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signatures and their correlation with immunotherapy in lung
adenocarcinoma
Zhengyan Yang 1,6, Jianling Zhu1,2,6, Tiantian Yang1,2, Wenjun Tang1,2, Xiaowei Zheng3, Shaoping Ji4, Zhiguang Ren 1,5✉ and
Feng Lu 1,2✉

© The Author(s), under exclusive licence to Springer Nature Limited 2023

BACKGROUND: Long non-coding RNAs (lncRNAs)-related immune genes (lrRIGs) play a crucial role in the development and
progression of lung adenocarcinoma (LUAD). However, reliable prognostic signatures based on lrRIGs have not yet been identified.
METHODS: We screened lrRIGs associated with the prognosis of LUAD using The Cancer Genome Atlas (TCGA) database and then
established a novel prognostic nine-gene signature composed of CD79A, INHA, SHC3, LIFR, TNFRSF11A, GPI, F2RL1, SEMA7A and
WFDC2 through bioinformatic approaches. A risk score derived from this gene signature was used to divide LUAD patients into the
low- and high-risk groups. The latter was confirmed to have markedly worse overall survival (O.S.). A nomogram was developed
using the risk score and other independent prognostic elements, demonstrating excellent performance in predicting the O.S. rate
of LUAD patients.
RESULTS: We observed that the infiltration of diverse immune cell subtypes and response to immunotherapy and chemotherapy
significantly differed between the low- and high-risk groups.
CONCLUSIONS: Overall, stratification based on this gene signature could be used to guide better therapeutic management and
improve outcomes for LUAD patients.
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BACKGROUND
Lung cancer is the leading cause of cancer-related death
worldwide [1, 2]. Lung adenocarcinoma (LUAD) is the primary
histological subtype of lung cancer for men and women. Although
treatment techniques have greatly improved over the past few
decades, the 5-year survival rate for LUAD is only ~10% due to a
lack of early detection and a tendency to metastasize early [3, 4].
Currently, known clinicopathological risk factors cannot effectively
distinguish these LUAD patients with a high risk of disease
progression. Therefore, identifying novel prognostic biomarkers
would be one of the promising ways to develop new diagnostic
and therapeutic strategies for LUAD.
Increasing evidence has shown that immune system disorders

may be a significant cause of cancer development, and
immunotherapy has become a promising cancer treatment
strategy [5, 6]. In recent years, the breakthrough of immunomo-
dulatory therapies targeting the programmed death 1 (PI-1)/PD-1
ligand (PD-L1) signaling has shown considerable success in
multiple cancers by promoting anti-tumor immune function [7].
Moreover, a recent study observed that the blockade of PD-1/PD-
L1 signaling promoted cytotoxic T lymphocytes’ activity, inhibiting
tumor growth and increasing the survival rate in the mouse

metastasis model [8]. Thus, immune-oncology has attracted
extensive attention, and immune-related genes (IRGs) and
immune infiltrating cells are considered to be determinants of
the development and progression of various tumors [9, 10].
Long non-coding RNAs (lncRNAs), which are non-coding

transcripts with a length longer than 200 nucleotides [11], can
influence the tumor microenvironment by regulating immune gene
expression and participating in inflammation [12, 13]. For example,
the lncRNA NRON could maintain a resting state of T cells by
sequestering the phosphorylated nuclear factor of activated T cells
(NFAT) in the cytoplasm [14]. Lnc-chop enhances the immunosup-
pressive function of myeloid-derived suppressor cells in the tumor
environment by activating C/EBPβ and increasing the expression of
cyclooxygenase-2, NO synthase 2, arginase-1, and NADPH oxidase2
[15]. The NKILA lncRNA promotes tumor immune evasion by
sensitizing T cells to activation-induced cell death [16]. Besides, in
2019, Wang et al. reported that lncRNA UCA1 increased PD-L1
expression by inhibiting miR-214 and miR-193a, thus contributing
to the immune escape of gastric cancer cells [17]. However, only a
few immune genes associated with lncRNAs have been found to
play an essential role in tumorigenesis and malignant transforma-
tion so far [11, 13, 18, 19]. The overall biological role and underlying
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mechanism of the lncRNAs-related immune genes (lrRIGs) in LUAD
are still unclear. Whether lrRIGs could serve as a predictor for LUAD
prognosis remains unknown.
Herein, we extensively analyzed the relationship of lncRNAs

with 2483 immune-related genes based on the transcript and
clinical data obtained from the TCGA and GEO databases. We
explored the expression variations of 329 differentially expressed
lrRIGs in LUAD and investigated the potency as biomarkers. Then,
a lrRIGs prognostic signature composed of CD79A, INHA, SHC3,
LIFR, TNFRSF11A, GPI, F2RL1, SEMA7A, and WFDC2 was estab-
lished and validated using external databases and clinical samples.
Moreover, we showed the correlation between the prognostic risk
model and tumor-infiltrating immune cells and therapeutic
response. Independent prognostic factors were further explored
and combined into a predictive nomogram for survival prediction
of LUAD patients. Additionally, in vitro studies revealed that the
prognostic signature gene GPI affected the prognosis of LUAD
patients by activating the mTORC1 signaling pathway.

METHODS
Data collection
Transcriptome and clinical data were downloaded from the TCGA (https://
portal.gdc.cancer.gov/) and GEO (http://www.ncbi.nlm.nih.gov/geo/). The
immune-related genes were obtained from the ImmPort website (available
online: https://www.immport.org/shared/home, accessed on July 2020)
[20]. The Ensembl database was used to screen lncRNAs. The correlation
between lncRNAs and immune-related genes was calculated to obtain
lrRIGs based on the TCGA_LUAD database. Correlation coefficients >0.4
and P < 0.001 were used as the threshold.

Bioinformatic analysis
Differentially expressed lrRIGs (DE-lrRIGs) were screened using the R
package “limma”. Screening condition: false-discovery rate [FDR] < 0.05,
|logFC | > 1. Volcano plots and DE-lrRIGs heatmap analyses were done using
ggplot2 and pheatmap package, respectively. The R survival package was
used to assess relationships between DE-lrRIGs and overall survival (O.S.) and
to plot survival curves. ROC maps were created using the survival ROC
package. Univariate and multivariate independent prognostic analyses by
the survival package were used to determine the prognostic values of
specific gene signatures. The least absolute shrinkage and selection operator
(LASSO) Cox regression method was adopted to construct multivariable
models with DE-lrRIGs using the R package “glmnet”.

Estimation of tumor-infiltrating immune cells and biomarkers
for immunotherapy based on the risk signature
The fraction of 22 immune cell types in LUAD samples was estimated using
the CIBERSORT algorithm based on the TCGA_LUAD database. Samples
with a CIBERPORT output value of P < 0.05 were considered to meet the
conditions for further analysis. The difference of immune cells in
the proportion between the high- and low-risk groups was examined by
the Wilcoxon rank sum test. The R package “limma” was used to analyze
the correlation between the signature of the lncRNAs-related immune
genes and key immune checkpoints, tumor mutation load (TMB), and HLA
family members.

Prediction of chemotherapeutic response based on the lrRIGs
signature
Seven commonly used chemotherapy drugs (cisplatin, docetaxel, doxor-
ubicin, gemcitabine, etoposide, paclitaxel and cytarabine) and two
targeted drugs (axitinib and gefitinib) were selected for the chemother-
apeutic response prediction through the ridge regression using the
“pRRophetic” R package based on the Genomics of Drug Sensitivity in
Cancer (GDSC) (https://www.cancerrxgene.org/). The half-maximal inhibi-
tory concentration (IC50) predicted for each TCGA_LUAD patient was used
to assess differential chemotherapeutic response [21].

Gene set enrichment analysis and development of nomogram
The signaling pathways and biological processes of differentially expressed
gene enrichment between the high- and low-risk subgroups were

investigated using Gene Set Enrichment Analysis (GSEA) (http://
software.broadinstitute.org/gsea). Stage, recurrence, and risk scores were
used to develop a nomogram by the “survival” and the “rms” package for
R. Calibration curves were plotted to assess the consistency between actual
and predicted survival. The concordance index (C-index) was calculated to
evaluate the performance of the model predicting prognosis.

Clinical lung adenocarcinoma and adjacent no-tumor lung
tissues
Thirty matched LUAD and adjacent normal lung tissues were obtained
from the First Affiliated Hospital of Henan University and Puyang Hospital
of traditional Chinese medicine, China. All patients gave informed consent
before sample collection. This study was approved by the Ethics
Committee of Medical School of Henan University, China (HUSOM-2018-
282). All methods in this study were carried out following the approved
guidelines. Clinicopathological qualities of the LUAD patients are provided
in Supplementary Table S1.

Cell culture and stable transfection of shRNA
Detailed information on cell culture and plasmid construction are
described in the Supplementary Materials and Methods.

Colony formation assay, wound-healing assay, and in vivo
lung metastasis and subcutaneous tumor model
Cell proliferation and migration were assessed by colony formation and
wound-healing assay. Details of the relevant contents have been described
previously [22]. Five-week-old specific pathogen-free (SPF) female BALB/C
nude mice and C57BL/6J were obtained from the Weitong Lihua Animal
Co. (Beijing, China) and housed in a SPF-grade facility on our campus. A549
cells steadily infected with lentiviruses carrying shGPI or control shRNA
were collected for pulmonary metastasis analysis. A single-cell suspension
containing 2 × 106 cells in 200 μL of PBS was injected into the tail veins of
BALB/C nude mice (n= 5). All mice were euthanized, and lung tissues were
collected seven weeks after injection. In the CMT167 subcutaneous tumor
model, CMT167/shNC or CMT167/sh3mGPI (2.5 × 105) cells were subcuta-
neously injected into the right flank of C57BL/6 J mice. Seven days later,
when the tumors reached about 60mm3, the mice were randomly
grouped using a random number table and identified by ear tags.
Subsequently, they were intravenously administered either a vehicle or an
anti-CTLA-4 antibody (cat. no. BE0131; Bio X Cell, West Lebanon, NH;
10mg/kg, every 3 days). Mice were sacrificed when the tumor length
reached 1.5 cm. The experimental protocol was approved by the Animal
Care and Research Committee of Henan University.

Western blot
Tissue proteins were extracted using RIPA lysis buffer containing 500 mM
NaCl, 1 mM EDTA, 1% NP-40, 50 mM Tris pH 8.0, and 1×cocktail of
protease inhibitors (Roche, Lewes, UK). The protein concentration was
examined using the Bio-Rad protein assay kit (Bio-Rad, Hercules, CA).
Equal amounts of proteins per sample were isolated by SDS-PAGE and
then blotted onto polyvinylidene difluoride (PVDF) membrane and
blocked with 5% nonfat milk for 1 h at room temperature. Blots were
probed with the indicated primary antibodies overnight at 4 °C and
followed by incubation with a horseradish peroxidase (HRP)-conjugated
secondary antibody. Protein bands were visualized using the enhanced
chemiluminescence (ECL) detection kit (GE Healthcare Biosciences). The
detailed information on antibodies used in this study was provided in
Supplementary Table S2.

Statistical analysis
All statistical analyses were executed using SPSS21.0 (SPSS Inc., Chicago, IL,
USA) and R software (version 3.6.0). Pearson’s chi-square test and the
Wilcoxon test were used to examine the significance level of correlation
amongst variables and compare the data from different groups,
respectively. The length of time from the date of diagnosis to death from
any cause was the O.S. time. The continuous data are expressed as the
mean ± standard deviation (SD). The association between risk score and
O.S. were assessed by univariate and multivariate Cox regression analyses.
Kaplan–Meier curves were drawn, and the significant difference in O.S.
between groups was examined using the long-rank test. Unless otherwise
specified, all statistical tests were two-tailed, and P < 0.05 was considered
statistically significant.
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RESULTS
Development of a prognostic model based on lrRIGs in LUAD
We downloaded the transcriptome profiling data of LUAD,
including 54 normal and 497 tumor samples, from the TCGA
database. Then, the data were annotated according to gene
transfer format (GTF) files from Ensemble, and a co-expression
analysis was conducted between lncRNAs and 2483 immune-
related genes (Supplementary Table S3) by correlation analysis
using the cor. test in R with |correlation coefficient | >0.4 and
P < 0.01. A total of 889 lrRIGs were identified (Supplementary
Table S4), and 329 were distinguished as differentially expressed
lrRIGs (Supplementary Table S5), among which 123 were down-
regulated and 206 were upregulated (Fig. 1a). To further explore
the potential predictive value of the 329 lrRIGs in LUAD, a
univariate Cox regression analysis was conducted. At Hazard Ratio
(HR) ≠ 1, P < 0.01, 27 genes were identified as prognostic genes for
O.S. in patients with LUAD from the TCGA database (Supplemen-
tary Table S6). Next, LASSO regression with tenfold cross-
validation was performed to obtain the optimal lambda value
from the minimum partial likelihood deviance, which was related
to 15 of the 27 prognostic genes significantly associated with O.S.
(Fig. 1b, c). Finally, we used the TCGA_LUAD database as a training
set (n= 468) and the GSE31210 database as an external validation
set (n= 226). Multivariate Cox regression analysis observed that

nine genes constructed a significant prognostic signature for
LUAD: CD79A, INHA, SHC3, LIFR, TNFRSF11A, GPI, F2RL1, SEMA7A
and WFDC2 (Supplementary Table S7 and Fig. 1d, e). The
prognostic gene signatures were shown as risk Score=sum [gene
expression × coefficient].

Evaluation of the performance of lrRIGs prognostic signature
The risk score of each patient in the TCGA_LUAD dataset was
calculated according to lrRIGs prognostic signature using the
“survminer” R software package. Patients were divided into the
high- and low-risk groups by the median of risk scores.
Kaplan–Meier analysis demonstrated that the O.S. of the high-risk
group was worse than that of the low-risk group (Fig. 2a; P < 0.05).
The distribution of risk scores and survival status were plotted in
Fig. 2b, showing poorer survival in high-risk patients. Then, ROC
curve analysis was performed to evaluate the predictive ability of the
lrRIGs signature. The AUC for lrRIGs risk signature was 0.727, 0.709,
and 0.675 at 1-, 3- and 5- year for O.S., respectively (Fig. 2c). Last,
validation of the lrRIGs risk signature was conducted using the
GSE31210 database and an integrated dataset consisting of
GSE11969, GSE13213, GSE41271, GSE42127, GSE50081, GSE68465
and GSE72094, which included 1489 LUAD patients with survival
data. We carried out risk scoring and risk grouping for LUAD patients
in the manner mentioned above. Consistently, survival analysis

cba

ed

Volcano

Hazard ratioP value

0.852 (0.757–0.958)0.008CD79A

INHA

SHC3

LIFR

GPI

F2RL1

SEMA7A

WFDC2

0.005

0.071

0.043

<0.001

0.011

0.050

0.077

0.055

1.145 (1.041–1.258)

0.798 (0.624–1.020)

0.835 (0.702–0.995)

1.551 (1.230–1.958)

1.382 (1.076–1.773)

1.158 (1.000–1.340)

1.189 (0.982–1.439)

0.903 (0.814–1.002)

Hazard ratio

TNFRSF11A

CD79
A

lN
HA

SHC3
LI

FR

TNFRSF11
A

GPI

F2R
L1

SEM
A7A

W
FDC2

–L
og

10
 (

fd
r)

12

Risk

–7

12.3

27 26 26 25 25 24 21 18 15 15 17 15 14 6 0

12.2

12.1

12.0

11.9

–6 –5 –4 –3–7

0.0 0.5 1.0 1.5

–0.2

0.0

0.2

0.4

0.6
27 25 21 15 14

–6 –5–5
0

5

10

15

20

25

30

0 5 –4 –3

9

6

3

Log lambdaLogFC

C
oe

ffi
ci

en
ts

P
ar

tia
l l

ik
el

ih
oo

d 
de

vi
an

ce

Log (�)

G
en

e 
ex

pr
es

si
on

High Low
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observed markedly longer O.S. in the low-risk group than in the
high-risk group (Fig. 2d, e, g, h; P < 0.05). Moreover, the analyses of
ROC curves proved that this nine-gene signature had a robust
predictive ability in the above two databases (Fig. 2f, i).

Validation of the expression level and the prognostic value of
prognostic signature genes
We performed external validation of these nine prognostic
signature genes. The GSE31210 and GSE75037 database analyses
demonstrated that the mRNA expression levels of INHA,
TNFRSF11A, GPI, F2RL1, WFDC2, CD79A and SEMA7A in LUAD
tissues were significantly higher than in normal lung tissues
(Supplementary Fig. S1A, B; all P < 0.05). Inversely, the expression
levels of SHC3 and LIFR in tumor tissues were lower. Moreover, the
protein expression levels of these nine signature genes were
further confirmed in 30 matched clinical LUAD tissues (T) and
adjacent non-tumor tissues (N) by western blot analysis.
(Supplementary Figs. S1C, D and S2). Additionally, we further
analyzed the expression characteristics of prognostic signature
genes and their correlation with lung adenocarcinoma based on
the immunohistochemistry data from Human Protein Atlas (HPA)
database (https://www.proteinatlas.org/). We selected the GPI
gene for subsequent research work because GPI has the highest

HR value among the nine risk genes. The results demonstrated
that the expression level of GPI was relatively low in normal lung
tissues and adjacent tissues, while a high proportion of non-small
cell lung cancer (NSCLC) tissues and LUAD tissues displayed high
(NSCLC, 5/12; LUAD, 1/6) and moderate (NSCLC, 6/12; LUAD, 4/6)
GPI staining, which is mainly located in the cytoplasm and
membrane (Supplementary Fig. S3). Subsequently, the predictive
effects of these signature genes for the O.S. and recurrence-free
survival (RFS) were evaluated by Kaplan–Meier survival analysis
and the log-rank test using the Kaplan–Meier plotter, respectively.
The results showed that high expression of INHA, GPI, F2RL1,
CD79A, and SEMA7A, and low expression of SHC3 and LIFR, were
associated with shortened O.S. and RFS in LUAD (Supplementary
Figs. S1E-M and S4).

Performance comparison of the lrRIGs signature with other
reported gene signatures
To further evaluate the prediction performance of the lrRIGs
signature, four published gene signatures obtained from Sun’s
[23], Cao’s [24], Zhang’s [25], and Li’s [26] were selected for
comparison. According to the corresponding genes in these four
risk models, the risk score of each patient was calculated using the
same method in the training cohort. Then the analyses of
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Kaplan–Meier survival and the time-dependent ROC were
performed. We observed that the prognosis difference for the
high- and low-risk groups was significant across all four risk
models. However, the ROC analysis showed that the AUC of the
lrRIGs signature for 1-, 3-, and 5-year O.S. were 0.727, 0.709, and
0.675, respectively. These AUCs were significantly larger than
those of Sun’s, Cao’s, Zhang’s and Li’s gene signatures (Fig. 2c and
Supplementary Fig. S5A–D). Additionally, Supplementary Fig. S5E
showed that our risk model based on lrRIGs had the highest
C-index with 0.68. Moreover, the RMS time curve of all five
prognostic models further demonstrated that this 9-gene
signature had the largest slope (Supplementary Fig. S5F), indicat-
ing superior estimation of LUAD survival with lrRIGs prognostic
signature.

Prognostic risk score was associated with clinical outcome
We utilized univariable and multivariable Cox regression to
analyze the relationship between clinical parameters, risk scores,
and O.S. (Fig. 3a, b). The results revealed that the risk score is an
independent risk factor with a hazard ratio (HR) of 1.341. Similar
results were indicated by stage (HR= 1.486) and recurrence
(HR= 1.901). Age and gender showed no significance.
To elevate the accuracy and reliability of the predictive model in

LUAD, we then integrated stage, recurrence, and risk scores to
build a nomogram model. It showed that risk score had the
greatest impact on the prediction of survival rate (Fig. 3c). The
calibration plots of the nomogram for predicting 1-, 3- and 5-year
O.S. of LUAD revealed the excellent concordance between actual
observation and our nomogram prediction (Fig. 3d), and the
nomogram model’s C-index was 0.742 (95% CI= 0.701–0.784,
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P= 2.93e-30). Moreover, the AUC value of the nomogram for
predicting 1-, 3- and 5-year O.S. was larger than that of the stage,
risk score, and recurrence, indicating our nomogram served as an
essential factor in predicting clinical outcomes of LUAD patients
(Fig. 3e–g).

Association of the risk model with tumor-infiltrating immune
cells
To investigate the relationship between immune-cell features
and the lrRIGs risk model, we first calculated the ESTIMATE score
and the immune score of each LUAD sample from
the TCGA_LUAD database based on the ESTIMATE algorithm.
The results showed that the ESTIMATE score (1927.23 vs. 1404.48,
P < 0.05) and immune score (1642.43 vs. 1323.45, P < 0.05)
markedly increased in the low-risk group compared with those
in the high-risk group (Fig. 4a, b). Next, we analyzed the relative
proportion of 22 tumor-infiltrating immune cells in each LUAD
sample using the Cell type identification by estimating relative
subsets of RNA transcripts (CIBERSORT) method. We observed
significant differences in immune cell infiltration between the
high- and low-risk groups. In particular, the high-risk group was
characterized by a relatively high proportion of T cells CD4
memory activated, NK cells resting, and macrophages M0, while
the low-risk group displayed a relatively high proportion of
plasma cells, T4 cells CD4 memory resting, and mast cells resting
(Fig. 4c; P < 0.05). Subsequently, we further evaluated the
abundance of eight immune-related cells and two stromal cells
using the microenvironment cell population count (MCP-counter)
algorithm. Compared with the high-risk group, the abundance of
endothelial cells, neutrophils, myeloid dendritic cells, B lineage,
CD8 T cells, and T cells in the low-risk group increased
significantly (Fig. 4d; P < 0.05).

Association of the risk model with immunotherapies
Some patients with LUAD have obtained great clinical benefits
through immunotherapy, especially immune checkpoint inhibi-
tors. However, selecting patients who respond to immunotherapy
remains challenging. At present, several biomarkers have shown
potential in predicting immunotherapy response, including the
expression levels of immune checkpoint proteins [27, 28], class I
human leukocyte antigen (HLA) family members [29], and TMB
[30–32]. Therefore, we first examined whether immune check-
points are differentially expressed between the high- and low-risk
groups. As shown in Fig. 5a, compared with the high-risk group,
the low-risk group had markedly higher expression levels of IDO1,
CTLA-4, LAG3, CD47, CD160, CD244, BTLA, TIGIT, and ICOS.
Conversely, the expression levels of CD276, and ARHGEF5 were
higher in the high-risk group. Next, the single nucleotide mutation
data of 562 LUAD patients were downloaded from the TCGA
database and processed using the maftools package. The results
showed that the TMB in the high-risk group was markedly higher
than that of the low-risk group (7.57 vs. 5.99, P= 4.9e-4) (Fig. 5b).
Next, we further investigated the expression of class I human

leukocyte antigen (HLA) family members because HLA is
responsible for neoantigen presentation and cytolytic T cell
activity by presenting intracellular peptides on the cell surface.
The lack of HLA may impair the ability of cells to present new
antigens and lead to immune tolerance [33]. The results
demonstrated that the expression of various HLA family members
differed significantly between the two risk groups (Fig. 5c;
P < 0.05). In fact, most of the HLA family members, including
HLA-J, HLA-E, HLA-DRB6, HLA-DRB5, HLA-DRB1, HLA-DRA, HLA-
DQB1, HLA-DQB2, HLA-DQA1, HLA-DQA2, HLA-DPB1, HLA-DPB2,
HLA-DPA1, HLA-DOA, HLA-DOB, HLA-DMA, and HLA-DMB, showed
decreased expression in the high-risk group relative to that in the

–5 0 5 10
Gene expression

T cells

B ce
lls

 n
aiv

e

B ce
lls

 m
em

or
y

Plas
m

a 
ce

lls

T ce
lls

 C
D8

T ce
lls

 C
D4 

na
ive

T ce
lls

 C
D4 

m
em

or
y r

es
tin

g

T ce
lls

 C
D4 

m
em

or
y a

cti
va

te
d

T ce
lls

 fo
llic

ula
r h

elp
er

T ce
lls

 re
gu

lat
or

y (
Tre

gs
)

T ce
lls

 g
am

m
a 

de
lta

NK ce
lls

 re
sti

ng

NK ce
lls

 a
cti

va
te

d

M
on

oc
yte

s

M
ac

ro
ph

ag
es

 M
0

M
ac

ro
ph

ag
es

 M
1

M
ac

ro
ph

ag
es

 M
2

Den
dr

itic
 ce

lls
 re

sti
ng

Den
dr

itic
 ce

lls
 a

cti
va

te
d

M
as

t c
ell

s r
es

tin
g

M
as

t c
ell

s a
cti

va
te

d

Eos
ino

ph
ils

Neu
tro

ph
ils

CD8 T cells

Cytotoxic lymphocytes

B lineage

NK cells

Monocytic lineage

Myeloid dendritic cells

Neutrophils

Endothelial cells

Fibroblasts

Risk Low High

E
S

T
IM

A
T

E
S

co
re

Im
m

un
eS

co
re

Low

0.5

6000 4000

2000

0

Risk Low High Risk Low High

4000

2000

0

–2000

–4000

P = 0.454

P = 0.914

P = 0.033

P = 0.043

P = 0.477

P = 0.718

P = 0.554

P = 0.006 P = 0.935

P = 0.783 P = 0.165

P < 0.001

P = 0.051

P = 0.599
P = 0.237

P = 0.007

P = 0.185

P = 0.718

P = 0.969

Low risk

High risk

P = 0.969

P < 0.001

P = 0.667

0.4

0.3

0.2

0.1

0.0

High Low High

P = 5.5e-5 P = 1.8e-5

F
ra

ct
io

n

ba

c

d

Fig. 4 Comparison of immune microenvironments between high- and low-risk groups defined by the 9-gene signature. a, b Analysis of
the ESTIMATE algorithm showed significantly high ESTIMATE score (a) and immune score (b) in the low-risk group than in the high-risk group.
c Estimation of 22 immune cell infiltration using the CIBERSORT method. d Evaluation of the abundance of indicated cells using the MCP-
counter algorithm. ESTIMATE, Estimation of Stromal and Immune cells in Malignant Tumor tissues using Expression data. *P < 0.05;
***P < 0.001.

Z. Yang et al.

1402

British Journal of Cancer (2023) 129:1397 – 1408



low-risk group. Additionally, the cancer immunome atlas (TCIA) is
a database that provides comprehensive immunogenomic ana-
lyses based on the TCGA (https://tcia.at/). Herein, we used the TCIA
database to evaluate the immunotherapy response of LUAD
patients with different risk scores through the immunophenoscore
(IPS). The results revealed that the total IPS and IPS for CTLA-4
blocker in the low-risk group were significantly higher than that in
the high-risk group (Fig. 5d, e), which strongly predicted that
LUAD patients with lower risk scores would have better
immunotherapy response, especially for CTLA-4 blockers. In
comparison, the IPS for PD1 pus CTLA-4 blocker and PD1 blocker
did not differ significantly between risk groups (Fig. 5f, g).
Finally, we attempted to validate the above results of the

bioinformatics analysis by silencing key genes that are positively
correlated with the risk score in the risk model. Given GPI has the
most significant effect on the O.S. and RFS of LUAD (Supplementary

Figs. S1I and S4E). We silenced the mGPI gene in CMT167 cells using
shRNA and obtained a stable cell line. We next investigated whether
GPI silencing could affect the anti-tumor effect produced by
immune checkpoint blockade. In vivo experimental results showed
that CMT167 tumors could respond to anti-CTLA-4 antibody
monotherapy. Interestingly, mGPI knockdown-mediated by
sh3mGPI in CMT167 cells rendered the cell line more sensitive to
anti-CTLA-4 antibodies [tumor inhibition rate (%)= 93.3%] in the
CMT167/sh3mGPI subcutaneous tumor model than
control CMT167/shNC cells [tumor inhibition rate (%) = 80.7%]
(n= 5/group). Compared with the anti-CTLA-4 therapy, combined
mGPI knockdown with anti-CTLA-4 treatment markedly reduced
tumor weight and repressed tumor growth (Supplementary Fig. S6).
No discernible adverse events were observed during the
experiment. These data indicated that the expression of risk genes
was associated with the efficacy of immune checkpoint blockade.
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Association of the risk model with chemotherapeutic
responses in LUAD
Given that chemotherapy is one of the critical means of tumor
treatment in the clinic, we explored the relationship between the
risk score and clinical response to chemotherapeutic drugs by
calculating the IC50 using the R package pRRophetic [21, 34].
Based on the Cancer Genome Project (CGP) database, we
screened seven chemotherapy drugs (cisplatin, docetaxel, doxor-
ubicin, gemcitabine, etoposide, paclitaxel, and cytarabine) and
two targeted drugs (axitinib and gefitinib), which had been used
in the clinical treatment of lung adenocarcinoma. We observed
that the drug response differed in the high-risk and low-risk
groups. In the chemotherapy drug for lung cancer, doxorubicin,
paclitaxel, gemcitabine, etoposide, and docetaxel had a high drug
response in the high-risk group. For the targeted drug of lung
cancer, axitinib had a favorable response in the low-risk group
(Fig. 6). According to multivariable Cox analysis, TNFRSF11A and
GPI in prognostic risk genes had a high-risk coefficient (Supple-
mentary Table S7), indicating that their expression significantly
impacts the risk score of LUAD patients. Therefore, we chose to
silence the TNFRSF11A or GPI gene in H1299 and A549 cells using
shRNA to explore whether the expression of these genes affects
the sensitivity of tumor cells to commonly used chemotherapy

drugs, such as doxorubicin (sc-280681A, SANTA) and docetaxel
(HY-B0011, MCE). Tumor cells were treated with various concen-
trations of doxorubicin (0.1, 1, 2.5, 5, 10 and 20 μM) or docetaxel
(0.1, 1, 10, 20, 50 and 100 μM) for 24 h, and the inhibitory
concentration 50 (IC50) value was calculated in GraphPad Prism 6
program. In vitro experiments demonstrated that GPI knockdown
in A549 and H1299 cells by sh1GPI made both cell lines less
sensitive to doxorubicin (IC50= 4.548 μM, 8.549 μM, respectively)
and docetaxel (IC50= 24.85 μM, 30.81 μM, respectively) than
control A549/shNC (IC50= 1.531 μM, 4.605 μM, respectively) and
H1299/shNC (IC50= 2.252 μM, 8.042 μM, respectively). However,
silencing the TNFRSF11A gene in A549 and H1299 cells did not
significantly affect the sensitivity of these two cell lines to
doxorubicin and docetaxel (Supplementary Fig. S7). These results
suggested that the prognostic risk gene GPI plays a potential role
in the chemosensitivity of LUAD cells.

Prognostic signature gene GPI affects the prognosis of LUAD
patients, involving the activation of mTORC1 signaling
pathway
To gain more insights into the potential mechanisms of the
prognostic risk genes in LUAD, GSEA was performed by comparing
the high and low expression of these signature genes based on
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the TCGA_LUAD, GSE31210, GES68465, and GSE13213 databases.
GPI is one of the nine prognostic risk genes; it has the most
significant effect on the O.S. and RFS of LUAD. Previous studies
reported that GPI was related to poor metastasis in LUAD,
colorectal cancer, renal cell carcinoma, breast cancer, and
endometrial cancer [35–38]. However, the effects of GPI on
malignant biological behaviors and downstream signaling trans-
duction in LUAD were unclear. Therefore, GPI was selected for
further study. The results showed that several vital regulatory
genes involved in mTORC1 signaling were consistently enriched in
cells with high GPI expression in the TCGA_LUAD, GSE31210,
GES68465, and GSE13213 databases, indicating that GPI expres-
sion was positively associated with the mTORC1 signaling path-
way in LUAD patients (Supplementary Table S8 and Fig. 7a–d).
Afterward, we performed Western blot analysis to examine the

expression level of GPI in A549, H1299, H1373, H1573, and BEAS-
2B cell lines. Compared with normal lung tissues and the BEAS-2B
cell line, GPI was markedly overexpressed in A549 and H1299 cells
(Fig. 7e). Endogenous GPI silencing was conducted by lentivirus
transfection of shRNA targeting GPI in A549 and H1299 cells. We
observed that compared with the control group, GPI knockdown
significantly inhibited the proliferation and migration of both cell
lines as determined by colony formation assay (Fig. 7f, g) and
wound-healing assay (Fig. 7h, i), respectively. Furthermore, in vivo
lung metastasis assay showed that mice with A549/sh1GPI
developed fewer pulmonary metastasis nodules than the mock
control (Fig. 7j). Additionally, Western blot analysis showed that
knockdown of GPI led to a decrease of p-mTOR, p-P70S6K, and
p-S6, which are critical downstream molecules of the
mTORC1 signaling pathway (Fig. 7k). Previous studies reported
that the activation of this pathway is closely related to the
malignant transformation of a variety of tumors and the
proliferation and metastasis of tumor cells [39–41]. Therefore,
we further examined the expression of the key proteins associated
with epithelial-mesenchymal transition (EMT). We observed that
GPI silencing in A549 and H1299 cells markedly decreased the
expression of N-cadherin and Vimentin proteins and increased the
levels of E-cadherin and γ-catenin (Fig. 7k). These results
suggested that the regulation of GPI on multiple biological traits
of lung adenocarcinoma cells could involve the activation of the
mTORC1 signaling pathway.

DISCUSSION
Multiple lines of evidence indicate that immune-related biomarkers
are associated with the prognosis of various tumor types [42, 43].
However, biomarkers that can be used directly to determine the
prognosis of patients and the efficacy of tumor immunotherapy
remain to be investigated. Additionally, the regulation of immune-
related genes is often closely related to the corresponding lncRNAs.
The current study represents the first systemic analysis of 889 lrRIGs
expression levels in LUAD tissues. Then, according to the multi-step
selection, a prognostic risk model markedly associated with the O.S.,
immunotherapeutic response, chemotherapeutic response, and
tumor microenvironment of LUAD patients was developed based
on 9 differentially expressed lrRIGs, which potentially serves as an
indicator for evaluating the effectiveness of immunotherapy and
chemotherapy in LUAD.
In recent years, numerous studies have shown that lncRNAs

play indispensable roles in the initiation and progression of
various cancer, such as breast cancer [44, 45], prostate cancer [46],
gastric cancer [47], and lung cancer [48, 49] by shaping the tumor
immune microenvironment and regulating immune-related
genes. In 2019, Hu et al. observed a decrease of MHC-I and
β-2M expression in patients with higher lncRNA LINK-A expression.
Mechanistically, LINK-A degrades TAP1/2, TPSN, and CALR proteins
of the peptide-loading complex (PLC), thus affecting the loading
and editing of MHC-I and antigen presentation [50]; In addition,

Zhou et al. found that LINC00471 upregulates the expression of
PD-L1 by sponging miR-195-5p in pancreatic cancer, suppresses
the function of enhanced CD8+ T cells and promotes the
development of cancer [51]. However, hitherto, little is known
about the immune-related genes regulated by lncRNAs and their
role in tumors. In the present study, we comprehensively
evaluated immune genes related to lncRNAs using bioinformatics
analysis based on the TCGA_LUAD database. 27 genes, such as
FURIN, ADRB2, INHA, WFDC2, etc., were markedly associated with
O.S. in patients with LUAD. According to the correlation analysis
and hypergeometric testing, a nine-gene prognostic signature
including CD79A, INHA, SHC3, LIFR, TNFRSF11A, GPI, F2RL1,
SEMA7A and WFDC2 was developed. To our knowledge, this is
the first established prognostic gene signature associated with
differentially expressed lrRIGs in LUAD. This nine-gene signature
could provide a new method for evaluating LUAD patients,
guiding prognosis prediction and the choice of immunotherapy
and chemotherapy.
Previous studies have reported some model genes’ biological

function and expression patterns. For example, CD79A, a subunit of
CD79, is mainly expressed on the surface of B cell and plays a crucial
role in the transduction of BCR-recognized antigen signals into the
cytoplasm. It was confirmed that overexpressed CD79A contributed
to the malignant transformation of B-cell neoplasms, plasma cell
tumors, and chronic lymphocytic leukemia [52, 53]. LIFR (receptor of
leukemia inhibitory factor (LIF)) is commonly overexpressed inmany
solid cancers and recent studies have implicated that LIF/LIFR
activates JAK2/STATs, MAPK, AKT, mTOR and other oncogenic
signaling pathways, which play key roles in tumor progression,
metastasis, stemness and therapy resistance. Additionally, LIF/LIFR
signaling also plays a role in modulating multiple immune cell types
present in the tumor microenvironment [54]. GPI (glucose-6-
phosphate isomerase) is a housekeeping cytoplasmic enzyme
which is frequently upregulated in various cancer types [55].
Besides its role as a glycolytic enzyme, mammalian GPI can function
as a tumor-secreted cytokine and an angiogenic factor that
stimulates endothelial cell motility [56]. SEMA7A (semaphorin 7A),
also known as CD108, is an immune semaphorin that modulates
diverse immunoinflammatory processes, including cytokine pro-
duction, inflammatory infiltration, and immune cell interactions.
Additionally, SEMA7A also regulates the migration, invasion, lymph
formation, and angiogenesis of multiple types of tumor cells by
interaction of SEMA7A with PLXNC1 and integrins [57]. However,
the relationship between these nine genes and LUAD progression
remains to be clarified, as few studies have reported the study of
these genes. In this study, CD79A, INHA, TNFRSF11A, GPI, F2RL1,
SEMA7A, and WFDC2 were all found to be upregulated in LUAD
tissues and overexpressed INHA, GPI, F2RL1, CD79A, and SEMA7A
were significantly correlated with a short O.S. and RFS. Importantly,
by Western blotting analysis, we verified the overexpression
patterns of the above seven genes in 30 pairs of LUAD tissues
and adjacent normal lung tissues. Moreover, we further investigated
the expression characteristic of the prognostic signature gene GPI
and its correlation with LUAD using immunohistochemistry data
from HPA dataset.
The mammalian target of rapamycin (mTOR) is a crucial signaling

node that integrates environmental cues to regulate cell metabo-
lism, proliferation and survival, and is often deregulated in human
cancer. Activation of the mTOR signaling is involved in some of the
cancer hallmarks described by Hanahan and Weinberg [58]. It is
known that mTOR encompasses two functionally distinct com-
plexes, mTOR complex 1 (mTORC1) and 2 (mTORC2). Recent studies
suggested that aberrant mTORC1 pathway activation contributes to
tumor growth, angiogenesis, and metastasis [59]. In this study, we
found that the high expression of GPI was closely related to the
activation of the mTORC1 pathway through GSEA analysis. GPI
knockdown caused reduced phosphorylation of mTOR, P70S6K, and
S6, increased expression of E-cadherin and decreased N-cadherin in
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A549 and H1299 cells. We speculated that the mTORC1 signaling
pathway activation might be a critical process in the progression of
GPI-overexpression tumors. Of course, this study has several
limitations. Our research is mainly based on the public database

and limited clinical tissue specimens of LUAD. Additional studies are
needed using large-scale, prospective, and multicenter clinical trials
to verify the robustness and reproducibility of this nine-gene
signature.
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Fig. 7 To investigate the possible mechanism of prognostic signature gene GPI affecting the prognosis of LUAD patients. a–d GSEA
analysis was performed using TCGA_LUAD, GSE31210, GSE68465, and GSE13213 databases to compare the high and low expression of GPI,
respectively. e The protein expression level of GPI in normal lung tissues and indicated cell lines was analyzed by western blot. f, g The effect
of GPI knockdown on the proliferation of A549 and H1299 cells was assessed by colony formation assay. h, i The effect of GPI knockdown on
the migration of A549 and H1299 cells was examined by wound-healing assay (scale bar, 100 μm). j GPI knockdown inhibited tumor cells’ lung
metastasis in vivo. Each group was assigned five mice, and the metastatic tumor lesion in each mouse lung was analyzed by Haematoxylin and
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numbers of A549/shNC and A549/sh1GPI groups were 42.2 ± 11.9 and 7.4 ± 3.5. k Western blot analysis of indicated protein expression level.
GSEA, Gene Set Enrichment Analysis. The experiments were conducted in triplicate, ensuring independent replication.
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