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Microbiome and metabolome features in
inflammatory bowel disease via multi-omics
integration analyses across cohorts
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Theperturbationsof thegutmicrobiota andmetabolites are closely associated
with the progression of inflammatory bowel disease (IBD). However, incon-
sistentfindings across studies impede a comprehensive understanding of their
roles in IBD and their potential as reliable diagnostic biomarkers. To address
this challenge, here we comprehensively analyze 9 metagenomic and 4
metabolomics cohorts of IBD from different populations. Through cross-
cohort integrative analysis (CCIA), we identify a consistent characteristic of
commensal gutmicrobiota. Especially, three bacteria, namelyAsaccharobacter
celatus, Gemmiger formicilis, and Erysipelatoclostridium ramosum, which are
rarely reported in IBD. Metagenomic functional analysis reveals that essential
gene of Two-component system pathway, linked to fecal calprotectin, are
implicated in IBD. Metabolomics analysis shows 36 identifiedmetabolites with
significant differences, while the roles of these metabolites in IBD are still
unknown. To further elucidate the relationship between gut microbiota and
metabolites, we construct multi-omics biological correlation (MOBC) maps,
which highlights gut microbial biotransformation deficiencies and significant
alterations in aminoacyl-tRNA synthetases. Finally, we identify multi-omics
biomarkers for IBD diagnosis, validated across multiple global cohorts
(AUROC values ranging from 0.92 to 0.98). Our results offer valuable insights
and a significant resource for developing mechanistic hypotheses on host-
microbiome interactions in IBD.

Recent studies have revealed that alterations in gut microbiota and
metabolites are linked to changes in human health and various dis-
eases, including Inflammatory bowel disease (IBD)1,2. IBD is a chronic
inflammatory condition that affects the gastrointestinal tract and
includes two main forms: Crohn’s disease (CD) and ulcerative colitis
(UC)3,4. Millions of people worldwide are affected by IBD, and its inci-
dence is shifting fromdeveloped to developing countries, highlighting
the importance of early diagnosis5–7. The utilization of fecal shotgun

metagenomics provides a powerful means to identify disease-
associated species and understand co-metabolism between the host
andmicrobiota at a higher taxonomic resolution8, whilemetabolomics
reveals changes in gut metabolites as a messenger of information
exchange between the gut microbiota and the host9. Combining
metagenomics and metabolomics presents a promising approach for
understanding the development of IBD and related gut environment
alterations and offers a non-invasive biomarker for IBD.
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Previous research has reported some signatures in gutmicrobiota
and metabolites10–12, but the differences among various studies have
made it challenging to validate these signatures across diverse groups,
reducing the diagnostic value of the microbiome and metabolome in
IBD. Therefore, there is an urgent need for multi-national, large-scale
cohorts, multiomics characterization, standardized sampling and
analysis, as well as model systems to uncover the relationship between
gut microbiota and their functions with gut metabolites13. Cross-
cohort integrative analysis (CCIA) is expected to address these chal-
lenges by assessing the robustness ofdisease-microbiome associations
through the comparison of several case-control studies. The goal of
CCIA is to identify consistent associations across various cohorts, thus
minimizing the impact of biological or technical confounders. The
remarkable performance of CCIA in some prior studies highlights its
potential as a valuable tool in various research fields14–16.

In this work, we comprehensively analyzed nine metagenomic
cohorts (N = 1363 cases) and four metabolomics cohorts (N = 398
cases) of IBD patients from different countries or regions through
CCIA. Our objective was to identify specific gut bacteria, metabolites,
and their associated Kyoto Encyclopedia of Genes and Genomes
(KEGG) orthology (KO) genes that contribute to the development of
IBD across diverse cohorts.We also aimed to create diagnostic models
using disease-specific biomarkers fromdiverse cohorts to enhance IBD
diagnosis. Furthermore, we sought to clarify the intricate relationships
among thesebacteria,metabolites, andKOgeneswithin the context of
IBD. Ultimately, our research holds the potential to provide fresh
insights for the diagnosis and treatment of IBD.

Results
Workflow for cross-cohort integration analysis of fecal meta-
genomics and metabolomics in IBD
In this study, we employed a multi-omics approach that integrates
fecalmetagenomics andmetabolomics to investigate alterations in the
gut microbiota of IBD. A total of 9 metagenomic cohorts from four
different regions or countries (n = 1363 cases) were included in this
study. These cohorts weredivided into six discovery cohorts and three
validation cohorts (Fig. 1a, Supplementary Fig. 1b and Supplementary
Table 1). Additionally, we included four metabolomic cohorts (n = 398
cases), of which two external cohorts were examined using non-
targeted metabolomics, and two in-house cohorts were examined
using targeted metabolomics (Fig. 1a).

To ensure consistency in the bioinformatic analyses, we applied
the MetaPhlan3 tool for taxonomic profiling and HUMAnN3 for func-
tional profiling to reprocess all raw sequencing data. Furthermore, by
annotating metabolite names with a unified ID using the Human
MetabolomeDatabase (HMDB), we identified 79metabolites thatwere
shared among the four cohorts. These metabolites will be utilized in a
cross-cohort analysis of metabolomics data (Fig. 1b).

Furthermore, our aim is to reveal the patterns of variation in gut
microbiota and fecal metabolites through a comprehensive statistical
analysis, and then utilize machine learning techniques for diagnosing
IBD. Initially, we excluded samples thatwere repeatedly collected from
external cohorts. Then, we utilized a sequence of differential analyses
and feature selection to identify 31 species, 25 functional genes, and 13
metabolites that were effective in diagnosing IBD patients. Subse-
quently, we selected four cohorts containing both metagenomic and
metabolomic data (n= 391 cases) for integrated analysis, enabling us to
establish the most precise diagnostic model. Finally, to explore gut
microbiota-related metabolic processes, we introduced the multi-
omics biological correlation (MOBC) maps framework (Fig. 1c).

Identification of bacterial biomarkers at the species level for
diagnosing IBD through cross-cohorts
The main goal of the CCIA was to discover particular gut microbial
species that exhibited consistent alterations in abundance in

metagenomes of individuals with IBD. Prior to the analysis, it was
imperative to evaluate the impact of cohort-related variations (CRV)
on the microbiome composition since there were differences among
the cohorts in terms of biological and technical factors. To mitigate
the impact of confounding variables, we compared the identified gut
microbial species with other factors such as patient age, gender,
cohort, country, body mass index (BMI), and antibiotic use. Our
analysis revealed that the factor of “ cohort” or “country” had a sig-
nificant impact on the species composition (Supplementary Fig. 2a,
b). Therefore, tominimize potential biases, we restricted subsequent
analysis to patients within the same country in a single cohort and
processed the metagenomic data using the same analysis method.

We next evaluated the alpha diversity by measuring the Shannon
and Simpson index, and found that IBD patients exhibited lower
microbial alpha diversity compared to healthy controls (FDR <0.0001)
(Fig. 2b, c). In addition, it’s important to note that the dissimilarities in
beta diversity, which were calculated using the Bray-Curtis distance
metric, were found to vary not only based on the disease status (as
indicated by a PERMANOVA analysis with P =0.001) but also across
different cohorts (as indicated by a PERMANOVA analysis with
P =0.001) (Fig. 2d). Thus, reduced microbial diversity observed in IBD
patientsmayplay a significant role in disrupting the delicate balance of
the gut ecosystem and could be a contributing factor to the develop-
ment of IBD.

To identify potential microbial biomarkers for the diagnosis of
IBD, we employed a method provided by a previous study to analyze
the composition ofmicrobial species15. Through CCIAwith an FDR less
than 0.0001, 74 microbial species were identified to have significantly
different abundances in the gut microbiomes (Fig. 2e and Supple-
mentary Table 2). Despite significant differences in diet and genetics
among IBD patients from various regions or countries, a consistent
pattern of alteration in their gut microbiota was observed. Our results
suggest that IBD patients exhibit a significant reduction in commensal
gut microbiota, which are crucial for various activities of their hosts.
Several species, known to produce butyric acid17,18, were found to be
depleted in the gut microbiota of IBD, including Faecalibacterium
prausnitzii, Roseburia intestinalis, Eubacterium hallii, Gemmiger for-
micilis, Eubacterium rectale, and Ruminococcus bromii (Fig. 2e). In
addition, our study suggests that certain bacteria involved in other
intestinal metabolism, including those associated with mineral meta-
bolism (such as Collinsella aerofaciens involved in iron metabolism19),
bile acid metabolism20 (such as Ruminococcus torques), and urea cycle
metabolism21 (such as Bifidobacterium longum), all of which demon-
strate a significant decrease (Fig. 2e). Some bacteria that antagonize
pro-inflammatory microorganisms are also significantly reduced.
Alistipes putredinis showed anegative correlationwith the colonization
of Candida albicans, which is enriched in the gut of IBD patients and
exacerbates intestinal inflammation by inducing Th17 cell
differentiation22,23. Notably, through a comprehensive analysis, we
have successfully identified two specific microbial species, Asacchar-
obacter celatus and Gemmiger formicilis, which are depleted across six
distinct IBD cohorts (Supplementary Fig. 2c). However, previous stu-
dies have not extensively investigated or emphasized the relationship
between thesebacteria and IBD.Asaccharobacter celatuspossesses the
ability to produce Equol24, which has the potential to alleviate experi-
mental autoimmune encephalomyelitis in mice25. This implies a
potential role for Asaccharobacter celatus in the regulation of auto-
immune diseases.

Furthermore, our study also revealed that certain bacteria,
including Ruminococcus gnavus, Bacteroides fragilis, Escherichia coli,
and Clostridium innocuum were consistently enriched in IBD (Fig. 2e).
Ruminococcus gnavus can produce pro-inflammatory polysaccharides
and mucin-degrading trans-sialidase, which disrupts the intestinal
mucosal barrier and promotes inflammation26–28. In clinical practice,
special attention should be paid to Clostridium innocuum infection in
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Fig. 1 | Workflow for cross-cohort integration analysis of fecal metagenomics
and metabolomics in IBD. aWe included a total of 9 fecal metagenomic cohorts
(n = 1363) and 4metabolomic cohorts (n = 398) from diverse geographic locations
worldwide. b We utilized the MetaPhlan3 tool for taxonomic profiling and
HUMAnN3 for functional profiling to reprocess all raw metagenomic sequencing
data. Additionally, we annotated the compound names from the metabolomics
analysis with the same ID number using the HMDB (Human Metabolome

Database). c Through strict sample filtering, detailed bioinformatics analysis, and
feature selection, we identified a series of representative features, including 31
bacterial features, 25 KO genes, and 13 metabolites. Subsequently, we developed
machine learningmodels and used the features for the diagnosis of IBD. Finally, we
introduced the multi-omics biological correlation (MOBC) maps framework to
shed light on the interconnected relationships among gut bacteria, metabolites,
and KO genes in IBD.
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IBD, as it has been associatedwith creeping fat and intestinal strictures
in Crohn’s disease and is inherently resistant to vancomycin29. In
addition, Erysipelatoclostridium ramosum, a bacterium that has been
documented sparsely in the studies, but appears to be more prevalent
in IBD, as confirmed in multiple cohorts (Supplementary Fig. 2d). The
role of this bacterium in thepathogenesis andprogression of IBD is not
yet fully understood, and therefore requires further investigation.

Overall, our findings highlight the significant alterations in the gut
microbiota of patients with IBD and the potential role of specific
bacterial groups in the pathogenesis of this disease.

Subsequently, we utilized a machine learning method (Random
Forest, RF), for the diagnosis of IBD. To enhance the accuracy and
interpretability of our model, as well as minimize the impact of
redundant and irrelevant features, we utilized the Iterative Feature
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Elimination (IFE) technique to perform feature selection. As a result,
we rigorously selected 31 feature species from the 74 differentially
abundant species (Fig. 2e), mainly from the phylum Firmicutes, for
modeling analysis (Supplementary Fig. 2e). We initially developed a
random forest model using 10-fold cross-validation with 31 signature
species from the 6 cohorts, which demonstrated strong ability to
detect IBD across all cohorts, with AUROC ranging from 0.66 to 0.95
(Fig. 2f). However, upon analyzing theperformanceof the classifierson
the six cohorts, we found that the IBDMDB cohort exhibited sig-
nificantly worse results than the other five cohorts. This variation in
results may be due to the fact that the patients were from different
medical centers, despite being from the same country. Such variability
and heterogeneity in the data may have contributed to the reduced
accuracy of the classifiers. Moreover, To evaluate the transferability
and geographical diversity of the identified features for diagnosing
IBD, we performed cohort-to-cohort transfer analysis and leave-one-
cohort-out (LOCO) analysis using established methods30. The species-
level models demonstrated an average cohort-to-cohort transfer ana-
lysis performance ranging from 0.79 to 0.86 in terms of AUROC, with
the majority of values hovering around 0.8 (Fig. 2f). Our analysis
demonstrated that the LOCO analysis performance ranged from 0.71
to 0.94 (Fig. 2g).

In addition, to validate the accuracy and transferability of our
model in independent cohorts, we included three independent IBD
metagenomic cohorts (Fig. 2a). Specifically, the HallAB 2017 cohort
had an average AUROC of 0.70, the FranzosaEA 2019B cohort had an
average AUROC of 0.90, and the Pudong cohort had an average
AUROC of 0.89 (Supplementary Fig. 2f). However, the AUROCs for the
LOCO analysis slightly improved, with HallAB 2017 at 0.72, FranzosaEA
2019B at 0.96, and the Pudong cohort at 0.91 (Supplementary Fig. 2f).
If we consider the HallAB 2017 cohort as an outlier, the independent
validation of our models can result in an AUROC of
approximately 0.90.

Since previous research has revealed that changes in the micro-
biome can be associated with various diseases, emphasizing the
importance of identifying disease-specific microbiome signatures. We
next investigated the false positive rate (FPR) of our metagenomic
classifiers by analyzing metagenomes from patients with gastro-
intestinal (GI) diseases, such as adenoma and colorectal cancer (CRC),
as well as non-GI diseases like type 2 diabetes (T2D). Therefore, we
utilized LOCO classification models of species, calibrated to achieve a
FPR of 0.08 and 0.13 on CRC datasets (Supplementary Fig. 2g),
respectively. We found that the FPRs on the other disease datasets
were also relatively low, with adenoma at 0.15 and T2D at 0.11 (Sup-
plementary Fig. 2g). These results suggest that our models have
excellent disease specificity. Overall, our findings demonstrate that
ourmodel has excellent specificity and can accurately identify disease-
specific microbiome signatures.

Identification of IBD diagnostic markers by demonstrating var-
iations of Kyoto Encyclopedia of Genes and Genomes (KEGG)
orthology (KO) across different IBD cohorts
Metagenomic functional analysis plays a critical role in understanding
the complex interactions between the gut microbiome and human
health. In our study, we first annotated gene families obtained from
metagenomic analysis as KO genes using the KEGG orthology data-
base, resulting in 9,270 KO genes. We applied a low-abundance filter-
ing step to obtain a final set of 3,732 KO genes, followed by differential
abundance analysis using the same method as earlier. To avoid over-
fitting of the model, we used a strict FDR approach (CCIA analysis
FDR < 1×10−12), which led to the identification of 162 differentially
expressed KO genes between normal and IBD patients (Fig. 3a and
Supplementary Tables 3). Most of these KO genes are classified as
potentially coding for metabolic enzymes, particularly those involved
in amino acid and other metabolism. This indicates a strong associa-
tion between gut microbiota and their metabolic activities.

Subsequently, an enrichment analysis was conducted on these
genes, uncovering 12 pathwayswith potential implications for both gut
microbiota and disease (FDR <0.05). Among these pathways, four of
them displayed an upregulated pattern, including “Cell cycle – Cau-
lobacter,” “Two-component system,” “Lipopolysaccharide biosynth-
esis,” and “Aminoacyl-tRNA biosynthesis” (Supplementary Fig. 3a).
Specifically, Two-component systems play a critical role in regulating
virulence factors in certain bacteria31–33. Among the 8 KO genes enri-
ched in the Two-component system pathway, crp (K10914, CRP/FNR
family transcriptional regulator) stands out as the gene with the
highest generalized fold change (Supplementary Fig. 3b). Previous
studies have indicated its potential involvement in various biological
processes, such as osmoregulation34, stringent response35, and biofilm
formation36. Furthermore, the relative abundance of crp is positively
correlated with fecal calprotectin (Supplementary Fig. 3c). These
findings suggest that crp could potentially act as a critical transcrip-
tional regulatory factor contributing to the occurrence of gut inflam-
mation. Additionally, we have also observed the downregulation of
several pathways in IBD, such as Propanoate metabolism, Phospho-
transferase system (PTS), Styrene degradation, Glycolysis / Gluco-
neogenesis, and Biosynthesis of amino acids (Supplementary Fig. 3a).
It has been reported thatAkkermansia-related propanoatemetabolism
enhanced the development of the intestinal epithelium through
intestinal stem cell-mediated mechanisms, where intestinal stem cells
(ISCs) play a vital role in the developmental processes and swift
regeneration of the intestinal lining37.

Additionally, we sought to assess the potential diagnostic use-
fulness of the KO genes in IBD. We utilized the IFE method for feature
selection and identified 25 KO genes as features for random forest
modeling out of the 162 KO genes. After conducting a 10-fold cross-
validation analysis, we observed that all cohorts, except for the HeQ

Fig. 2 | Identificationofbacterial biomarkers at the species level for diagnosing
IBD through cross-cohorts. a Overall composition of the population across 9
metagenomic datasets (n = 1363). b, c The alpha diversity of IBD (red, n = 795) and
control (blue, n = 395) was measured using the Shannon index and Simpson index.
The adjusted p value (two-sided test) was calculated using MMUPHin tools. The
data in boxplots is represented using interquartile ranges (IQRs), with the median
shown as a horizontal line, and the whiskers extending to the most extreme points
within 1.5 times the IQR. Exact p values are provided in the Source data file.
d Principal coordinate analysis (PCoA) shows significant differences in microbial
composition between both groups (P =0.001) and cohorts (P =0.001). The sig-
nificance of beta diversity based on Bray-Curtis distance was calculated using
PERMANOVA with 999 permutations (two-sided test, n = 1190). The data in box-
plots is represented using interquartile ranges (IQRs), with the median shown as a
black horizontal line, and thewhiskers extending to themost extremepointswithin
1.5 times the IQR. e The top bar graph displays the 74 gut bacterial species with the
most significant differences (P <0.0001), as calculated using a two-sidedWilcoxon

test with FDR-corrected P values. Among these species, 31 are highlighted in dark
gray as feature species for subsequent random forest modeling (Confirmed). The
middle bar graph shows the generalized fold change (gFC) of these 74 significant
species, with red indicating 11 species that are enriched in IBD and blue indicating
63 species that are depleted in IBD. At the bottom, heatmaps are shown in gray and
in color, respectively, displaying the species-level significance and the gFC within
individual cohorts. (f) The classification models accuracy of IBD resulting from 10-
fold cross-validation was assessed within each cohort (gray boxes along the diag-
onal), aswell as cohort-to-cohortmodel transfer (external validations off-diagonal),
using the AUROC for classifiers trained on species abundance profiles. g The
classification models accuracy, as evaluated by AUROC on a hold-out cohort,
improves when taxonomic data from all other cohorts are combined for training
using leave-one-cohort-out (LOCO) validation, compared tomodels trainedondata
from a single cohort (cohort-to-cohort transfer). The error bars indicate the
mean ± sd, n = 5. Source data are provided as a Source Data file.
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2017 cohort that displayed excellent diagnostic performance (AUROC:
0.98), showed a decrease in AUROC values compared to bacterial
species models. The cohort-to-cohort transfer analysis demonstrated
that the mean AUROC values for all cohorts ranged from 0.74 to 0.81
(Fig. 3b). Consistent with bacterial species models, the LOCO analysis
showed that the diagnostic value of KO genes was slightly higher than
in the cohort-to-cohort transfer analysis (Fig. 3c). In general, while the

diagnostic performance of KO gene models is somewhat lower than
that of bacterial species models, their diagnostic sensitivity is still
acceptable.

Furthermore, to validate the diagnostic potential of the 25 KO
genes, we applied them to the above independent cohorts. In cohort-
to-cohort transfermodels, theAUROCs ranged from0.71 to0.96,while
in LOCO classification models, the AUROCs ranged from 0.61 to 0.87
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(Supplementary Fig. 3d). We also tested for FPR by analyzing other
disease datasets, including adenoma, CRC and T2D. The FPR of these
KOgenes onnon-IBD cohortswere also relatively low,with adenoma at
0.04, CRC at 0.13 and T2D at 0.07 (Supplementary Fig. 3e), indicating
their excellent disease specificity.

We also utilized the EggNOG orthologous gene classification
method for diagnosing IBD (Supplementary Fig. 3f and Supplementary
Table 4), but the accuracy of IBD detection was slightly lower com-
pared to using the KOmodels. The AUROC values ranged from0.63 to
0.80 for cohort-to-cohort transfer validation (Supplementary Fig. 3g)
and from 0.65 to 0.92 in LOCO validation (Supplementary Fig. 3h).
After considering the accuracy and interpretability of the results, we
decided to use only the annotated results from the KO database in
subsequent analyses.

Demonstration ofMetabolomic Alterations across Different IBD
Cohorts and Utilization of Signature Metabolites for IBD
Diagnosis
Intrigued by the intricate interplay between gut microbiota and host
co-metabolism38,we further sought to explore the spectrum of chan-
ges in fecal metabolites through metabolomics. Using targeted meta-
bolomics, we examined the differences in fecal metabolites between
IBD patients and healthy individuals (Fig. 4a). We performed Principal
Coordinate Analysis (PCoA) and constructed Orthogonal Partial Least
Squares Discriminant Analysis (OPLS-DA) models, revealing sub-
stantial differentiation in the metabolomic profiles between the two
groups (Fig. 4b, c and Supplementary Fig, 4a, b). Our findings indicate
that no particular group of metabolites was superior in distinguishing
between patients with IBD and healthy individuals than the collective
set of all metabolites. (Supplementary Fig. 4c, d).

To further understand the differences inmetabolites between IBD
patients and healthy controls, we performed a differential analysis and
identified 78 metabolites (Fig. 4d and Supplementary Tables 5). Most
of these metabolites were found to be enriched in IBD patients, with
only a few being depleted. The majority of these differential metabo-
lites belong to the three major nutrient metabolism categories,
including amino acids, carbohydrates, and fatty acids. Notably, amino
acids such as Tryptophan, Glutamine, Arginine, and 5-Hydro-
xytryptophan, Histidine were found to be enriched in the intestines of
IBDpatients, this is consistentwith the results of theprevious studies39.
Interestingly,we alsoobserved that various organic acids related to the
tricarboxylic acid cycle, such as Pyruvic acid, Fumaric acid, Malonic
acid, and Oxoglutaric acid, were enriched in IBD patients, indicating
abnormal energy metabolism of intestinal microbiota. Furthermore,
among these 78 differential fecal metabolites, 36 are unique to the in-
house dataset (Supplementary Fig. 4e), such as some amino acids (1-
Methylhistidine, Acetylglycine, N-Acetylglutamine, N-Acetylserine
Dimethylglycine and 4-Hydroxyproline) and benzenoids (Phe-
nylpyruvic acid, 3-Hydroxyphenylacetic acid, Protocatechuic acid and
3-Aminosalicylic acid). Especially, carnitines compounds and
1-Methylhistidine are biomarkers associated with meat consumption40

and its significant elevation in the gut of IBDpatients is in linewithwell-
established dietary risk factors for IBD, such as the consumption of red
and processed meats41. However, the roles of these metabolites in IBD
remain unknown.

We next aimed to investigate whether a specific group of meta-
bolites can serve as an accurate diagnostic tool for IBD, regardless of
whether it is targeted or non-targeteddatasets throughCCIAmethods.
We then integrated fourmetabolomics studies and identified a total of
79 metabolites that were commonly present in all four cohorts using
HMDB ID. Subsequently, we conducted univariate differential analysis
with FDR <0.0001 and OPLS-DA analysis using a VIP score > 1, which
led to the identification of 32 candidate metabolites. To further refine
our selection, we employed IFE and narrowed down our pool to 13
metabolites (Fig. 4e, f). To account for variations in metabolite
detection methods and numerical units between internal and external
cohorts, we limitedour cross-validation to cohortswith the sameunits.
In our analysis of the Renji cohorts, the 10-fold cross-validation of our
model achieved an AUROC value of 0.945, while the leave-one-out
cross-validation (LOOCV) had a slightly lower performance of 0.937,
and the independent validation cohort arm an AUROC of 0.867
(Fig. 4g). In the USA-NL cohorts, both 10-fold cross-validation and
LOOCV exhibited similar AUROC values, both exceeding 0.9, and the
independent validation cohort had good performance with an AUROC
of 0.841 (Fig. 4h). Based on these results, it can be inferred that
metabolomics has a higher potential for disease diagnosis compared
to metagenomics and can be a promising biomarker for diagnosis in
the future.

To further validate the disease specificity of our feature metabo-
lites, we incorporated four additional non-IBD metabolomics cohorts,
including one adenoma cohort, two CRC cohorts, and one T1D cohort.
Differential analysis revealed that themajority of the 13metabolites we
included for diagnosing IBD did not show significant differences in
these cohorts (FDR >0.05, Supplementary Fig. 4f-i). These findings
substantiate the disease-specific nature of our featured metabolites
in IBD.

Construction of multi-omics biological correlation (MOBC)
maps of gut microbiota in IBD
Gut metabolites and microbiota are closely associated, however, fecal
metabolite data presents a complexmixturederived from thehost, gut
microbes, and ingested food, emphasizing the urgent need to identify
the specific metabolites driven by the gut microbiota. Therefore, we
constructed an analytical framework - the multi-omics biological cor-
relation (MOBC) maps, utilizing fecal metagenomic and metabolomic
data from four cohorts (n = 391, Fig. 5a).Weutilized theKEGGdatabase
to establish links between the 32 previously identified differential
metabolites and the genes responsible for encodingpotential enzymes
directly involved in their metabolic processes (Fig. 4e). This effort led
to the identification of 736 KO genes (Supplementary Table 6). Addi-
tionally, we conducted an intersection analysis, comparing these
metabolic-related genes with the 162 KO genes identified in our pre-
vious differential analysis of 6 IBDmetagenomic cohorts (Fig. 3a). As a
result, our investigation unveiled 8 differential KO genes with asso-
ciations to both metabolism and disease phenotypes. (Fig. 5b and
Supplementary Fig. 5a-h). Further research on these genes and their
roles in metabolic pathways could provide significant insights into the
underlying mechanisms of IBD.

The K22477 (argO, N-acetylglutamate synthase) is responsible for
producing N-acetylglutamate (NAG) from glutamate and acetyl-CoA.

Fig. 3 | Identificationof IBDdiagnosticmarkers by demonstrating variations of
Kyoto Encyclopedia of Genes and Genomes (KEGG) orthology (KO) across
different IBD cohorts. a The circular complex heatmap displays the 162 most
significant KOgenes (P < 1×10−12), as calculatedusing a two-sidedWilcoxon test with
FDR-corrected P values in the cross-cohort analysis. The inner-circle heatmap
shows the generalized fold change (gFC) values of these 162 KO genes, with red
indicating enriched and blue indicating depleted in IBD. The outer-circle bar chart
displays the p-values of 25 featured KO genes in each cohort used for modeling.
b The IBD classification accuracy wasmeasured using AUROC for classifiers trained

on the KO genes abundance profiles. The classification accuracy was evaluated
using 10-fold cross-validation within each cohort (gray boxes along the diagonal)
and cohort-to-cohort model transfer (external validations off-diagonal). c The
classification models accuracy, as evaluated by AUROC on a hold-out cohort,
improves when functional data (KO genes) from all other cohorts are combined for
training using leave-one-cohort-out (LOCO) validation, compared to models
trained on data from a single cohort (cohort-to-cohort transfer). The error bars
indicate the mean ± sd, n = 5. Source data are provided as a Source Data file.
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Our study revealed that IBD patients have reduced levels of K22477,
leading to an excess of L-glutamate. This overabundance of
L-glutamate can cause symptoms such as abdominal pain and diarrhea
in IBD patients42(Fig. 5c). Additionally, the lack of K22373 (larA, lactate
racemase) prevents the conversion of (S)-lactate to (R)-lactate, which
may contribute to the development of intestinal inflammation and
malignant transformation43(Fig. 5d). The K00290 (LYS1, saccharopine

dehydrogenase) reduces the likelihood of oxidative stress, a hallmark
of inflammation in the gut affected by IBD44(Fig. 5e). However, IBD
patients with reduced levels of LYS1 are unable to support a healthy
microbiota due to the resulting oxidative stress. Urea plays a complex
role in intestinal diseases, and in IBD patients, dysbiosis can result in
abnormal urea metabolism, causing damage to the intestinal mucosal
barrier and exacerbating inflammation45. Our study suggests that a
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reduction in the symbiotic bacterial community involved in urea
metabolism leads to the downregulation of K01476 (rocF, arginase),
ultimately resulting in urea accumulation (Fig. 5f). These findings
indicate that the gut microbial biotransformation is impaired in
patients with IBD, resulting from a substantial reduction in the gut
commensal community (Fig. 2e).

Furthermore, we identified four genes that encoding aminoacyl-
tRNAbiosynthesis enzymeswithin the symbiotic bacterial community,
namely K09759 (aspS, nondiscriminating aspartyl-tRNA synthetase),
K01870 (ileS, isoleucyl-tRNA synthetase), K01892 (hisS, histidyl-tRNA
synthetase), andK01873 (valS, valyl-tRNA synthetase) (Fig. 5g, j). This is
consistent with previous results in KEGG Orthology Enrichment Ana-
lysis which showed a significant increase in aminoacyl−tRNA bio-
synthesis pathway (Supplementary Fig. 3a). Aminoacyl-tRNA
synthetases (ARSs) play an indispensable role in protein synthesis.
Recent studies indicate that these enzymes encompass biological
functions that extend beyond translation46–48. It has been reported that
the gut-associated bacterium Akkermansia muciniphila (Am) secretes
seryl-tRNA synthetase (AmTARS), which could modulate immune
homeostasis and facilitate the production of anti-inflammatory IL-1049.
These studies indicate that aminoacyl-tRNA synthetases from the gut
microbiota may play a crucial role, potentially influencing the host
immune and regulating gut homeostasis.

Multi-omics signatures integration for diagnosing IBD across
different cohorts
We have previously discovered three panels, consisting of 31 species,
25 KO genes, and 13 metabolites, that were able to accurately distin-
guish between IBD patients and normal controls. To investigate if the
integration of multiple data sources could improve diagnostic accu-
racy, we further examined the interplay between gut microbiota and
their metabolites. We first combined species and KO genes to differ-
entiate IBDandobtained a satisfactorydiagnostic performance in both
10-fold cross-validation and LOOCV. The Renji cohort showed an
AUROC value above 0.97, while the USA-NL cohort increased to above
0.9 (in comparison to using single species or KO genes), and the
independent validation of these panels exhibited AUROC values above
0.9 (Fig. 6a, d). After that, we combined species and metabolites,
metabolites and KO genes, and found that their diagnostic perfor-
mance was generally above 0.9 (AUROC) (Fig. 6b, c, e, f). Particularly,
the combination of species and metabolites presented the best per-
formance among the combined panels, and both outperformed the
diagnostic performance of the individual panels.

After achieving good diagnostic performance in the above mod-
els, we further explored whether combining the all panels could
enhance the diagnostic performance of ourmodel. To our surprise, we
found that the combined features significantly improved the diag-
nostic performance of our random forest model. In the Renji cohort,

10-fold cross-validation achieved an AUROC value of 0.98, while
independent validation reached 0.96 (Fig. 6g). In the USA-NL cohorts,
10-fold cross-validation could reach 0.93, and independent validation
could reach 0.92 (Fig. 6h). Our results indicate that combining species,
KO genes, and metabolites can significantly enhance the diagnostic
performance of our model in fecal metagenomic and metabolomic
analysis.

Identification of multi-omics biomarkers for distinguishing
subtypes of IBD
As the treatment strategies for UC and CD differ significantly, we next
aimed to identify a subset of markers from the multi-omics panel
mentioned above that could distinguish between the two subtypes of
IBD. Using the IFE approach, we selected 12 features from the multi-
omics panel (Supplementary Fig. 6a). The RF model revealed that the
12 selectedmarkers could effectivelydifferentiate betweenUCandCD.
The AUROC values for 10-fold cross-validation and LOOCV were
approximately 0.8 in both internal and external cohorts, with inde-
pendent validation achieving values above 0.7 (Supplementary Fig. 6b,
c). This sub-panel can aid clinicians in further categorizing the disease
following the diagnosis of IBD.

Discussion
Although previous studies has utilized fecal biomarkers for diagnosing
IBD9,10, there are still two unresolved issues: the reliable reproducibility
of biomarkers obtained from fecal samples across different cohorts
and populations, and whether it’s possible to further enhance the
diagnostic performance of the existing fecal diagnostic model.

In this study, we integrated metagenomic and metabolomic data
from multiple cohorts to identify 31 species, 25 KO genes and 13
metabolites distinguishing normal control from IBD cases. These bio-
markers demonstrate robust reproducibility across various cohorts. In
contrast to the current invasive gold standard for diagnosing IBD,
colonoscopic examination, we have demonstrated the potential of
utilizing gut fecal microbiota and metabolites as a non-invasive
approach to diagnosis, which contributes to the early detection and
prediction of IBD, facilitating timely interventions and reducing the
risk of complications. Moreover, through the integration of diverse
omics data, we have achieved a significant enhancement in the per-
formance of our machine learning models for diagnosing IBD,
achieving an AUROC value of 0.98 in Renji cohorts, compared to
previous non-invasive diagnostic models9,10. Furthermore, we have
successfully pinpointed a subset of markers from the multi-omics
panel that exhibit the remarkable ability to distinguish between UC
and CD with an impressive average AUROC value of up to 0.8. This
discovery offers a promising potential for a non-invasive biomarker
that could play a pivotal role in clinically categorizing distinct sub-
types of IBD.

Fig. 4 | Demonstration of Metabolomic Alterations across Different IBD
Cohorts and Utilization of Signature Metabolites for IBD Diagnosis. a Overall
composition of the population across 4 metabolomics datasets (n = 398). b A
principal coordinates analysis (PCoA) was performed on individuals from the Puxi
cohort. The analysis showed significant differences in metabolites composition
between control (n = 25) and IBD (n = 83) (P =0.001), as determined by PERMA-
NOVA using Bray-Curtis distance with 999 permutations (two-sided test).
c Orthogonal Partial Least Squares Discriminant Analysis (OPLS-DA) model of Puxi
cohort individuals basedongutmetabolomicprofiles (Q2Y:0.618). The fullmodel’s
predictive performance is evaluated using the cumulative Q2Y metric: Q2Y ranges
from 0 to 1, and the higher the Q2Y, the better the performance. OPLS-DA model
validation utilizes a permutation test (permI = 200, two-sided test), which is a
nonparametric test. d The presented bar graph depicts metabolites that demon-
strate significant differences between normal controls and IBD, with their sig-
nificance scores calculated using a two-sided Wilcoxon test with FDR-corrected P
values (cut-off value: P <0.0001, denoted as ****). Each bar on the graph shows a

white number that signifies the VIP score of the OPLS-DA model. The colors of the
bars represent various categories of metabolites, with blue star-marked bars indi-
cating metabolites that are depleted in IBD, while unmarked bars represent enri-
ched metabolites in IBD. Exact p values are provided in the Source data file
(Supplementary Table 5). e The workflow for identifying metabolites across four
cohorts involved annotating with the HumanMetabolome Database (HMDB). f The
ridge plot shows the concentration differences of 13 featuredmetabolites between
the normal control and IBD (Unit: log2 (µmol/g)). Their significance scores calcu-
lated using a two-sided Wilcoxon test with FDR-corrected p values (denoted as
****p < 0.0001). Exact p values are provided in the Source data file. g, h We
developed random forest (RF) classifiers trained on metabolites to identify IBD
patients. We performed 10-fold cross-validation (red), leave-one-out cross-
validation (LOOCV) (blue) and independent validation (green). Shaded areas
represent the 95% confidence intervals of the corresponding ROC curves. Source
data are provided as a Source Data file.
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Fig. 5 | Construction ofmulti-omics biological correlation (MOBC)maps of gut
microbiota in IBD. a 4 IBD cohorts are available for integrative analysis (n = 391).
b Flowchart for the identificationof8 different KOgenes related tometabolismand
disease phenotypes to construct multi-omics biological correlation (MOBC) maps.
c–j MOBC maps of the 8 KO genes. The reaction equation below each image
represents a reaction process corresponding to a KOgene. The boldedmetabolites

and KO genes represent those that have been validated and show significant dif-
ferences in our metagenomics and metabolomics analyses. The red color indicates
enrichment in IBD, while blue represents depletion. The bar chart in the top half of
each image represents the top 5 contributors of gut bacteria carrying this KO gene.
Source data are provided as a Source Data file.
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Fig. 6 | Multi-omics signatures integration for diagnosing IBD across different
cohorts.WedevelopedRandom Forest (RF) classifiers to identify patients with IBD
usingmulti-omics data. Specifically, we trained three different RF classifiers: oneon
species and KO genes (a, d), one on species and metabolites (b, e), and one on
metabolite and KO genes (c, f). The training and testing of these classifiers were
carried out using 10-fold cross-validation (red) and leave-one-out cross-validation

(LOOCV) (blue) within the Puxi or FranzosaEA 2019A cohorts, respectively. The
performance of these classifiers was then validated on independent validation sets
(green) in the Pudong or FranzosaEA 2019B cohorts. In addition, we also trained RF
classifiers using a combined panel of metabolites, species, and KO genes (g, h).
Shaded areas represent the 95% confidence intervals of the corresponding ROC
curves.
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In addition, previous studies have shown that differences in gut
bacteria or metabolites found in different case-control studies mostly
indicate a general imbalance in the gut ecosystem50, rather than spe-
cific changes linked to certain diseases. This highlights the difficulty in
identifying distinct patterns of gut bacteria or metabolites that are
specific to particular diseases. In our present study, we successfully
formulated disease-specific signatures that exhibited a low false posi-
tive rate across gastrointestinal (GI) conditions, such as adenoma and
colorectal cancer (CRC), as well as non-GI diseases like diabetes. In
summary, this multi-omics model can propel innovations in both
clinical practice and the realm of medical science.

While unresolved causality amongmicrobial, metabolite, and host
processes during IBDdevelopment is not a primary focus for diagnostic
purposes, elucidating the underlying mechanisms would significantly
enhance our understanding of this disease. To achieve this objective,
we have developed comprehensive workflows for both functional
metagenome andmetabolome analysis. Firstly, through the analysis of
functional gene (KO genes) within the gut microbiota, we identified
multiple regulatory pathways associated with disease development
involving the gut microbiota. Notably, the Two-component systems,
composed of sensor histidine kinases and response regulator proteins,
play a crucial role in bacterial and archaeal signal transduction
processes34. Additionally, we discovered a key transcriptional reg-
ulatory factor enriched in this pathway, known as crp (Cyclic AMP
Receptor Protein). crp belongs to the CRP-FNR superfamily of tran-
scription factors and is activated as a DNA-binding protein by binding
with its allosteric effector, cAMP51. The regulation of the Two-
component system or crp holds promise as a therapeutic target for
treating IBD. Through MOBC maps, our research has uncovered a sig-
nificant enrichment in the Aminoacyl-tRNA biosynthesis pathway.
Aminoacyl-tRNA synthetases (ARSs) play a vital role as catalysts in
protein synthesis across all living organisms. However, their functions
have evolved over time, and a growing body of research indicates that
their non-classical functionsmight hold even greater importance46–49,52.
The diverse functionality of ARSs has revealed their potential as a
valuable and underutilized resource for therapeutic targets in IBD.

Of course, our study does have some limitations. Being a cross-
cohort study, it’s difficult to completely eliminate biases in areas like
selecting cohorts, collecting samples, and analyzing methods. How-
ever, we’ve taken extensive measures to minimize these factors,
ensuring the study’s scientific rigor. Still, there could be unknown
factors influencing the results, such as diet, medication, and lifestyle
choices, which require further investigation for validation.

In conclusion, our study revealed the overall patterns of changes
in the gut microbiome and metabolome of IBD patients using CCIA.
This information can be valuable for exploring interventions and
treatments for IBD. Further research should validate and delve deeper
into the underlying molecular mechanisms, such as longitudinal stu-
dies and interventions.While microbiota andmetabolite interventions
hold promise for managing health conditions, they also come with
challenges and ethical considerations that need careful evaluation, for
example, microbiota variation, long-term effects, and standardization
need thorough attention. Longitudinal studies are crucial to fully
understand how the gut microbiota and metabolome change during
different stages of IBD and in response to interventions.

Methods
Ethics statement
The patient cohorts were approved by the ethics committee of Renji
Hospital affiliated to the School of Medicine, Shanghai Jiao Tong Uni-
versity, China, the ethical approval number are 2019-qkwkt-001 and
2021-skt-004. In this study, we did not have any specific requirements
regarding the participants’ gender, and the gender of participants was
determined based on self-report. All participants provided informed
consent prior to their inclusion in the study.

Participants enrollment
In this study, we recruited two IBD cohorts from Renji Hospital,
Shanghai, including the Puxi and Pudong campuses, for the discovery
and validation cohorts, between between January 1, 2019, and
December 31, 2022, respectively. We also recruited a group of healthy
control subjects whowere carefullymatched by age and gender across
two hospital campuses. It should be noted that all participants who
were enrolled provided informed consent. The enrollment was fol-
lowed the specific inclusion and exclusion criteria, which are provided
in the follow.

The inclusion criteria included: (1) Participants must be aged
between 16 and 65 to be eligible. (2) IBD group were patients newly
diagnosed with UC or CD by combining clinical symptoms, imaging,
endoscopic and pathological appearances, and had not received any
treatment the time of enrollment; (3) Control group was a healthy
control population that did not have any significant abnormality in
colonoscopy; (4) the participants were capable of understanding and
completing the questionnaire, and were willing to cooperate in the
collection of fecal samples and basic and clinical information. The
exclusion criteria include: (1) medication history of antibiotics, pro-
biotics, immunosuppressants, hormone, or non-steroidal anti-inflam-
matory drugs within three months before enrollment; (2) abdominal
surgery history within six months before enrollment; (3) history of
cancer, other autoimmune disease excluding IBD, organ transplanta-
tion, or other serious digestive diseases; (4) uncontrolled systemic
metabolic disorders such as blood pressure, blood glucose, blood
lipids within six months before enrollment; (5) severe and uncon-
trolled gastrointestinal symptoms such as severe gastrointestinal
bleeding, severe diarrhea, severe constipation, gastrointestinal
obstruction, etc., within six months before enrollment; (6) significant
changes in dietary habits, such as the initiation of a vegan diet, etc.,
within six months before enrollment; (7) inability to cooperate or
unwillingness to cooperate with this study.

In the metagenomic cohorts (Fig. 2a), a total of 208 participants
were enrolled, comprising 138 patients diagnosed with IBD and 70
healthy control subjects, matched for age and gender. Specifically,
the Puxi cohort (N = 132, control=45, IBD = 87) and the Pudong cohort
(N = 76, control=25, IBD = 51) were employed for both model dis-
covery and validation purposes. For the metabolomic cohorts
(Fig. 4a), a total of 178 participants were included, with 135 indivi-
duals diagnosed with IBD and 43 healthy control subjects, carefully
matched for age and gender. Among these, the Puxi cohort (N = 108,
control=25, IBD = 83) and the Pudong cohort (N = 70, control=18,
IBD = 52) were utilized for both model discovery and validation
phases. In the combined analysis cohorts (Fig. 5a), a total of 171
participants were incorporated, consisting of 130 patients with IBD
and 41 age- and gender-matched healthy control subjects. Among
them, the Puxi cohort (N = 104, control=24, IBD = 80) and the Pudong
cohort (N = 67, control=17, IBD = 50) were utilized for both model
discovery and validation stages. The details of recruitment for the in-
house IBD Renji cohorts are shown in Supplementary Fig. 1a. The
clinical characteristics of the study participants are shown in Sup-
plementary Table 1.

Public cohorts of patients with IBD and normal controls
The metagenomic raw sequencing data for the FranzosaEA 2019A and
FranzosaEA 2019B cohorts (PRJNA400072), and HeQ 2017
(PRJEB15371)were downloaded from the EuropeanNucleotideArchive.
In addition, the metagenomic sequencing data for the HallAB 2017
cohort (PRJNA385949), NielsenHB2014 cohort (PRJEB1220),HMP2019
ibdmdb cohort (PRJNA398089) and the LifeLD VilaAV 2018 cohort
(EGAS00001001704, EGAD00001004194) data were acquired from
the curatedMetagenomicData. The two published metabolomics
cohorts were obtained from a previously published study10 and con-
tained pre-processed data. All metadata for both metagenomics and
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metabolomics were manually curated from the materials provided in
published papers.

Stool sample collection
All participants are required to provide a minimum of 3.0 grams of
stool sample upon enrollment. Samples are to be collected in a sterile
specimen collector (Thermo Scientific, USA, R21922) provided by the
investigator in advance. After collection, the samples must be
promptly transferred to a −80 °C ultra-low temperature cryogenic
freezer for storage within 4 hours, pending further processing in three
months.

Study design and Sample filtering
We included a total of nine metagenomic datasets, consisting of 6
discovery cohorts and 3 independent verification cohorts (Fig. 2a), as
well as four metabolomics datasets, including two targeted metabo-
lomics datasets and two untargeted metabolomics datasets (Fig. 4a).
Among thesedatasets, four datasets containedbothmetagenomic and
metabolomic data (Fig. 5a). Considering that some subjects were
sampled at different time points, we only retained the data from the
first sampling to ensure the accuracy of the diagnostic model. Addi-
tionally, as country or region is a major confounding factor, we only
included subjects from the same country in each dataset to minimize
confounding effects. Furthermore, because there were significantly
more normal controls than IBD cases in the LifeLD VilaAV 2018 cohort,
we randomly removed some of the normal controls tomaintain a ratio
of 1:2 to 1:3 between normal controls and IBD cases for precision of
the study.

Metagenomic sequencing
The DNA from the stool samples was extracted utilizing the HiPure
Stool DNA Mini Kit (Magen Biotechnology, China). The quality, size,
and concentration of the extractedDNAwere evaluated via agarosegel
electrophoresis and the Qubit™ 4 Fluorometer (Thermo Fisher Scien-
tific, USA). The metagenomic libraries were subsequently constructed
by NeoBIO techology utilizing the Hieff NGS® Ultima DNA Library Prep
Kit for Illumina® (Yeasen Biotechnology, China) following the manu-
facturer’s protocol. After ensuring the quality of the libraries, high-
throughput sequencingwas performedon theNovaSeq6000platform
(Illumina, USA).

Metabolite quantification
Targeted metabolomics profiling was conducted using the Q300
Metabolite Array Kit fromMetabo-Profile Biotechnology of China (Xie
et al. 53). In brief, to extract metabolites from lyophilized feces, a
homogenate was prepared using 10mg of feces with 25μL of water.
The mixture was then extracted with 185μL of cold ACN-Methanol (8/
2, v/v) and centrifuged. Next, 30μL of the supernatant was derivatized
with 20μL of freshly prepared derivative reagents on a Biomek 4000
workstation. Internal standardswereadded to thederivatized samples,
which were then randomly analyzed and quantitated using an ultra-
performance liquid chromatography coupled to tandem mass spec-
trometry (UPLC-MS/MS) system. A total of 310 standard substances,
including 12 subclasses, were obtained from Sigma-Aldrich, Steraloids
Inc, and TRC Chemicals. To ensure the quality of the metabolomics
platform, three types of quality control samples were routinely used:
test mixtures, internal standards, and pooled biological samples. The
derivatized pooled quality control samples were injected every 14 test
samples (Supplementary Fig. 4a). The rawdata generatedbyUPLC-MS/
MSwereprocessedusing theQuanMETsoftware (v2.0,Metabo-Profile,
Shanghai, China) for peak integration, calibration, and quantification
of each metabolite. Through mass spectrometry-based quantitative
metabolomics, metabolomic features were annotated to metabolites
with Level 1 of confidence by comparing them to the standard
metabolites.

Metagenomic profiling
The study utilized the bioBakery meta-omics workflow to generate
taxonomic and functional profiles frommetagenomic data. To ensure
the use of high-quality microbial reads free from contaminants,
KneadData was employed for data filtering. Taxonomic profiling was
performed using MetaPhlan3, which utilizes a library of clade-specific
markers to provide pan-microbial profiling. Functional profiling was
conducted using HUMAnN3, which constructs a sample-specific
reference database from the pangenomes of the subset of species
detected in the samples by MetaPhlAn3. To quantify gene presence
and abundance on a per-species basis, sample reads are mapped
against this database. In caseswhere reads fail tomap at the nucleotide
level, a translated search is conducted against a UniRef-based protein
sequence catalogue to identify gene families (UniRef90s). The result-
ing abundance profiles are stratified by each species contributing to
those genes and further summarized into higher-level gene groups
such as KOs (KEGGOrthologs) and EggNOGs (Evolutionary Genealogy
of Genes: Non-supervised Orthologous Groups).

Preprocessing of taxonomic abundance profiles and functional
abundance profiles
To ensure the accuracy and reliability of statistical analysis on meta-
genomic data, it is essential to undertake stringent data filtering
measures to reduce data noise and enhance data quality. One crucial
step is the removal of low-abundancemicroorganisms or genes, which
exhibit low expression levels in the sample and may represent con-
taminants or batch effects in the environment. Similarly, entities with
no variance must be filtered out before analysis. This approach can
minimize the impact of technical noise or experimental errors,
resulting in improved reproducibility and greater stability of experi-
mental results.

Subsequently, a pseudo-count of 1×10−5 was added to avoid non-
finite values resulting from log10(0), and the abundances were log10-
transformed. To prepare functional profiles, such as EggNOG genes or
KO genes abundance profiles, the same preprocessing steps were
applied as for the species profiles, as previously described. However,
for these functional profiles, a maximum abundance cutoff of 1×10−6

was used, and a pseudo-count of 1×10−9 was added during the log
transformation. Finally, to obtain standardized values, the abundances
profiles were converted into z-scores.

Confounder analysis
We conducted an ANOVA-type analysis to determine the impact of
potential confounding factors on individual microbial species, relative
to the impact of IBD. A linear model was employed, which included
both IBD status and the confounding factor as explanatory variables
for species abundance. The analysis assessed the total variance within
the abundance of a specific microbial species relative to the variance
explained by disease status and the variance explained by the con-
founding factor. Overall, this methodology facilitated a more com-
prehensive assessment of the factors that influence the microbiome
and their potential impact on disease outcomes.

Microbial ecological analysis
Alpha diversity metrics, namely the Shannon and Simpson Indices,
were utilized to evaluate the diversity and evenness of species within a
community. Theprimary objectivewas to investigate thedifferences in
alpha diversity between IBD and control cases using the statistical tool
MMUPHin. In this analysis, the cohort was treated as the independent
variable, while potential confounding factors such as gender and age
were accounted for as random effects. This approach facilitated a
more precise evaluation of the relationship between IBD and alpha
diversity. Beta diversity was evaluated by computing the Bray-Curtis
distance, which quantifies the dissimilarity of microbial communities
across samples. To investigate the differences inmicrobial community
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composition between disease groups or cohorts, a permutational
multivariate analysis of variance (PERMANOVA) was employed using
999 permutations.

Differential abundance analysis to identify gutmicrobial species
and functional genes
The significance of differential abundance (DA) between different
groups was evaluated using the ‘coin’ package in R and a blocked
Wilcoxon test. Each species or genewas tested separately, and the data
were blocked by cohort to control for any confounding effects that
may have arisen from differences in cohort composition. To account
for variations in block size and composition, permutations were per-
formed within each block to obtain a conditional null distribution. To
account for multiple hypothesis testing, p-values were adjusted using
the FDRmethod.Additionally,weused ageneralized fold change (gFC)
approach to calculate the magnitude of differences between control
and IBD samples. KEGG Orthology Enrichment Analysis (KOEA) were
conducted for KO genes using the R package “clusterProfiler”54.

Identification of IBD-related differential metabolites
We identified differential metabolites based on two criteria: (1). False
discovery rate (FDR) < 0.0001, using nonparametric univariate
method (Wilcoxon rank-sum test). The P value for eachmetabolite was
corrected for FDR using the false discovery rate method (2). Sig-
nificance of the projected variable (VIP score) > 1 using OPLS-DA
model. OPLS-DA stands for Orthogonal Projections to Latent Struc-
tures Discriminant Analysis, which is a multivariate statistical method
used to analyze data with multiple variables. The significance of the
projected variable is ameasure of howwell ametabolite contributes to
the separation between the two groups being compared. The model
validationofOPLS-DAutilizes a permutation test, relyingon the “ropls”
R package (Supplementary Fig 4b, d).

Preprocessing of metabolomics profiles
Given the significant variability in metabolomics technology, proces-
singmethods, and output results among studies, we preprocessed our
metabolomics dataset to facilitate subsequent cross-cohort analysis.
To accomplish this, we utilized the MetaboAnalyst (5.0) compound ID
conversion program to standardize metabolite names from both
internal and external cohorts to a commonHMDB ID and identified 79
metabolites that were common across all four cohorts. Subsequently,
we applied a log2 transformation to the metabolite values and then
converted them into z-scores.

Iterative feature elimination
To improve the reliability and robustness of our model and reduce its
size and complexity, we used the Iterative Feature Elimination (IFE)
feature selectionmethod in Python55. First, we performed a differential
feature analysis to identify potential features. Subsequently, we uti-
lized the scikit-learn package to train a random forest (RF) model,
which was then subjected to stratified 10-fold cross-validation to dis-
tinguish between IBD and normal controls. We implemented stratified
10-fold cross-validation to allocate training and testing datasets
appropriately. Next, we applied the Iterative Feature Elimination (IFE)
step to enhance the performance of subsequent RFmodels. Finally, we
selected the top features from the best-performing model (the model
with the highest AURCO value) as the final features for modeling.

Multiomics statistical modeling workflow andmodel evaluation
Given the strong performance of the random forest model, an
ensemble machine learning approach, in the microbial data classifi-
cation, our machine learning model also employs this model. First, we
used 10-fold cross-validation within the cohort, a commonly used
technique in machine learning and statistical analysis. This involved
splitting the available data into 10 equal parts, training the model on

nine of these parts, and evaluating its performance on the remaining
part. In cohort-to-cohort transfer validation, we trained the classifiers
on a single cohort and tested them on all other cohorts. In leave-one-
cohort-out (LOCO) validation, we set aside the data fromone cohort as
an external validation set and trained themodel on the remaining data
from all other cohorts. We then used the same nested cross-validation
procedure as for cohort-to-cohort transfer validation. These methods
allowed us to assess the generalizability of ourmetagenomic classifiers
and their ability to perform well on data from multiple cohorts. The
Leave-One-Out Cross-Validation (LOOCV) involves removing one
sample (or observation) from the dataset, training the model on the
remaining data. We then used the removed sample as the validation
dataset to evaluate themodel’s performance.We repeated thisprocess
for each sample in the dataset, ensuring that each samplewas used as a
validation dataset exactly once. The data preprocessing, model
building, andmodel evaluationwere performed utilizing the following
R packages: SIAMCAT (v.1.14.0), caret (v.6.0.90), randomForest (v.
4.7.1.1), pROC (v.1.18.0), and ROCR (v.1.0.11).

Independent validation with external metagenomic cohorts
To ensure the reliability of metagenomic features as diagnostic mar-
kers for IBD, we validated our findings using three independent data-
sets from both the USA and China (Fig. 2a). We performed cohort-to-
cohort and leave-one-cohort-out (LOCO) analyses to evaluate the
strength and consistency of the identifiedmarkers, following the same
process used to construct the model in the discovery cohorts.

Validation of microbial biomarkers’ specificity in non-IBD
cohorts
Tominimize the risk of misdiagnosing IBD, we assessed the specificity
of metagenomic markers by analyzing the AUROC values of models
constructed using the most effective panel of features. Our analysis
included patients with non-IBD conditions such as colorectal cancer
(60 cases and 65 controls fromPRJEB27928,WirbelJ 2018 cohort), type
2 diabetes (45 cases and 39 controls from PRJEB1786, KarlssonFH 2013
cohort), and adenoma (47 cases and 61 controls from PRJEB7774,
FengQ 2015 cohort).

Validation of the specificity of metabolic biomarkers in non-IBD
cohorts
In order to validate the disease specificity of our selected feature
metabolites, we integrated four additional metabolomics cohorts,
which comprised one adenoma cohort (KIM ADENOMAS 202056,
n = 204), two CRC cohorts (KIM ADENOMAS 202056, n = 138 and
YACHIDA CRC 201957, n = 347), and one T1D cohort (KOSTIC INFANTS
DIABETES 201558, n = 103). All the data is sourced and available from
the study by Muller, E. et al. 59.

Statistics & Reproducibility
We did not employ a statistical method to predetermine the sample
size because this analysis is based on a comprehensive examination
of public data with a sufficient number of samples. To ensure the
accuracy of the diagnostic model, we only retained data from the
initial sampling, considering that some subjects were sampled at
different time points. Moreover, as country or region is a major
confounding factor, we only included subjects from the same
country in each dataset to minimize confounding effects. Addition-
ally, due to a significant imbalance between normal controls and IBD
cases in the LifeLD VilaAV 2018 cohort, we randomly excluded some
normal controls to maintain a ratio of 1:2 to 1:3 between normal
controls and IBD cases, enhancing the precision of the study. The
experiments were not randomized as statistical analyses relied on
disease status information. Data collection and analysis were not
conducted blind to the experimental conditions. Given the non-
normally distributed nature of microbial data, relevant statistical
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analyses were performed using non-parametric tests, such as the
Wilcoxon signed-rank test.

Data availability
The metagenomics data generated in this study have been deposited
in the China National Center for Bioinformation database under
accession code PRJCA017408. Additionally, all other sequencing data
analyzed in this work are available in public databases, including the
curatedMetagenomicData (PRJNA385949, PRJEB1220, PRJNA398089,
EGAS00001001704, EGAD00001004194, PRJEB27928, PRJEB1786,
PRJEB7774, https://bioconductor.org/packages/curatedMetagenomic
Data) and the European Nucleotide Archive (PRJNA400072,
PRJEB15371, https://www.ebi.ac.uk/). The metabolomics mass spectral
raw data generated in this study have been deposited inMetaboLights
under accession code MTBLS8713 (www.ebi.ac.uk/metabolights/
MTBLS8713). The metabolomics data from the external cohorts are
sourced from the supplementary materials of their respective
articles10. Themetabolomics data of non-IBD cohorts are sourced from
the study by Muller, E. et al. 59 (https://github.com/ borenstein-lab/
microbiome-metabolome-curated-data). The Human Metabolome
Database (HMDB) is a freely accessible electronic database that pro-
vides comprehensive information about small molecule metabolites
found in the humanbody (https://hmdb.ca/). Sourcedata are provided
as a Source Data file. Source data are provided with this paper.

Code availability
The softwarepackages used in this study are free andopen source. The
bioBakery tools (KneadData, MetaPhlAn3 and HUMAnN3) used to
process multi-omics sequencing data are available via http://
huttenhower.sph.harvard.edu/biobakery as source code and install-
able packages. The code and analysis scripts of this study are available
on Zenodo (https://doi.org/10.5281/zenodo.8432120).
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