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Integration of risk variants 
from GWAS with SARS‑CoV‑2 
RNA interactome prioritizes 
FUBP1 and RAB2A as risk genes 
for COVID‑19
Weiwen Shi 1,5, Mengke Chen 1,5, Tingting Pan 1, Mengjie Chen 3, Yongjun Cheng 3, Yimei Hao 4, 
Sheng Chen 1 & Yuanjia Tang 1,2*

The role of host genetic factors in COVID‑19 outcomes remains unclear despite various genome‑wide 
association studies (GWAS). We annotate all significant variants and those variants in high LD  (R2 > 
0.8) from the COVID‑19 host genetics initiative (HGI) and identify risk genes by recognizing genes 
intolerant nonsynonymous mutations in coding regions and genes associated with cis‑expression 
quantitative trait loci (cis‑eQTL) in non‑coding regions. These genes are enriched in the immune 
response pathway and viral life cycle. It has been found that host RNA binding proteins (RBPs) 
participate in different phases of the SARS‑CoV‑2 life cycle. We collect 503 RBPs that interact with 
SARS‑CoV‑2 RNA concluded from in vitro studies. Combining risk genes from the HGI with RBPs, we 
identify two COVID‑19 risk loci that regulate the expression levels of FUBP1 and RAB2A in the lung. 
Due to the risk allele, COVID‑19 patients show downregulation of FUBP1 and upregulation of RAB2A. 
Using single‑cell RNA sequencing data, we show that FUBP1 and RAB2A are expressed in SARS‑CoV‑
2‑infected upper respiratory tract epithelial cells. We further identify NC_000001.11:g.77984833C>A 
and NC_000008.11:g.60559280T>C as functional variants by surveying allele‑specific transcription 
factor sites and cis‑regulatory elements and performing motif analysis. To sum up, our research, which 
associates human genetics with expression levels of RBPs, identifies FUBP1 and RAB2A as two risk 
genes for COVID‑19 and reveals the anti‑viral role of FUBP1 and the pro‑viral role of RAB2A in the 
infection of SARS‑CoV‑2.

The SARS-CoV-2 coronavirus is the pathogen causing the Coronavirus Disease 2019 (COVID-19)  pandemic1, 
which has led to over 700 million infections, including 6 million  deaths2. SARS-CoV-2 is an enveloped 
Coronaviridae family virus with a single-stranded, positive-sense (+) RNA  genome3.

The genome-wide association study (GWAS) is a valuable tool for comprehending the genetic basis of complex 
traits and diseases related to the host. Many host-specific genetic variants associated with COVID-19 have already 
been identified using  GWAS4. For example, genetic variants 12q24.13 mapped to OAS1 influence COVID-19 
susceptibility and  severity5. Despite the significant progress made in GWAS, there remains a major challenge 
in translating its findings to clinical application since numerous variants are located in non-coding  regions6. 
Additionally, determining how genetic variants impact COVID-19 risk is still under investigation.

Cis expression quantitative trait loci (cis-eQTL) analysis effectively illustrates GWAS studies, especially 
in non-coding regions, because it associates genetic variants with gene expression. Studies combining GWAS 
statistics and cis-eQTLs have identified risk variants for COVID-19 that influence expression levels of susceptible 
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 genes4. For example, Horowitz et al. identified a genetic variant, rs190509934, which was a protective factor 
against SARS-CoV-2 infection and downregulated the expression of  ACE27. Moreover, it has been shown that 
functional non-coding variants can regulate gene expression levels in an allelic way by disrupting transcription 
factor (TF) binding  sites8. It is helpful to associate host genetic variants of COVID-19 with the expression levels 
of genes to illustrate the result from GWAS.

SARS-CoV-2 highly depends on interactions with host cellular machinery to accomplish its viral life cycle 
and evade host  defenses9. For example, the SARS-CoV-2 virus relies on the host’s protein synthesis machinery 
to produce essential viral proteins needed for replication. The replication of the SARS-CoV-2 genome involves 
an RNA-dependent RNA polymerase (RdRp) complex composed of non-structural protein 12 (NSP12) and two 
co-factors, NSP7 and NSP8, which bind to the viral RNA (vRNA) and initiate the synthesis of a complementary 
 strand10. Additionally, SARS-CoV-2 encodes microRNA-like small RNAs, which target host functional genes 
to evade the host immune  system11,12. On the other hand, the host cells activate anti-viral detection and defense 
mechanisms in response to SARS-CoV-2 infection. For example, RIG-I and MDA5 are cellular sensors that 
recognize SARS-CoV-2 RNA, and ZAP is an inhibitor of SARS-CoV-2  infection13–15.

RNA binding proteins (RBPs), which bind to RNA molecules and play an essential role in many aspects 
of biological processing, are one of the most crucial host cellular factors interacting with RNA viruses. RBPs 
participate in viral processing, RNA metabolism, RNA stability, and virus replication and  translation16–21. 
Sufficient evidence has shown that host RBPs interacting with SARS-CoV-2 RNA (SARS-CoV-2 RNA 
interactome) participate in RNA metabolism, virus replication, anti-viral and pro-viral processes, and other 
pathways. For example, CNBP and LARP1 restrict SARS-CoV-2 replication, while IGF2BP1 stabilizes and 
augments the translation of SARS-CoV-2  RNA22,23. However, these studies utilizing RNA-centric methods 
to capture RBPs were not performed on cell lines derived from the primary lung. This limits their ability to 
accurately simulate natural human infections and establish an identical SARS-CoV-2 interactome that links host 
factors to COVID-19. Therefore, it is vital to associate host genetic risk variants of COVID-19 with expression 
levels of RBPs that interact with SARS-CoV-2 RNA and explore the mechanisms underlying them, providing 
strong evidence for the role of RBPs in COVID-19.

In this study, we focus on the SARS-CoV-2 RNA interactome in the lung to illustrate GWAS statics released 
by the COVID-19 Host Genetics Initiative (HGI) (release 7)24 using cis-eQTL mapping and aim to identify 
pathogenic variants that regulate the expression of RBPs to clarify the molecular mechanisms of how genetic 
variants influence the risk of COVID-19.

Materials and methods
Annotation of significant variants for COVID‑19
GWAS data for COVID-19 were collected from the COVID-19 host genetics initiative (HGI) (https:// www. 
covid 19hg. org/)24. We used meta-analyzed COVID-19 data sets (phenotypes A2: critically ill vs. population, 
phenotypes B2: hospitalized COVID-19 vs. population, and phenotype C2: COVID-19 vs. population) from 
the eighth April 2022 release of COVID-19 Host Genetics Initiative including European ancestries provided 
by 23andMe (https:// www. covid 19hg. org/ resul ts/ r7/). We used a p-value threshold of 5 ×  10−8 to hit significant 
variants. PLINK v1.9 (http:// pngu. mgh. harva rd. edu/ purce ll/ plink/)25 was used to find high LD variants  (R2 > 
0.8) from the European population of 1000G project GRCh38 phase 3 release data in  Ensembl26. We then used 
the Variant Effect Predictor (VEP)27 to annotate all significant variants and those variants in high LD with them. 
The annotated variants were classified into coding and noncoding regions. Coding regions were further divided 
into synonymous and nonsynonymous mutations. We recognized genes intolerant nonsynonymous mutations 
in coding regions. The human lung eQTL data shown in this study were obtained from the Genotype-Tissue 
Expression (GTEx) Portal (dbGaP Accession phs000424.v8.p2)28 which contained data for 515 lung samples. We 
took the intersection between our hit non-coding variants and variants with eQTLs. We then identified genes 
regulated by the overlapping variants as eGENEs in the lung. Direct downloads of the cis-eQTL figures were 
made from the GTEx Portal.

GO enrichment analysis
We conducted GO enrichment analysis of the union of RBP-encoding genes with nonsynonymous mutations 
and eGENEs using clusterProfiler v4.4.4 R  package29. The treeplot function of Enrichplot v1.16.2 was used to 
cluster GO  terms30.

Collection of the human SARS‑CoV‑2 interactome
To identify total host RBPs interacting with SARS-CoV-2 RNA, we collected data from six studies on multiple 
cell lines using different  approaches31–36. We manually excluded RBPs of other species and took a union of 503 
human RBPs from these studies.

LD plot of summary statistics for COVID‑19
We used LDblockShow v1.4037 to calculate the linkage disequilibrium  (R2) for the FUBP1 locus (chr1: 
77501100:78029110), RAD50 locus (chr5: 132422500:132696349), and RAB2A locus (chr8: 60466936:60673644) 
from the European population of 1000G project GRCh38 phase 3 release data in  Ensembl26. LDBlockshow was 
used to generate association statistics showing the − log10 p-value of COVID-19 risk variants and LD heatmaps 
showing the LD between COVID-19 variants in FUBP1 and RAB2A loci.

https://www.covid19hg.org/
https://www.covid19hg.org/
https://www.covid19hg.org/results/r7/
http://pngu.mgh.harvard.edu/purcell/plink/
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Single‑cell RNA sequencing analysis
We obtained integrated Human Lung Cell Atlas (HLCA) single-cell RNA sequencing data via https:// cellx gene. 
czisc ience. com/ colle ctions/ 6f6d3 81a- 7701- 4781- 935c- db10d 30de2 93.  Scanpy38 was used to analyze the data. We 
chose cells from COVID-19 patients. Sc. pl.umap(), sc.pl.dotplot(), and sc.pl.stacked_violin() functions were 
used to display the UMAP plot, dotplot, and violinplot, respectively.

We obtained single-cell RNA sequencing data from the nasopharynx of COVID-19 patients via the Single Cell 
Portal: https:// singl ecell. broad insti tute. org/ single_ cell/ study/ SCP12 89/. Due to the small number of SARS-CoV-2 
 RNA+ cells (Supplementary Fig. 3c), we annotated the scRNA-seq data coarsely and combined ambient viral 
cells with SARS-CoV-2  RNA− cells. Analysis was performed with Seurat v4.3.039. We filtered cells by eliminating 
barcodes with fewer than 200 UMI, 150 unique genes, and greater than 50% mitochondrial reads. After log-
normalization and scaling, we conducted principal component analysis (PCA) on the 2000 most variable genes 
for dimensionality reduction. We used Harmony v0.1.140 to integrate the individual samples. We used the 
Jackstraw function to select the first 20 principal components to define a nearest neighbor graph and Uniform 
Manifold Approximation and Projection (UMAP) for dimension reduction. We then clustered cells using Louvain 
clustering (resolution = 0.5) following the use of clustree v0.5.041. We used the FindAllMarkers function to 
calculate differentially expressed genes between each cluster and all other cells. Finally, we performed the cell-
type annotation as previously  described42, and marker genes are shown in Supplementary Fig. 3. DimPlot(), 
FeaturePlot(), DotPlot() and VlnPlot() function were used to create the UMAP plot, featureplot, dotplot and 
violinplot, respectively.

Survey of allele‑specific TF sites data
The survey of allele-specific TF sites was previously performed in ChIP-Seq  data43. The authors identified 
nearly 270,000 allele-specific binding sites for TFs in that study via a meta-analysis of more than 7000 ChIP-Seq 
experiments. We queried all hit COVID-19 variants and those in high LD with the lead SNPs in ADASTRA 
database v5.1.2 (http:// adast ra. autos ome. ru). Data were presented as the effect size and log2 of the p-value of 
reference and alternative allele, respectively.

Identification of adult human lung cis‑regulatory elements
From the ENCODE  site44 (https:// www. encod eproj ect. org), we downloaded epigenomic datasets of the human 
adult male lung (right lower lobe) in bigwig format. We then utilized the Integrative Genomics Viewer (IGV)45 
based on GRCh38/hg38 for visualization. All files represent the fold change over the control for the assay 
presented. ENCFF928LLI (H3K4me1 ChIP-seq), ENCFF282VQS (H3K4me3 ChIP-seq), and ENCFF054VRQ 
(H3K27ac ChIP-seq) were the identifiers assigned to the three datasets.

Transcription factor binding motif analysis.
We investigated functional COVID-19-associated variants for their potential effect on TF binding affinity using 
models from JASPAR2022 core  collection46 and TFBSTools v1.34.047. We defined a score threshold of 80% 
and a p-value of 5.00 ×  10−3 to confirm the occurrence of the TF motif for any of the two alleles. DNA input of 
NC_000008.11:g.60559280T>C were ‘TTG CTG TGC AAG CCA TTT CCC CGT TTC ATG T’ and ‘TTG CTG TGC 
AAG CCA CTC CCC GTT TCA TGT ’ and NC_000001.11:g.77984833C>A were ‘GTA GTT TCA CAC AAA CTT TTC 
TTA GAA TAT C’ and ‘GTA GTT TCA CAC AAA ATT TTC TTA GAA TAT C’. We used ggseqlogo v0.148 to visualize 
the motif of target TFs, and NC_000001.11:g.77984833C>A was displayed in the negative strand.

Correlation analysis between candidate TFs and RBPs
Gene expression data shown in correlation analysis were obtained from the genotype-tissue expression (GTEx) 
Portal (dbGaP Accession phs000424.v8.p2)28 containing data for 515 lung samples. We then used ggstatsplot 
v0.11.0 to display the correlation matrix and ggcorrplot v0.1.4 to visualize the scatterplot of candidate TFs and 
 RBPs49.

Results
Identification of COVID‑19 associated variants and risk genes
Despite various GWAS mapping risk loci for COVID-19, the interpretation and mechanism underlying the study 
remain unknown. To gain a broader view of how genetic variants influence the susceptibility and severity of 
COVID-19, we took the location and consequences of risk variants into consideration (Fig. 1a). To interpret the 
results from HGI comprehensively, we found LD variants  (R2 > 0.8) of significant SNPs (p < 5 ×  10−8) and used 
the Variant Effect Predictor (VEP) to annotate all these variants (Supplementary Table 1) in European ancestry 
group (phenotype A2: critically ill vs. population, phenotype B2: hospitalized COVID-19 vs. population, and 
phenotype C2: COVID-19 vs. population). In these three phenotypes, about 4 % of variants were found in 
coding regions, while 96% were found in non-coding regions (Fig. 1b). In coding regions, we focused on genes 
intolerant nonsynonymous mutations. To further understand the potent target genes in non-coding regions, 
we surveyed eQTL in  GTEx28 in lung tissue to identify genes whose expressions are associated with variants 
(eGENEs). Risk variants and variants with eQTLs were intersected, and the targeted genes regulated by eQTLs 
were defined as eGENEs. Overlapping genes intolerant nonsynonymous mutations, and overlapping eGENEs 
across three phenotypes were described in Supplementary Fig. 1a and b, respectively. The overlap of genes 
intolerant nonsynonymous mutations and eGENEs across three phenotypes was depicted in Fig. 1c. We then 
performed GO analysis on all target genes (genes intolerant nonsynonymous mutations and eGENEs) of COVID-
19 to determine their overall biological function (Supplementary Table 2). Clustered GO terms were enriched 

https://cellxgene.cziscience.com/collections/6f6d381a-7701-4781-935c-db10d30de293
https://cellxgene.cziscience.com/collections/6f6d381a-7701-4781-935c-db10d30de293
https://singlecell.broadinstitute.org/single_cell/study/SCP1289/
http://adastra.autosome.ru
https://www.encodeproject.org
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in immune response pathways (peptide antigen, cellular interferon biotic), viral life cycle, and other signaling 
pathways (Fig. 1d), indicating that these risk genes were highly linked to COVID-19.
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Figure 1.  Atlas of potential risk genes for COVID-19 (a) Flowchart of the study design. (b) Distribution 
of genomic regional categories for COVID-19 variants. (c) Vennplot of genes intolerant nonsynonymous 
mutations and eGENEs. (d) Clustered GO terms of all potential risk genes for COVID-19.



5

Vol.:(0123456789)

Scientific Reports |        (2023) 13:19194  | https://doi.org/10.1038/s41598-023-44705-3

www.nature.com/scientificreports/

SARS‑CoV‑2 interacting protein related risk loci for COVID‑19
After identifying potential risk genes for COVID-19, it is crucial to associate host genetic factors with SARS-
CoV-2 to illustrate the disease’s mechanism. As SARS-CoV-2 is an RNA virus, RBPs are one of the most direct 
ways the host interacts with the virus. Several studies have been conducted to examine the interaction between 
host proteins and RNA of SARS-CoV-2, to identify the host RBPs that directly bind SARS-CoV-2 RNA and 
furnish proof of the roles RBPs play in the infection process of SARS-CoV-2. In the previous six  studies31–36 
(Supplementary Table 3), 503 host RBPs interacting with SARS-CoV-2 RNA have been identified in multiple 
human infected cell lines using different RNA-centric cross-linking approaches (Supplementary Fig. 2a). As it 
is shown in Supplementary Fig. 2a, these in vitro results have shown differences in identifying the SARS-CoV-2 
RNA interactome, possibly due to RNA-centric procedures and different cell contexts. GO analysis has showed 
that host RBPs participated in multiple steps of the SARS-CoV-2 life cycle (Supplementary Fig. 2b,c).

We surveyed the 503 RBPs to determine whether the risk genes described above function in interacting with 
SARS-CoV-2. We observed that risk genes RAD50 double strand break repair protein (RAD50), Far Upstream 
Element Binding Protein 1 (FUBP1), and RAB2A, member RAS oncogene family (RAB2A), were RBPs that 
interacted with SARS-CoV-2 RNA. We then identified risk variants that regulate the expression of RBPs from 
GWAS statistics, all located in non-coding regions (Table 1). We assumed that these polymorphic loci participate 
in COVID-19 by affecting the expression of RBPs.

Combining eGENEs and RBPS, we identified three loci, including FUBP1 (chr. 1p31.1), RAD50 (chr. 5q31.1), 
and RAB2A (chr. 8q12.1), where COVID-19 risk associated variants modified gene expression of RBPs in the 
lung tissue. We used LDBlockShow to create an LD  plot37, using a calculated LD matrix from the 1000 Genomes 
European  reference50 (accounting for 85% of cis-eQTL populations) (Fig. 2a,c,e,g).

In chromosome 1, we identified two genetic variants as cis-eQTLs associated with the eGENE FUBP1 in the 
lung for hospitalization. NC_000001.11:g.77501822T>A is located in the AK5 locus downstream FUBP1, while 
NC_000001.11:g.77984833C>A is located upstream FUBP1. We found that risk allele carriers of the lead SNP 
NC_000001.11:g.77984833C>A had a significantly higher risk of worse disease outcomes than non-carriers 
(MAF = 0.1191, beta = 0.092186, p = 3.41 ×  10−9). Fig. 2d shows that this risk allele was linked to a lower level of 
FUBP1 expression in the lung. These results demonstrate that NC_000001.11:g.77501822T in FUBP1 is linked 
to a higher rate of SARS-CoV-2 hospitalization and downregulates the expression of FUBP1 in the lung, which 
may limit FUBP1 anti-viral activity and thereby contribute to the development of the SARS-CoV-2 infection.

In chromosome 5, we identified sixteen and four genetic variants that increased the risk of severity 
and hospitalization of COVID-19, respectively. These variants were located within a region of strong 
LD and were cis-eQTLs associated with eGENE RAD50. GWAS analysis indicated that the lead SNP 
NC_000005.10:g.132457732dup (MAF = 0.1141, beta = 0.1129, p = 6.33 ×  10−9) for the A2 phenotype and 
NC_000005.10:g.132448315C>T (MAF = 0.1129, beta = 0.081636, p = 1.96 ×  10−8) for the B2 phenotype 
upregulated the expression of RAD50 in the lung (Fig. 2b,f). These findings suggested that this locus is a risk 

Table 1.  COVID-19 risk variants regulate the expression level of RBPs. Phenotype A2: critically ill vs. 
population, Phenotype B2: hospitalized COVID-19 vs. population, and Phenotype C2: COVID-19 vs. 
population. a p-value < 5 ×  10–8.

Chr Variant Risk allele Genomic annotation

p-value

Locus gene eGENEA2 B2 C2

1
NC_000001.11:g.77501822T>A A Intron 7.64e-07 1.98e-08a 0.0019706 AK5

FUBP1
NC_000001.11:g.77984833C>A A Intron 1.17e-06 3.41e-09a 0.00034365 DNAJB4

5

NC_000005.10:g.132422622A>G A Intron 2.01e-08a 5.97e-07 0.0048754

IRF1-AS1 RAD50

NC_000005.10:g.132423020T>C T Intron 2.01e-08a 3.50e-07 0.0013191

NC_000005.10:g.132424387A>G A Intron 3.41e-08a 6.69e-06 0.013389

NC_000005.10:g.132424726A>G A Intron 2.01e-08a 1.10e-06 0.0096258

NC_000005.10:g.132424758A>G A Intron 3.29e-08a 1.84e-06 0.0048866

NC_000005.10:g.132427482T>C T Intron 3.40e-08a 3.32e-07 0.0039825

NC_000005.10:g.132428411A>G A Intron 2.84e-08a 3.08e-07 0.0042891

NC_000005.10:g.132441275T>C C Intron 1.96e-08a 3.34e-08a 0.001593

NC_000005.10:g.132448315C>T T Intron 4.57e-08a 1.96e-08a 0.0021256

NC_000005.10:g.132453764G>A A Intron 2.58e-08a 3.76e-08a 0.003704

NC_000005.10:g.132457732dup TG Intron 6.33e-09a 2.04e-07 4.07e-05

NC_000005.10:g.132458098T>G G Intron 2.62e-08a 2.39e-08a 0.0036656

NC_000005.10:g.132459227dup TC Intron 1.27e-08a 1.99e-07 0.00043893

NC_000005.10:g.132462711C>G G Intron 3.28e-08a 5.98e-08a 0.0051042

NC_000005.10:g.132463037C>T T Intron 4.02e-08a 8.14e-08a 0.0055856

NC_000005.10:g.132463928G>A A Intron 3.98e-08a 9.48e-08a 0.0062497

8 NC_000008.11:g.60515641C>T T Upstream 5.61e-06 4.81e-08a 3.89e-05 RAB2A RAB2A
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factor for SARS-CoV-2 by promoting the expression of RAD50 in the lung, highlighting the pro-viral role of 
RAD50 in SARS-CoV-2 infection.

In chromosome 8, we identified a genetic variant NC_000008.11:g.60515641C>T, an SNP located upstream 
the RAB2A locus, as a cis-eQTL associated with the eGENE RAB2A in the lung for hospitalization. We found 
that risk allele carriers of NC_000008.11:g.60515641C>T had a significantly higher risk of worse disease 
outcomes than non-carriers (MAF = 0.3814, beta = 0.053141, p = 4.81 ×  10−8). Cis-eQTL data showed that this 
risk allele was associated with higher expression of RAB2A in the lung (Fig. 2h). These findings suggest that 
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NC_000008.11:g.60515641C>T is a risk factor for SARS-CoV-2 hospitalization by promoting the expression of 
RAB2A in the lung, highlighting the pro-viral role of RAB2A in SARS-CoV-2 infection.

The results indicate that the risk allele NC_000005.10:g.132457732dup renders severity of COVID-19 
through upregulating RAD50, and NC_000001.11:g.77984833C>A, NC_000005.10:g.132448315C>T, and 
NC_000008.11:g.60515641C>T contribute to the hospitalization of COVID-19 through downregulating FUBP1 
and upregulating RAD50 and RAB2A, respectively.

FUBP1 and RAB2A are expressed in the SARS‑CoV‑2‑infected epithelial cells of nasopharynx 
in COVID‑19 patients
After identifying risk variants for COVID-19 which regulate the expression level of RBPs, it is necessary to 
validate the expression of interested RBPs in SARS-CoV-2 targeted tissue and infected cells to provide evidence 
for the interaction between our interested RBPs and SARS-CoV-2 RNA due to heterogeneity in identifying the 
SARS-CoV-2 RNA interactome from different RNA-centric procedures and different cell contexts (Supplementary 
Fig. 2).

To investigate the expression of our targeted RBPs, we first chose single-cell RNA sequencing (scRNA-seq) 
data of COVID-19 patients from the integrated Human Lung Cell Atlas (HLCA)51, a large-scale, cross-dataset 
scRNA-seq of the lung. The COVID-19 patients scRNA-seq data from HLCA included 60 samples and 49 cell 
types (Fig. 3a). We found that FUBP1 and RAB2A were expressed in multiple cell types, such as club cells, brush 
cell of the tracheobronchial tree, and epithelial cell of alveolus of lung while RAD50 was expressed lowly in 
almost all cell types (Fig. 3b–d).

To further examine the manifestation of targeted RBPs in cells that have been infected, we chose another 
scRNA-seq data from nasopharyngeal samples because SARS-CoV-2 infection primarily affects the upper 
respiratory  tract52. We analyzed scRNA-seq data from COVID-19 patients reported by Ziegler CGK et al.53 and 
annotated cell types coarsely due to the limited number of cells identified as positive for SARS-CoV-2 RNA 
 (vRNA+) (Supplementary Fig. 3b). Marker genes were shown in Supplementary Fig. 3a. We demonstrated the 
top four epithelial cells (secretory cells, ciliated cells, squamous cells and  FOXN4+ cells) with a high percentage 
of  vRNA+ cells (Supplementary Fig. 3c, Fig. 4a) to display the most possible SARS-CoV-2-infected epithelial 
cells. The results showed that FUBP1 and RAB2A are expressed in several types of nasopharyngeal epithelial 
cells, including  FOXN4+ cells, squamous cells, ciliated cells, and secretory cells, in the upper respiratory tract of 
COVID-19 patients, especially the  vRNA+ group (Fig. 4c,d). Notably, FUBP1 and RAB2A were highly expressed 
in  vRNA+ ciliated cells (Fig. 4b), which were the primary target cells of SARS-CoV-2 upon  infection54. Similar to 
the result from HLCA, RAD50 was low expressed in epithelial cells (Fig. 4b, Supplementary Fig. 3d).

These findings show that FUBP1 and RAB2A are expressed in SARS-CoV-2-infected epithelial cells, which 
lays the foundation for the interaction between SARS-CoV-2 RNA and our targeted RBPs, indicating that FUBP1 
and RAB2A may play essential roles in the infection of SARS-CoV-2.

Functional variants that regulate the expression of FUBP1 and RAB2A
Since COVID-19 risk variants regulating RBPs are all in non-coding regions, it is challenging to identify the 
causal variants. Reports suggest that non-coding variants can potentially regulate the expression of target genes 
by either disrupting the underlying TF binding sites or altering the strength of regulatory  regions58,59.

To identify the likely causal variants and explore the genetic mechanisms driving COVID-19 hospitalization 
risk, we first surveyed the ADASTRA database v5.1.243,55, which identified allele-specific TF binding at SNPs in 
Chromatin Immunoprecipitation Sequencing (ChIP-Seq) data. After analyzing all hit variants and those in high 
LD with the lead SNPs in the ADASTRA database v5.1.243,55, we found that NC_000008.11:g.60559280T>C, which 
was highly linked with lead SNP NC_000008.11:g.60515641C>T mapped to RAB2A, is an allele-specific binding 
site for twelve TFs (Supplementary Table 4), which made us prefer NC_000008.11:g.60559280T>C as a functional 
variant. Using the scRNA-seq described above, we examined the expression of SPI1 and ELF1, which concordantly 
matched motif analysis and were more credible. It was observed that ELF1 exhibited a higher expression level 
(Supplementary Fig. 4a), leading us to recognize ELF1 as the effector TF, whose binding affinity was altered in 
NC_000008.11:g.60559280T>C (Fig. 5a). Correlation analysis showed that ELF1 was positively associated with 
RAB2A (Supplementary Fig. 4e), which correlates with its transcriptional  function56. We then used  TFBStools47 to 
predict the binding affinity of ELF1 on the reference and alternative alleles of NC_000008.11:g.60559280T>C. The 

Figure 2.  COVID-19 risk variants near the RBP loci regulate the expression of RAD50, FUBP1, and RAB2A. 
LD plot of (a) 273kb on 5q31.1 in A2 phenotype, and (c) 527kb regions on 1p31.1., (e) 258kb regions on 5q31.1, 
and (g) 205 kb regions on 8q12.1-8q12.2 in B2 phenotype. In the upper panel, the y-axis represents the −log10 
of p-values for the GWAS meta-analysis from HGI, and the x-axis represents the chromosomal positions 
based on the GRCh38/hg38 assembly. The red dotted line indicates −log10 of the p-value threshold (5 ×  10-8). 
Each dot represents a single nucleotide polymorphism (SNP) from the GWAS of COVID-19. The colored dots 
represent cis-eQTL variants. The colors indicate pairwise LD’s strength according to the  R2 matrix from the 1000 
Genome European population. The square dots represent the lead SNP. The lower panel shows an LD heatmap 
plot. Violin plots from the GTEx v8 human lung cis-eQTLs illustrate the number of samples in each genotype 
(adjusted p-values are shown below). (b) COVID-19 severity variant NC_000005.10:g.132457732dup is a cis-
eQTL upregulating RAD50, (d) COVID-19 hospitalization variant NC_000001.11:g.77984833C>A is a cis-eQTL 
downregulating FUBP1, (f) COVID-19 hospitalization variant NC_000005.10:g.132448315C>T is a cis-eQTL 
upregulating RAD50, and (h) COVID-19 hospitalization variant NC_000008.11:g.60515641C>T is a cis-eQTL 
upregulating RAB2A.
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Figure 3.  Expression of FUBP1, RAD50, and RAB2A in single-cell data in COVID-19 patients from HLCA. 
(a) UMAP of cell types of single-cell data in COVID-19 patients from HLCA. (b) The Feature plots showing the 
expression levels of FUBP1, RAD50, and RAB2A in COVID-19 patients. (c) Dotplot and (d) Violin plot showing 
the number of cells expressing FUBP1, RAD50, and RAB2A in COVID-19 patients.
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p-value changed from 6.40 ×  10−3 (allele T) to 1.17 ×  10−3 (allele C), so the binding affinity increased in the risk 
allele. Surveying epigenomic data in the lung, we found NC_000008.11:g.60559280T>C located in an activated 
lung enhancer region through epigenomic data (Fig. 5a), which demonstrated the transcriptional activity of 
NC_000008.11:g.60559280T>C. The result shows that the risk allele of NC_000008.11:g.60559280T>C, which 
is highly linked to NC_000008.11:g.60515641C>T, is connected to higher transcription levels of RAB2A and is 
believed to potentially strengthen the binding affinity towards ELF1, a transcriptional activator.

For variants mapped to FUBP1, which did not hit the ADASTRA database, we assumed that the variants 
were more likely functional if located within active lung CREs. We surveyed the regulatory regions in the lung 
and found NC_000001.11:g.77984833C>A located in the enhancer regions of FUBP1 (Fig. 5b), so we identified 
this variant as the functional variant. We then performed TF analysis on NC_000001.11:g.77984833C>A by 
 TFBStools47. We used all version models from JASPAR2022 core  collection46 and set the variant ±15bp as input 
(detailed in the method). We then defined a score threshold of the TFs as 80% and p-value as 0.005 to confirm 
the occurrence of the TF motif for both reference and alternative alleles (Supplementary Table 5). We found 
12 candidate TFs whose binding affinity changed at NC_000001.11:g.77984833C>A. We also investigated the 
expression of the candidate TFs in the scRNA-seq described above (Supplementary Fig. 4a). We then performed 
correlation analysis between these highly expressed TFs and FUBP1, and the activator MEF2A57 was positively 
associated with FUBP1 (Supplementary Fig. 4f), which correlated with its transcriptional function, so we 
identified MEF2A as the effector TF. The transcription of FUBP1 was anticipated to be lowered by the risk allele 
(A) of NC_000001.11:g.77984833C>A. The binding affinity of the transcriptional activator MEF2A was predicted 
to decrease at NC_000001.11:g.77984833C>A. The results show that activator MEF2A binds more weakly in 
the risk allele of NC_000001.11:g.77984833C>A, thus reducing the transcription of FUBP1 and leading to more 
hospitalizations.

Through the strategy mentioned above, we identify two functional variants that regulate the expression of 
FUBP1 and RAB2A by changing TF binding affinity, respectively. NC_000008.11:g.60559280T>C, located in an 
activated enhancer region of RAB2A, upregulates RAB2A expression by increasing the affinity of the activator 

Figure 4.  Expression of FUBP1, RAD50, and RAB2A in single-cell data in the nasopharynx. (a) UMAP of the 
top four epithelial cells with a high percentage of SARS-CoV-2  RNA+  (vRNA+) cells in the nasopharynx. (b) 
Dotplot showing the number of cells expressing FUBP1, RAD50, and RAB2A in both  vRNA+ and SARS-CoV-2 
RNA −  (vRNA−) groups. The dots with yellow frames indicate expression levels of FUBP1 and RAB2A in ciliated 
cells, which SARS-CoV-2 enters in airway epithelia immediately upon  infection54. The feature plots show the 
expression levels of (c) FUBP1 and (d) RAB2A in the four epithelial cells, which are grouped by SARS-CoV-2 
RNA status. (e) The violin plot of FUBP1 and RAB2A expressed in epithelial cells, grouped by SARS-CoV-2 
RNA status.
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Figure 5.  Epigenomic data and TF motif analysis to identify allele-specific functional variants that regulate the expression of FUBP1 
and RBA2A. LD plot showing  R2 of variants in LD with the lead SNPs. The y-axis represents the  R2 for variants in LD with the lead 
SNPs, and the x-axis represents the chromosomal positions based on the GRCh38/hg38 assembly. The lead SNPs are displayed 
as purple diamonds. The functional variants are displayed as red squares. The color gradient indicates pairwise LD’s strength 
 (R2) according to 1000 Genomes European Reference. (a) NC_000008.11:g.60559280T>C is strongly linked with the lead SNP 
NC_000008.11:g.60515641C>T  (R2 = 0.95), overlapping an activated lung enhancer within the RAB2A gene. Transcription factor motif 
analysis indicates that the COVID-19 variant NC_000008.11:g.60559280T>C increases the binding affinity of a motif for the ELF1. (b) 
NC_000001.11:g.77984833C>A is in lung enhancer upstream of the FUBP1 gene. Transcription factor motif analysis indicates that the 
COVID-19 variant NC_000001.11:g.77984833C>A (negative strand) increases the binding affinity of a motif for the MEF2A.



11

Vol.:(0123456789)

Scientific Reports |        (2023) 13:19194  | https://doi.org/10.1038/s41598-023-44705-3

www.nature.com/scientificreports/

ELF1, while NC_000001.11:g.77984833C>A, located in the enhancer regions of FUBP1, downregulates FUBP1 
expression by decreasing the binding affinity of the activator MEF2A.

Discussion
Genetic variants have been discovered to predispose COVID-19 patients to a more severe outcome, such as 
hospitalization. The interpretation of GWAS is vital for understanding the mechanisms underlying COVID-19. 
We annotated all variants and those variants in high LD  (R2 >0.8) and classified them as coding and non-coding 
variants. We further identified risk genes from genes with nonsynonymous mutations and eGENEs in the lung. 
To investigate how these risk genes function in COVID-19, we took RBPs, which have been recognized to engage 
in multiple stages of the SARS-CoV-2 life cycle, into consideration and identified three RBP-related loci for 
COVID-19. Subsequently, we demonstrated the expression levels of FUBP1, RAD50, and RAB2A in epithelial cells 
infected with SARS-CoV-2 in scRNA-seq data and speculated that RAD50 might not function in the lung because 
of its low expression. We further chose an allele-specific strategy and identified NC_000001.11:g.77984833C>A 
and NC_000008.11:g.60559280T>C as functional variants. TF binding affinity changed at these two variants 
contributed to the hospitalization of COVID-19 through downregulating and upregulating the expression of 
FUBP1 and RAB2A, respectively. These results led us to identify FUBP1 and RAB2A as susceptible genes for the 
hospitalization of COVID-19 and to reason that FUBP1 played an anti-viral role while RAB2A played a pro-viral 
role in the infection of SARS-CoV-2.

FUBP1 is a canonical RBP that belongs to a conserved family of single-stranded (ss) DNA-binding regulators 
named  FUBPs58. Although FUBP1 is primarily located in the nucleus, reports suggest it can also be expressed in 
the cytoplasm, where it regulates cytoplasmic virus  RNA59. Researchers found that FUBP1 was downregulated 
significantly in COVID-19 patients compared to healthy controls in peripheral blood  monocytes60, consistent 
with our finding in lung tissue. Although little is known about the function of FUBP1 in COVID-19, evidence 
has shown that FUBP1 suppresses protein translation of Japanese encephalitis virus (JEV) by targeting its 5’ 
and 3’ UTR 61. Since FUBP1 binds to SARS-CoV-2, we propose that FUBP1 functions in an anti-viral way by 
suppressing transcription or protein translation. It has been validated that FUBP1 binds to the negative-sense of 
29534-29870 in SARS-CoV-2 RNA (ORF10, 3’UTR, and poly(A)) in Calu-3 cells and might play a transcription 
 role62. We speculate that FUBP1 functions in an anti-viral way by binding to ORF10 and 3’UTR of the negative 
strand in SARS-CoV-2 RNA and repressing the transcription of SARS-CoV-2. It is promising to target FUBP1 
in the treatment of COVID-19 since a study has found that FUBP1 was repressed after SARS-CoV-2 infection in 
Calu-3 cells, and expression of FUBP1 could be reversed after allicin exposure to SARS-CoV-2-infected  cells63.

RAB2A is a Rab family member and was first identified as a novel RBP in  201864. Though little is known about 
its function on virus RNA, the role of RAB2A has been well illustrated as a critical modulator of intracellular 
membrane trafficking, especially in protein transport in ER–Golgi intermediate compartment (ERGIC)65,66. 
Knockdown of RAB2A induces Golgi fragmentation in HeLa-S3  cells65. RAB2A may play an essential role in 
ERGIC, where structural and non-structural proteins are assembled and transported to the cell surface and other 
 organelles9,67. SARS-CoVs have been reported to exploit the intermediate compartment (IC) as an intracellular 
site of  formation68. SARS-CoV-2 may hijack the host early secretory pathway involving RAB2A to assemble and 
transport. Moreover, RAB2A plays a vital role in the fusion of lysosomes (LYSs) and late endosomes (LEs)69. It has 
been found that RAB2A interacts with NSP7 and  ORF3a70,71. ORF3a may bind to RAB2A and inhibit the fusion of 
LEs and LYSs through interaction with RAB2A, thus impairing the formation of autophagolysosomes. Moreover, 
a CRISPR screen in Huh-7.5 cells infected with SARS-CoV-2 showed that RAB2A was critical for virus replication 
and virus-induced cytopathic effect (CPE), indicating its significance in virus  replication70. Considering that 
RAB2A has been identified as a SARS-CoV-2 binding protein, we put forward another assumption that SARS-
CoV-2 hijacks RAB2A to facilitate the replication of its genome. Recent studies have shown that RAB2A interacts 
with NSP7 of SARS-CoV-270, which is an indispensable co-factor binding to NSP12 to form an RdRp complex 
and plays a vital role in the stabilization of NSP12 regions involved in RNA  binding72. We reason that RAB2A 
might contribute to stabilizing SARS-CoV-2 RNA by forming a complex where RAB2A binds to both vRNA 
and NSP7, thus facilitating the replication of SARS-CoV-2. Consistent with our study, a meta-analysis of GWAS 
revealed that RAB2A (rs13276831) was associated with severe COVID-19, and more expression of RAB2A was 
associated with worse  disease73. In addition, a Mendelian randomization analysis based on transcriptome‐wide 
summary data associated RAB2A with hospitalized COVID-19 in Artery  Tibial74. Strong evidence from genetic 
variants near protein-encoding loci (cis-pQTL) analysis combined with GWAS also suggested that RAB2A was 
a possible causal gene for severe COVID-1975,76. These studies verify the results of our research. Searching for 
the ChEMBL database, we identify CID1067700 as a promising inhibitor of RAB2A, which has also been shown 
to block Arf-like small GTPase Arl8b that regulates SARS-CoV-2  egress77. Further experiments are required to 
explore the effectiveness of CID1067700 in targeting RAB2A in treating COVID-19.

Even though few potential drugs have been found to target FUBP1 and RAB2A, using RNA-binding proteins 
to treat COVID-19 is still promising. Researchers have found pioglitazone and lapatinib as potential drugs since 
pioglitazone decreases the expression of RPS3, eIF4B, and RPS10, while lapatinib decreases the expression of 
EEF1A1, EIF5A, and RPS10  RBPs78. Another study investigated drugs targeting the interacting proteins of SARS-
CoV-2-related RBPs and identified Doxorubicin and Topotecan as possible drugs targeting protein interactome 
of  RBPs79, providing another way to use RBPs in the treatment of COVID-19.

Our data mining study identified two RBPs as susceptible genes for hospitalization of COVID-19. However, 
we failed to identify the exact binding sites of RAB2A on SARS-CoV-2 RNA due to limited CLIP-seq data. 
Further investigations, including RNA Binding Protein Immunoprecipitation Assay Sequencing (RIP-seq) and 
Gel Shift Assays (EMSA) are warranted to determine the exact binding sites of FUBP1 and RAB2A on SARS-
CoV-2 thus to analyze the effects of variations of SARS-CoV-2 RNA on the binding sites. We also did not explain 
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the further mechanism by which NC_000001.11:g.77984833C>A and NC_000008.11:g.60559280T>C regulate 
the expression level of FUBP1 and RAB2A, respectively. CRISPR-mediated inhibition (CRISPRi) and activation 
(CRISPRa) could be used to validate the genetic effects of these two variants on RBPs, and ChIP-Seq (or ChIP-
qPCR) could investigate the binding affinity of TFs. It remains unclear how FUBP1 and RAB2A function in 
SARS-CoV-2 infection. Further studies such as CRISPR are needed to clarify in which process the anti-viral role 
of FUBP1 and the pro-viral role of RAB2A play in COVID-19.

In summary, this study annotates risk genes from genetic variants by combining variant function and 
cis-eQTL and delves into the interaction between host RBPs and SARS-CoV-2. This study identifies two key 
contributing genes, FUBP1 and RAB2A, whose corresponding proteins bind to the genome of SARS-CoV-2 
in SARS-CoV-2-infected epithelial cells in the lung. This study also highlights that two functional variants 
regulate the expression of these two RBPs by altering the binding affinity of TFs, indicating the anti-viral role 
of FUBP1 and the pro-viral role of RAB2A. This study provides valuable insights into the genetic risk genes in 
the pathogenesis of SARS-CoV-2 and provides compelling evidence for further investigations into the role of 
FUBP1 and RAB2A as RBPs in SARS-CoV-2 infection. The study proposes a model that suggests host variants 
may change the TF binding affinity, thereby altering the expression levels of RBPs and influencing the function of 
RBPs interacting with the virus (Fig. 6). The findings offer novel perspectives in the realm of RNA virus research, 
particularly with regards to the interaction between host RBPs and viral RNA.

Data availability
All data and materials related to the study are publicly available. The data that support the findings of this study 
are openly available in the COVID-19 Host Genetics Initiative at https:// www. covid 19hg. org/24; Genotype-Tissue 
Expression Portal at https:// gtexp ortal. org/ home/28; Single Cell Portal at https:// singl ecell. broad insti tute. org/ 
single_ cell/ study/ SCP12 89/; cellxgene at https:// cellx gene. czisc ience. com/ colle ctions/ 6f6d3 81a- 7701- 4781- 935c- 
db10d 30de2 93; ENCODE portal at https:// www. encod eproj ect. org/44.
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Figure 6.  Hypothesis model of risk variants mapped to RBPs predispose hospitalization of COVID-19. MEF2A 
strongly binds to the non-risk allele of FUBP1 and ELF1 weakly binds to that of RAB2A, which enhances the 
anti-viral ability of FUBP1 and reduces the pro-viral capacity of RAB2A, leading to less virion. In contrast, 
MEF2A weakly binds to the risk allele of FUBP1, and ELF1 strongly binds to that of RAB2A, which reduces the 
anti-viral ability of FUBP1 and enhances the pro-viral capacity of RAB2A, leading to more virion and worse 
outcome of COVID-19.
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