role of insulin resistance in type 1 diabetes onset 
has long been debated. Suggestions range from it being a 
hypothetical disease accelerator [31] to being the primary 
determinant of beta cell failure [5, 19]. The exact temporal 
sequence of insulin secretion and insulin resistance changes 
remains uncertain. Seroconversion to multiple islet autoan-
tibodies [32] parallels the transient physiological reduced 
insulin sensitivity described in healthy toddlers and adoles-
cents, which peaks twice: before the age of 2 years, during 
the so-called mini-puberty, well described in toddlers and 
featuring hormonal changes comparable to those seen in the 
actual pubertal transition [33], and after the age of 10 years, 
during the pubertal transition [13].
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Early observations conducted in a subgroup of asymp-
tomatic participants in the DPT-1 trial, exhibiting fasting 
hyperglycaemia and 2 h glucose values >11.1 mmol/l, 
demonstrated reduced insulin sensitivity [34]. Simi-
larly, a quantitative assessment of insulin resistance in 
the DPT-1 cohort based on the model of Mari et al [35] 
also demonstrated lower insulin sensitivity in those who 
progressed to clinical diabetes, in the absence of a dif-
ference at baseline [5], with a steep decline in insulin 

sensitivity 1 year before the diagnosis of clinically symp-
tomatic type 1 diabetes [6]. More recently, a lower insu-
lin sensitivity has been described in those with islet 
autoimmunity in the absence of dysglycaemia (stage 1) 
compared with their healthy peers [4]. Insulin resistance 
has also been described as a feature of type 1 diabetes in 
the absence of traditional risk factors, with the use of a 
euglycaemic clamp in lean individuals achieving glucose 
control targets [36–38].
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Fig. 1  The DI results from the hyperbolic interaction of insulin secre-
tion (beta cell responsiveness) and insulin sensitivity. Beta cell health 
can be quantified through the DI. Schematics representing insu-
lin secretion and insulin sensitivity are shown. Early insulin release 
represents the response to a rapid glucose rise and is driven by the 
release of intracellular preformed insulin vesicles following glucose-
induced beta cell depolarisation and calcium influx. This is followed 
by a second, delayed release of insulin in newly formed vesicles. 
Insulin and C-peptide are released in an equimolar ratio by the beta 

cell. Insulin is cleared by the first hepatic pass, with ~20% of the 
secreted insulin reaching peripheral target organs, while C-peptide 
is cleared by the kidney at a rate that is dependent on the GFR. The 
graph represents the dynamic interaction between insulin secretion 
and insulin sensitivity to maintain normoglycaemia. The transition 
from normal glucose tolerance to diabetes is shown by the failure to 
increase insulin secretion in response to changes in insulin sensitiv-
ity. ER, endoplasmic reticulum; TCA, tricarboxylic acid. This figure 
is available as part of a downl oadab le slide set

https://static-content.springer.com/esm/art%3A10.1007%2Fs00125-023-06011-5/MediaObjects/125_2023_6011_MOESM1_ESM.pptx
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Measuring beta cell health: static vs dynamic 
tests

Traditionally, measurement of insulin secretion relies on 
C-peptide plasma concentrations during static (at a single 
time point) or dynamic (over multiple time points) tests. 
Up to 80% of insulin secreted in the portal vein is cleared 
by the liver, with large variability depending on the pop-
ulation studied [39, 40]. On the other hand, C-peptide, 
secreted in an equimolar ratio with insulin, is not subject 
to hepatic first-pass clearance and exhibits a longer half-
life than insulin (~30 min vs ~4 min) [41], with an almost 
constant peripheral clearance [41–43]. These characteris-
tics make C-peptide, rather than insulin, the almost ideal 
analyte for estimating insulin secretion.

C-peptide can be measured in a fasting or non-fasting 
(random) sample as a simple clinically deployed static test 
[44]. Dynamic testing, on the other hand, refers to tests 
such as the OGTT and mixed meal tolerance test (MMTT), 
which require a glucose challenge (and amino acid chal-
lenge in the case of the MMTT) and longitudinal measure-
ment over 2–4 h.

Static tests Static measures of fasting glucose and C-peptide 
provide some evidence for actual disease progression in those 
in the early stages of type 1 diabetes [4, 45]. An early increase 
in postprandial glucose detectable up to 2 months before sero-
conversion in paediatric at-risk cohorts has been described 
[46]. In addition, a longitudinal analysis of The Environmental 
Determinants of Diabetes in the Young (TEDDY) study and the 
TNPTP cohorts, including children with islet autoimmunity, 
demonstrated that a 10% rise in  HbA1c in the non-diabetic range 
was as accurate as 2 h glucose values after an OGTT as a pre-
dictor of disease progression to stage 3 type 1 diabetes [47, 48].

The serum proinsulin-to-C-peptide ratio has been dem-
onstrated to be predictive of type 1 diabetes, with higher 
fasted ratio in progressors ~1 year before clinical onset 
of type 1 diabetes in the TNPTP cohort [49] and oth-
ers [50] as a consequence of derailed insulin processing 
but appeared to change little over time [8]. The urinary 
C-peptide-to-creatinine ratio may also serve as a surrogate 
marker of beta cell function [51, 52], with the possibility 
of capturing insulin resistance, as demonstrated in healthy 
individuals [53, 54], but has not been studied longitudi-
nally in early-stage type 1 diabetes.
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Fig. 2  Glucose and C-peptide profiles during an OGTT through the 
progression from healthy beta cells (a) to stage 1 (b), stage 2 (c) and 
stage 3 (d) type 1 diabetes (T1D). The time (years) to diagnosis of 

type 1 diabetes is based on the available evidence and is intended as 
approximative. IAA, islet autoantibody. This figure is available as 
part of a downl oadab le slide set

https://static-content.springer.com/esm/art%3A10.1007%2Fs00125-023-06011-5/MediaObjects/125_2023_6011_MOESM1_ESM.pptx
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Measurement of random serum C-peptide levels in people 
with new-onset type 1 diabetes [55, 56] and established type 1 
diabetes [57] have confirmed clear differences in disease pro-
gression between children and adults. Even among children, 
those diagnosed with type 1 diabetes at the youngest ages 
(<7 years) are frequently seen to progress to absolute insulin 
deficiency more rapidly [55], with many having undetectable 
levels of C-peptide at diagnosis, which has been shown to mir-
ror the quantifiable beta cell mass in histological studies [55, 
57]. As sampling and detection methods have evolved, single 
measurement of C-peptide levels in blood has become a cheap 
and easily accessible test, with a recent study demonstrat-
ing how transdermal capillary blood collection for C-peptide 
measurement is a reliable alternative to venous sampling [58].

However, limits of static tests for quantifying the subtle 
changes in beta cell function in early-stage type 1 diabetes 
remain. Although these tests are convenient and have some 
value after diagnosis, they are generally not sufficiently 
informative to be used alone either in cohort studies or in 
interventional trials prior to diagnosis.

Dynamic tests The OGTT remains the gold standard for 
staging type 1 diabetes according to the current classifica-
tions [1, 48, 59] and is the favourite of most screening pro-
grammes [30, 59–61], while the MMTT has been mostly 
used to monitor beta cell function after clinical onset of 
the disease (early-stage 3 type 1 diabetes) [62, 63]. From 
a physiology standpoint, while the OGTT measures insu-
lin secretion in response to a single secretagogue, oral glu-
cose, the MMTT also includes amino acids, an additional 
secretagogue, representing a more physiological test. Sur-
rogate measures of insulin secretion and sensitivity based on 
glucose and insulin concentrations can be obtained during 
MMTTs and OGTTs (Table 1). Additionally, several disease 
risk indices can be estimated from the measurements of glu-
cose, insulin and C-peptide during an OGTT.

Integrated assessment of beta cell health 
and the use of modelling

The AUC C-peptide computed during an OGTT or MMTT 
has been largely adopted as a surrogate marker of beta cell 
function in most disease prevention trials targeting stage 1 
[64] and stage 2 [9] type 1 diabetes, as well as in early-stage 
3 type 1 diabetes [65–68]. While a relationship between 
AUC C-peptide and residual beta cell function has been 
described, the longitudinal trajectory of such a relationship 
is still debated [42, 69]. However, as discussed above, the 
lack of decline in AUC C-peptide until around 6 months 
before the clinical onset of disease [28] and the evidence 
for early impairment of insulin sensitivity [4–6] suggest that 
measures accounting for both C-peptide and glucose profile, 

as well as insulin action, may be more informative to track 
the disease trajectory and the efficacy of disease-modifier 
drugs in early-stage type 1 diabetes.

Supporting this hypothesis, an exploratory analysis con-
ducted in unaffected family members of people with type 
1 diabetes demonstrated that lower beta cell function (DI) 
characterised those progressing to later disease stages in the 
absence of measurable differences in AUC C-peptide [70]. 
Similarly, a post-hoc analysis conducted in participants in the 
TrialNet Abatacept study testing the effect of abatacept on 
disease progression in those with stage 1 type 1 diabetes [64] 
demonstrated that Index60—a composite measure of glucose 
and C-peptide—but not AUC C-peptide was able to show a 
favourable effect of the treatment after 12 months [71].

An original approach, accounting for both glucose and 
C-peptide response curves (GCRC) during an OGTT, was 
proposed in a recent analysis of the TNPTP that allowed the 
identification of GCRC ‘zones’ on the 2D grid plot in asso-
ciation with demographic, metabolic, autoantibody, HLA 
and risk data [45]. This approach suggested that a higher 
C-peptide level was a feature of participants with higher 
glucose levels, therefore pointing to a role of insulin resist-
ance in disease progression.

Modelling beta cell function during dynamic 
tests

Although C-peptide levels are a well-established surrogate 
measure for insulin secretion, it is worth noting that C-pep-
tide metabolic clearance exhibits a certain interindividual 
variability under controlled experimental conditions. Fur-
thermore, C-peptide levels must be interpreted with cau-
tion in renal failure, in which blood levels of C-peptide can 
be falsely elevated [72, 73] and, owing to its half-life (~30 
min), may not reflect rapid fluctuations in insulin secretion 
shorter than 10 min that occur during a dynamic test such 
as an OGTT or MMTT. As such, metabolic models based 
on two or three ideal compartments that include C-peptide 
have been proven to better describe C-peptide kinetics and, 
in turn, the relationship between C-peptide plasma concen-
trations and actual insulin secretion. In a classical model, 
two-compartment kinetics assumes that C-peptide is dis-
tributed in a main compartment (plasma) and a peripheral 
compartment (extravascular space) in rapid equilibration. 
Two-compartment kinetics justifies the non-linear changes 
in peripheral C-peptide during the dynamic increase in insu-
lin secretion measured in vivo [74, 75]. As a practical impli-
cation, a more accurate assessment of in vivo insulin secre-
tion based on glucose and C-peptide measurements during a 
dynamic test such as an OGTT or MMTT is obtained when 
a two (or more) compartment model is applied, rather than 
using the raw data derived from the test [76, 77].
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Metabolic models are simplified representations of actual 
physiology that allow the estimation of components of beta 
cell health based on a minimum dataset from a dynamic test 
[78–80]. Although several models of glucose, insulin and 
C-peptide kinetics have been proposed [12, 35, 81, 82], here 
we focus on Cobelli’s oral minimal model [83] and Mari’s 
model [82] because of their large validation in different age 
groups, including paediatric cohorts [5, 84], and wide use 
over the last few decades [35, 79, 81, 84, 85].

The oral minimal model This model provides a simplified 
description of the complex glucose and insulin physiology 
[86]. It adopts quasi-linear differential equations to estimate 
insulin secretion and sensitivity as a result of metabolic 

fluxes among different compartments. Briefly, one of the 
two equations in the model represents insulin kinetics in 
plasma and the other describes the effects of insulin and 
glucose itself on restoration of baseline glucose levels after 
its ingestion or intravenous administration. The model con-
siders a ‘delay’ in insulin action on the target organs (liver 
and adipose tissue). The oral minimal model [83] is used 
to estimate insulin sensitivity (SI), beta cell responsiveness 
( � total) and beta cell function (DI=SI x � total). The three-
compartment model has been previously validated against 
model-independent measurements using multiple tracer 
meal protocols and euglycaemic and hyperglycaemic clamps 
[84]. A reduced sampling protocol based on a 2 h OGTT and 
seven samples has been validated against the widely used 3 

Table 1  Measurable outcomes of dynamic and static metabolic tests in stage 1 and stage 2 type 1 diabetes

a ↓ relatively low, ↓↓↓ very low, ↑ relatively high, ↑↑↑ very high
b Standard OGTT: glucose is measured at 0, 1 and 2 h
c Extended OGTT: glucose, insulin and C-peptide are measured at multiple time points (seven or more) and the test can be prolonged up to 240 
min. Early sampling (e.g. 10 and 15 min) allows FPIR to be estimated
d DPTRS= (1.57 × log BMI) − (0.06 × age [years]) + (0.81 × glucose summed from 30 to 120 min/100) − (0.85 × C-peptide summed from 30 to 
120 min/10) + (0.48 × log C-peptide0)
e Index60 = 0.36953 × (log C-peptide0 [ng/ml]) + 0.0165 ×  glucose60 (mg/dl) - 0.3644 × C-peptide60 (ng/ml)
CGM, continuous glucose monitoring

Test Staging FPIR Insulin 
secretion

Insulin 
sensitivity

Beta cell 
function

Disease progression 
risk

Limitsa

Dynamic tests
 Standard OGTT b ✓ ✗ ✗ ✗ ✗ ✓ • ↑ Invasiveness

• Age limit ( ≥ 7–8 years)
 Extended OGTT c ✓ ✓ ✓ ✓ ✓ ✓ • ↑ Invasiveness

• Age limit ( ≥ 7–8 years)
 MMTT ✗ ✓ ✓ ✓ ✓ ✗ • ↑ Invasiveness

• Age limit ( ≥ 7–8 years)
 IVGTT ✗ ✓ ✗ ✗ ✗ ✓ • ↑ Invasiveness

• Age limit ( ≥ 7–8 years)
 Hyperglycaemic clamp ✗ ✓ ✓ ✓ ✓ ✗ • ↑↑↑ Invasiveness

• Age limit ( ≥ 7–8 years)
 Euglycaemic–hyperinsulinaemic clamp ✗ ✗ ✗ ✓ ✗ ✗ • ↑↑↑ Invasiveness

• Age limit ( ≥ 7–8 years)
Static tests
 Urinary C-peptide-to-creatinine ratio ✗ ✗ ? ✗ ✗ ? • ↓↓↓ Invasiveness

• No age limit
  HbA1c/fasting glucose ✗ ✗ ✗ ✗ ✗ ✓ • ↓ Invasiveness

• No age limit
 C-peptide capillary dried blood spot test ✗ ✗ ? ✗ ✗ ? • ↓ Invasiveness

• No age limit
Risk indices computed during OGTT 
  DPTRSd ✗ ✗ ✗ ✗ ✗ ✓ • ↑ Invasiveness

• Age limit ( ≥ 7–8 years)
  Index60e ✗ ✗ ✓ ✗ ✗ ✓ • ↑ Invasiveness

• Age limit ( ≥ 7–8 years)
Other
 CGM ✗ ✗ ✗ ✗ ✗ ✓ • ↓↓↓ Invasiveness

• No age limit
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h nine-sample protocol, demonstrating accuracy in the esti-
mates of � total, SI and DI, thus paving the way to shorter and 
more suitable tests for screening procedures. The physiologi-
cal underpinnings of the oral minimal model are outlined 
in Fig. 1 [24, 79]. Glucose-stimulated insulin secretion is 
made up of two components: a dynamic component, repre-
senting the secretion of readily releasable insulin, which is 
stimulated by the rate of increase in glucose concentration  
( � dynamic), and a static component, which measures new 
insulin production in response to a given increment in glu-
cose above basal concentrations ( � static) [77, 83, 86].

A major advantage of metabolic modelling is the possibil-
ity of estimating both insulin secretion and insulin sensitivity 
once serial measurements of glucose, C-peptide and insulin 
are obtained. The availability of early time points in dynamic 
testing (10 and 20 min or 15 min) is of pivotal importance 
in estimating early insulin release ( � dynamic) [18]. The major 
limitation of this metabolic modelling in larger populations 
is the need for qualified personnel to run the analysis and 
the requirement to obtain multiple samples during testing.

Glucose sensitivity and the potentiation factor during oral 
dynamic tests An alternative model-based strategy has been 
proposed by Mari and colleagues by introducing beta cell glu-
cose sensitivity and the potentiation factor [81, 87]. Briefly, a 
first component of the insulin secretion model describes insu-
lin secretion with respect to the glucose concentration dur-
ing an OGTT/MMTT using a dose–response function. The 
mean slope of the dose–response curve over the measured 
glucose range is described as beta cell glucose sensitivity 
and is independent of insulin sensitivity. The dose–response 
curve is modulated by the so-called potentiation factor, which 
accounts for non-glucose stimuli, such as gut-derived incre-
tin secretion, during the test. A second component of the 
insulin secretion model quantifies the dependence of insulin 
secretion on the rate of change in glucose concentration. This 
derivative component is described as the ‘rate sensitivity’ and 
is related to early insulin release [35, 81].

Indices of risk for disease progression Longitudinal OGTTs 
have long served to derive indices to stratify the risk for 
disease progression. Such an approach does not necessarily 
describe the underlying physiology of beta cell changes over 
time. Indices including dynamic changes in C-peptide or 
glucose are expected to perform better than those based on 
single time points or static measures. Combined risk scores 
including genetic, clinical and immunological characteris-
tics generally outperform metabolic indices [88]; however, 
development and validation of such risk scores require large 
cohorts that can capture wider ranges of genetic risk and 
backgrounds.

Longitudinal studies have demonstrated that composite 
measures of both glucose and C-peptide are able to identify 

antibody-positive individuals with previously unrecognised 
metabolic abnormalities as being at risk of progressing to 
stage 3 type 1 diabetes. Examples of such composite meas-
ures are the Diabetes Prevention Trial–Type 1 Risk Score 
(DPTRS) and the Index60.

The DPTRS is a risk score derived by stepwise modelling 
based on univariate proportional hazards models, developed 
in islet cell autoantibody-positive individuals and validated 
in the TNPTP study. Designed to capture the increasing glu-
cose concentrations within the normal range that occur years 
before diagnosis [53, 89] and the differing trends in the latter 
stages of progression in relation to post-challenge C-peptide 
and glucose levels, the DPTRS includes fasting C-peptide, 
summed OGTT C-peptide and glucose values from 30, 60, 
90 and 120 min, and age and BMI [90, 91]. The change in 
DPTRS from baseline to 1 year was highly predictive of 
type 1 diabetes in participants in the DPT-1 trial [90], while 
a DPTRS value ≥7.00 was able to identify antibody-positive 
individuals within the normal glucose range at substantial 
risk for progression [92].

Index60, a solely metabolic index comprising the log 
fasting C-peptide, 60 min glucose and 60 min C-peptide 
values and derived similarly from univariate proportional 
hazards modelling within the DPT-1 and TrialNet Natural 
History Study (TNNHS) cohorts, has also demonstrated util-
ity in identifying impending stage 3 type 1 diabetes among 
autoantibody-positive individuals with normal 2 h glucose 
values (<7.8 mmol/l) [93].

Risk indices remain a valuable tool for identifying those 
who will most likely progress to stage 3 type 1 diabetes; how-
ever, they do not describe the underlying metabolic changes, 
which can be measured through metabolic testing and mod-
elling. Therefore, risk indices and metabolic measures can 
be seen as complementary, non-overlapping tools for the 
investigation of the early stages of type 1 diabetes [53, 54].

Minimally invasive measures of beta cell 
health: continuous glucose monitoring

Continuous glucose monitoring (CGM) has shown prom-
ise in meeting the challenge of screening across different 
age groups owing to its minimal invasiveness, low cost and 
good acceptance level. There is growing evidence that CGM 
detects abnormalities in glucose control in children with 
stage 1 type 1 diabetes [94]. In a small study conducted in 
antibody-positive children [81], the presence of islet autoim-
munity increased glycaemic variability and the percentage 
of time spent with blood glucose >7.8 mmol/l compared 
with antibody-negative children. In a larger TNPTP cohort, 
spending ≥5% of the time with blood glucose ≥7.8 mmol/l 
or ≥8.9 mmol/l resulted in a 2 year risk of progression to 
type 1 diabetes of 40% and 62%, respectively [95]. However, 
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evidence from the TNPTP cohort has demonstrated that 
OGTT-derived metrics still have a higher discriminative 
ability to predict disease progression than CGM [96].

Conclusion

Measures of C-peptide alone provide an incomplete portrait 
of beta cell function and disease progression during the early 
stages of type 1 diabetes, as they do not account for changing 
insulin sensitivity and the non-linear fluctuations in insulin 
secretion described in stage 1 and stage 2 type 1 diabetes.

While risk indices have proved to be a valuable tool for 
stratifying the risk of progression of disease, they provide 
limited quantitative evidence on actual functional beta cell 
mass and its longitudinal changes. On the other hand, deep 
metabolic phenotyping tests may require complex and bur-
densome procedures that may not be feasible across differ-
ent age groups. Metabolic modelling of the data derived 
from standard tests such as the OGTT or MMTT provides a 
more accurate and convenient way to estimate both insulin 
secretion and insulin sensitivity in early-stage type 1 diabe-
tes. Further validation of such models in larger longitudinal 
cohorts is needed to confirm the value of this approach for 
generating a rapidly responsive endpoint that could be used 
to accelerate therapeutic trials at this stage of the disease.
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