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Validation of MSIntuit as an AI-based pre-
screening tool for MSI detection from
colorectal cancer histology slides
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Arnaud Fouillet1, Jakob Nikolas Kather 4,5,6 & Magali Svrcek3,6

Mismatch Repair Deficiency (dMMR)/Microsatellite Instability (MSI) is a key
biomarker in colorectal cancer (CRC). Universal screening of CRC patients for
MSI status is now recommended, but contributes to increased workload for
pathologists and delayed therapeutic decisions. Deep learning has the
potential to ease dMMR/MSI testing and accelerate oncologist decision mak-
ing in clinical practice, yet no comprehensive validation of a clinically
approved tool has been conducted. We developed MSIntuit, a clinically
approved artificial intelligence (AI) based pre-screening tool for MSI detection
from haematoxylin-eosin (H&E) stained slides. After training on samples from
The Cancer Genome Atlas (TCGA), a blind validation is performed on an
independent dataset of 600 consecutive CRCpatients. Inter-scanner reliability
is studied by digitising each slide using two different scanners. MSIntuit yields
a sensitivity of 0.96–0.98, a specificity of 0.47-0.46, and an excellent inter-
scanner agreement (Cohen’s κ: 0.82). By reaching high sensitivity comparable
to gold standard methods while ruling out almost half of the non-MSI popu-
lation, we show that MSIntuit can effectively serve as a pre-screening tool to
alleviate MSI testing burden in clinical practice.

Microsatellite Instability (MSI) is a tumour genotype characterised
by mismatch errors of repetitive DNA sequences, called micro-
satellites. It is caused by a deficiency in the DNA mismatch repair
(MMR) system, the process whereby errors that occur during DNA
replication are fixed. MSI occurs due to MMR malfunction and is
therefore a marker of mismatch repair deficiency (dMMR). Found in
approximately 15% of the colorectal cancer (CRC) population, MSI
plays a crucial role in the clinical management of CRC, with major
diagnostic, prognostic, and therapeutic implications. MSI is the
hallmark of Lynch Syndrome (LS), the most common form of

hereditary predisposition to develop CRC. MSI tumours are also
sensitive to immune checkpoint inhibitor treatments. In 2017, this
genomic instability phenotype became the first pan-cancer bio-
marker approved by the U.S. Food and Drug Administration (FDA),
allowing the use of pembrolizumab for patients with MSI unresect-
able or metastatic solid tumours1. Given all the implications of
MSI in patient care, many medical organisations such as the
National Institute for Health and Care Excellence (NICE) and the
National Comprehensive Cancer Network (NCCN), recommend
universal screening for MSI status of all newly diagnosed CRC2,3.
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dMMR/MSI can be diagnosedwith immunohistochemistry (MMR-
IHC) to detect loss of MMR proteins and/or bymolecular tests such as
polymerase chain reaction (MSI-PCR), or Next Generation Sequencing
(NGS). MMR-IHC testing requires excellent tissue fixation, slide pre-
paration time, an experienced pathologist, and consumes tissue
material which can be in very limited supply for small tumours. MSI-
PCR testing requires specific infrastructure and has generally a longer
turnaround time which can delay therapeutic decisions, while NGS
remains too expensive to be used routinely. As the number of bio-
markers has steadily increased over the last two decades, MMR-IHC
and MSI-PCR testing contribute to an ever-increasing workload for
pathologists and technicians4. Given the global shortage of patholo-
gists worldwide, leveraging AI could ease MSI testing burden by
reducing the workload of pathologists5. In a 2019 study, we showed
that deep learning could accurately detect MSI from H&E slides in
CRC6. Since then, several studies have presented deep learning-based
MSI classifiers from H&E slides in CRC, confirming its potential to
complement standard MSI screening methods7–9.

Despite recent advances, several issues are still preventing AI-
based tools for MSI prediction from being used in clinical practice.
Most existing studies focus on the area under the ROC curve (AUROC)
as their main performance metric. Although useful to compare per-
formances of several machine learning models, this metric can hide a
severe lack of generalisation and is not relevant to clinical practice, as
pointed out by Kleppe10. Here, we refer to model generalisation as the
ability of the model to yield consistent sensitivity and specificity in

different independent validation cohorts (e.g. with different ethni-
cities), under different clinical settings (e.g. digitised with different
scanners). The AUROC measures the ability of the model to correctly
rank patients. In our case, a high AUROCwouldmean thatMSI patients
have higher scores (on average) thanMSS patients. Therefore, shifting
all scoreswithout changing the orderwould result in the sameAUROC.
However, in a clinical settingwhere a threshold is selected andpatients
are classified aseither negative or positive, shifting scoresmay result in
large changes in howpatients are classified, alteringmodel’s sensitivity
and specificity and leading to misdiagnosis. To our knowledge, no
studies evaluating performance of AI-based tools to predict MSI from
histology slides have solved the issue of model generalisability in such
awayas to enable its use in clinical routine. In this study,wepropose to
focus on sensitivity, specificity and negative predictive value to eval-
uate diagnostic accuracy of MSIntuit™ CRC (MSIntuit), an AI pre-
screening solution that enables an early rule-out of non-MSI patients
using H&E slides from primary resected colorectal tumour. MSIntuit
outputs either “MSS-AI” (no further testing needed) or “Unde-
termined” (standard MSI test required) (Fig. 1a). Importantly, an MSI
pre-screening tool used as a rule-out test must have a very high sen-
sitivity. We therefore propose amethod that guarantees the sensitivity
is maintained at new pathology laboratories.

Self-supervised learning (SSL) has emerged in the computer vision
field as a powerful method to learn rich vector representations from
images. SSL consists of training a feature extractor to solve a “pretext
task”, that is a task that does not require human annotations, as

Fig. 1 | Clinical workflow and blind validationmethodology. a Clinical workflow
ofMSI screening withMSIntuit. Using a routine H&E slide of CRC,MSIntuit outputs
if the patient is likely to be MSI (Undetermined) and should receive a confirmatory
test (MMR-IHCand/orMSI-PCR), or not (MSS-AI). By ruling out a significant fraction
of non-MSI patients, the workloadof pathologists is reduced and theMSI screening
is accelerated. b H&E slides of 600 consecutive resected CRC specimens were
collected and digitised on two scanners, Phillips UFS and Ventana DP200, resulting
in two sets of slides: MPATH-UFS and MPATH-DP200 (step 1). For each cohort, the

same pipeline was then applied: an automated quality check discarded slides that
did not match criteria (large blurry regions, too few tumour). Slides with large
blurry regions were rescanned (step 2). Next, 30 dMMR/MSI WSIs were selected
randomly and used to define an appropriate threshold (step 3). Finally, MSIntuit
prediction was performed on the remaining slides using the threshold defined in
the aforementioned step to classify patients into two categories: MSS-AI and
Undetermined (step 4).
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opposed to traditional supervised learning. Such tasks can be recon-
structing a part of the image which is masked, or producing similar
representations for two augmented versions of the same image11,12.
MSIntuit leverages a featureextractor tailored for histology, trainedon
four million colorectal cancer pathology images with SSL.

In thiswork, we performa blind clinical validation ofMSIntuit on a
large external cohort of 600 consecutive resected CRC cases. We find
that using MSIntuit as a pre-screening tool can rule out almost half of
the non-MSI population, thus easing MSI screening. Our tool includes
an automatic slide quality check and addresses the issue of defining an
operating threshold with a calibration step, making it directly applic-
able to clinical practice. We also address key questions for use in
clinical routine by studying MSIntuit’s intra and inter scanner varia-
bility, as well as inter-block variability.

Results
Quality check and calibration as preliminary steps for a clinical-
ready AI-based tool
An automated quality check (QC) was first performed on MPATH-
DP200 and MPATH-UFS cohorts to set aside slides that did not meet
the tool requirements. This step allows us to automatically detect
slides that were not properly scanned and contained large blurry
regions, which could impact the final prediction score. Interestingly,
these blurry slides were not noticed by the pathologists because it was
only visible at a high magnification level (Supplementary Fig. 1). The
QC was able to identify these slides quickly, without the need for
manual examination. As a result, 3% of MPATH-DP200 slides and 2% of
MPATH-UFS slides were rescanned. The second step of QC allowed to
detect slides with too little tumour tissue (<6 mm2): 5% and 2% of the
slides were discarded on MPATH-DP200 and MPATH-UFS cohorts,
respectively. As a result of this preprocessing, we obtained n = 537
(MSI: 83) and n = 554 (MSI: 86) slides for MPATH-DP200 and MPATH-
UFS cohorts respectively.

Any deep learning system in pathology requires a threshold to
convert continuous prediction values into actionable categories. To
address the issue of variations in data acquisition protocols that may
impact deep learning model prediction distributions, we used a cali-
bration strategy to ensure a sensitivity between 0.93 and 0.97 was
obtained (see methods section”Calibration step”, Fig. 1b). This step
enabled MSIntuit to reach high sensitivity, which is critical in a clinical
setting, without sacrificing MSIntuit’ specificity, which is important to
guarantee the tool’s clinical utility. This process led us to choose a
threshold of 0.20045 on the MPATH-UFS dataset and 0.20202 on the
MPATH-DP200 dataset. The similarity of the two thresholds suggests
that the variations between UFS and DP200 scanners did not mean-
ingfully impact MSIntuit predictions, despite the model having been
trained on data collected using another scanner (Leica Aperio).

MSIntuit performance was boosted using self-supervised
learning, allowing it to rule out almost half of the non-MSI
population with high sensitivity
During model development, we found that using a feature extractor
pre-trained with SSL on millions of histology tiles yielded a perfor-
mance improvement. To illustrate this, we compared this approach
against two other feature extraction approaches, keeping the other
steps of MSIntuit pipeline unchanged (matter detection, QC, …, see
Methods section). The first approach consisted of using an extractor
pre-trained on ImageNet dataset, while the second consisted of using
an extractor pre-trained on 100,000 colorectal cancer images to
identify nine tissue classes13. Although ImageNet only contains natural
images, the first method has been used widely in the computational
pathology community because there is no dataset of histology images
equivalent to ImageNet in terms of size (1.2 million images) and
annotation diversity (1000 classes). The second approach has the
advantage of leveraging a feature extractor directly trained on

colorectal cancer images. However, this feature extractor has seen a
lower number of distinct images during training, whichmay impact its
representation capacity. We also compared MSIntuit against iDaRS, a
recently published method which finetunes an extractor pre-trained
on ImageNet to predict MSI using an innovative weakly supervised
approach8. MSIntuit’s approach largely outperformed the other
methods by more than eight AUROC points on PAIP, MPATH-DP200
andMPATH-UFS (Supplementary Tables 1, 2). Including frozen slides in
the training set and applying ourmodel to the whole-slide (not just the
tumour content) also yielded small performance improvements
(Supplementary Tables 3, 4).

Following QC and calibration, predictions of MSI status were
generated from the histology slides and resulted in a sensitivity of 0.98
(95% CI: 0.95–1.0), an NPV of 0.99 (0.98–1.0), and a specificity of 0.46
(0.42–0.50) on the MPATH-DP200 cohort, and a sensitivity of 0.96
(0.91–0.98), an NPV of 0.98 (0.97–0.99), and a specificity of 0.47
(0.43–0.51) on the MPATH-UFS cohort (Tables 1, 2). On both cohorts,
MSIntuit was therefore able to correctly identify the majority of MSI
patients while ruling out almost half of the non-MSI population and
enriching the remaining population to screen in MSI patients by 60%.
This shows the robustness of our calibration approach and that our
model generalises well on an independent cohort and across two dif-
ferent scanners not used during training.

We assessed the ability of MSIntuit to detect unusual isolated
losses of PMS2 and MSH6 mutations, which were found to cause dis-
cordance between MMR-IHC and PCR-MSI14. MSIntuit reached a sen-
sitivity of 0.91 (respectively 0.91) and 0.67 (respectively 0.72) on
MPATH-DP200 (respectively MPATH-UFS) to detect PMS2 and MSH6
losses, respectively (Supplementary Table 5). Because less than ten
cases displayed thesemutation patterns, further evaluationwith larger
sample sizes should be carried out to confirm these numbers.

To assess the importanceof theQC,we looked at theperformance
of MSIntuit on MPATH-DP200 after removing this step. Without dis-
carding the slides with too few tumour, performance decreased to an
AUROC of 0.86, a sensitivity of 0.96, a specificity of 0.45 and a NPV of
0.98 (Supplementary Table 6). No significant difference in perfor-
mance was observed when the slides with large blurry areas were not
digitised again, nevertheless, we observed small differences in score.
Median prediction for blurry (respectively rescanned) slides was of
0.29 (respectively 0.21) for MSS cases and 0.55 (respectively 0.56) for
MSI cases (Supplementary Fig. 2).

MSIntuit reached excellent agreement on two scanners, and is
repeatable across multiple rescanning of the same slide
Several studies have shown that different scanners induce variations
on the digital images generated, which can hamper the development
of computational pathology (CP) tools15,16. Given that various scanner
models are used across medical centres, it is crucial that CP tools can
handle these data acquisition variabilities. Results presented in the
previous section show that MSIntuit generalises well to scanners not

Table 1 | Confusion matrix of MSIntuit on MPATH-
DP200 cohort

MSS-AI Undetermined

non-MSI 208 246

MSI 2 81

Table 2 | Confusion matrix of MSIntuit on MPATH-UFS cohort

MSS-AI Undetermined

non-MSI 218 250

MSI 4 82
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used during model training. To further study this potential issue, we
assessed the impact of digitisation variations on MSIntuit by compar-
ing the results obtained on MPATH-DP200 and MPATH-UFS cohorts,
whichwere composedof the exact same slides digitisedwith these two
different scanners.Wefirst compared the results obtainedon the exact
same set of slides across the two scanners, and found that model
performanceswerevery closewith an identicalAUROCof0.88 (95%CI:
0.85–0.91) (Fig. 2a). Additionally, correlation of predictions across the
two scanners was very strong with a Pearson’s R of 0.98 (p <0.001,
Fig. 2b), with an overall mean inter-scanner score difference of 0.01
(95% CI: −0.06–0.09) (Supplementary Fig. 3). Interestingly, the corre-
lation was substantially lower using the machine learning approaches
mentioned in the previous section (ImageNet: R = 0.82, NCT-CRC-
100K: R =0.70, iDaRS: R = 0.58) (Supplementary Fig. 4). As MSIntuit
feature extractor was trained specifically to produce similar repre-
sentations under heavy data augmentations, we believe that this could
explain the enhanced robustness ofMSIntuit to scanner variations.We
measured the agreement of the categories output by MSIntuit on the

two scanners: an almost perfect agreement was observed with a
Cohen’s Kappa of 0.82. As MSIntuit also outputs one score per tile
(representing the likelihood of the tile belonging to a MSI slide), we
further assessed the model’s robustness to the scanner at this finer
level (Fig. 2d). 272,527 tiles of 20 slides sampled randomly (MSI: 10,
non-MSI: 10) were used and a score was generated for each of them on
the two scanners. A very strong correlation was observed with a
Pearson’s R of 0.92 (p <0.001, Fig. 2e). Finally, we assessed the intra-
scanner reliability of our tool by looking at the process of digitisation:
30 slides were digitised 8 times on the UFS scanner. Agreement of the
tool across the different digitisations was almost perfect with a Fleiss’
Kappa of 0.82 (Fig. 2c).

MSIntuit results were consistent across slides obtained from
different regions of the tumour
Since several slides are usually available for each patient that may
highlight different aspects of the tumour, some criteria are needed to
ensure that the slide processed by the tool is representative of the

Fig. 2 | Robustness to scanner variations. a ROC curves of MSIntuit performance
onMPATH-DP200 andMPATH-UFScohorts. To compareperformanceon the exact
same set of patients, we kept the subset of patients that passed QC on the two sets
of slides (n = 536), and obtained an AUROC of 0.88 on both scanner, b Correlation
of the predictions on the same slides on the UFS/DP200 scanners resulting in
Pearson’s correlation of 0.98 (two-sided t test p <0.001), c Prediction distribution
for 30 slides, where each slide was digitised 8 times with the UFS scanner. Fleiss’
Kappa of 0.82 was obtained, showing an almost perfect agreement of the tool
between the different digitisation of the same slide.dHeatmaps showingMSI score

for each 112 × 112 μm tile for one representative slide digitised with two scanners,
e Correlation of tile MSI scores on DP200 and UFS scanner. MSIntuit outputs a
score for each tile, hence we also analysed the concordance of tile scores for a
subset of 20 slides digitised with the two scanners (n = 272,527 tiles). A Pearson’s
correlation of 0.92 was obtained (two-sided t test p <0.001). The colormap
representing the spatial density of points indicates that most tile scores were close
to the diagonal, showing that tile scores were highly concordant. Source data are
provided as a Source Data file.
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tumour. Guidelines are detailed in the Supplementary methods. We
showed in the previous section that good performance was obtained
with these guidelines. We further explored the consistency of our tool
with respect to the region of the tumour processed by digitising
additional slides from one to four other blocks for a subset of 200 out
of the 600 tumours of MPATH-DP200 cohort. Average difference of
predictions for different slides of the same tumour was low for both
non-MSI and MSI patients with a root mean square error of 0.04 and
0.07, respectively (Fig. 3b), indicating that the MSIntuit prediction
score is consistent between tumour blocks. For the same set of 200
tumours, we also assessed which slide of the tumour should be
selected to maximise MSIntuit performance and found that selecting

the slide with the lowest amount of mucin and largest amount of
tumour resulted in a significantly better specificity (+15 points,
p <0.001 and +10 points respectively, p < 0.05, Fig. 3c).

MSIntuit provides interpretable results for pathologists
MSIntuit outputs a score for each tile, enabling to retrieve the regions
of interest found by the algorithm. Heatmaps and most predictive
regions of two representative slides of MPATH-DP200 are provided in
Fig. 4. Five pathologists (T.G., A.A., S.C., J.R., D.E.) reviewed the 400
tiles most predictive of MSI (n = 200) and non-MSI (n = 200) statuses,
blinded to their scores (more information in Supplementarymethods).
We found that themajority of tiles predictive of bothMSI and non-MSI

Fig. 3 | Impact of slide selection on MSIntuit. a Impact of tumour heterogeneity
onMSIntuit prediction on a representative non-MSI case. Left: 3 slides picked from
different blocks of the same tumour. The number on the bottom right corner of
each slide corresponds to the tool’s prediction for the given slide. Middle: seg-
mentation maps using a model trained to categorise tissue into one of the 8 fol-
lowing categories: adipose (ADI), debris (DEB), lymphocytes (LYM), mucin (MUC),
smooth muscle (MUS), normal colon mucosa (NORM), cancer-associated stroma
(STR), colorectal adenocarcinoma epithelium (TUM). Right: number of tiles
belonging to each category. The slide with the largest amount of tumour was the
closest to 0; as this patient is non-MSI, this slide gave the best prediction.
b MSIntuit’s predictions variability due to using different slides available for the
same patient, for 200 patients with one to four additional slides of the tumour
available. Root mean squared errors (RMSE) of slide prediction and the average of

the corresponding patient’ slides were computed and resulted in an average RMSE
of 0.04 and 0.07 for non-MSI andMSI patients respectively. Center corresponds to
themedian, lower, and upperhingers to the first and third quartiles, whiskers to the
hist/lowest value no further than 1.5 × IQR (inter-quartile range). c Difference of
sensitivity/specificity when selecting slide with the highest and lowest amount of
each tissue typewas computed for the 200 tumours withmultiple slides. Choosing
the slidewith the lowest amount ofmucin and largest amount of tumour resulted in
a significantly better specificity (+15 points, p <0.001 and +10 points respectively,
p <0.05). Other categorieswerenot significantly associatedwith a better sensitivity
or specificity. P-values were computed using a McNemar test of homogeneity. No
adjustment for multiple comparisons were made. Source data are provided as a
Source Data file.
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contained tumour cells, with MSI: 70%, non-MSI: 60%. Tiles predictive
of MSI were associated with inflammation (MSI: 50%, non-MSI: 13%,
p <0.001) and mucin (MSI: 28%, non-MSI: 6%, p <0.001). Tiles pre-
dictive of non-MSI were associated with normal glands (MSI: 4%, non-
MSI: 26%, p < 0.001) (Fig. 5a). These observations are in line with the
histological patterns previously described as associated with MSI
tumours, as well as the interpretability analyses of deep learning
models predicting MSI7,8,17,18. Interestingly, although the presence of
mucin was predictive of MSI according to MSIntuit, we showed in the
previous section that it could also cause false positive results. This is
also in line with the findings frommultiple studies which reported that
mucinous tumours were represented in both non-MSI and MSI
tumours but were over-represented in the latter subgroup17,19.

Regions predictive of MSI also included inflammation outside the
tumour area (25%), which may explain why better performance was
obtained considering the whole-slide and not just the tumour content.

A pathologist (D.E.) thoroughly reviewed the slides of the fourMSI
patients missed by our tool. Interestingly, these cases had a well dif-
ferentiated glandular architecture and did not display any of the pat-
terns known to be associated with MSI (Fig. 5b).

To better quantify the information brought by our tool against
patterns known to be associated with MSI, we further compared the
performance of MSIntuit against MSPath, a scoring system including
clinical and pathological variables (age at diagnosis, anatomical site,
histologic type, grade, presence of Crohn-like reaction, presence of
tumour infiltrating lymphocytes)20. On a subset of 202 cases from
MPATH-DP200 cohort, MSIntuit outperformed MSPath with an
AUROC of 0.88 (MSPath: 0.75, Fig. 5c). The two algorithms both
reached a sensitivity of 0.97, but MSIntuit reached a better specificity
of 0.45 (MSPath: 0.40). More information about the comparison
assessment and features distribution can be found in the Methods
section “Comparison of MSIntuit with MSPath scoring system” and
Supplementary Table 7. Interestingly, both MSPath and MSIntuit were
found to be statistically significant predictors of the MSI status in
multivariate analysis (Supplementary Table 8). A simple dichotomic
classifier combining both scores yielded a sensitivity of 0.95 and a

specificity of 0.67 (Supplementary Table 9). This shows that MSIntuit
brings additional information to a scoring system using clinical and
pathological features known to be associated with MSI.

Discussion
In this study, we reported the development and blind validation of
MSIntuit, an AI-based tool that can be used in clinical practice for MSI
pre-screening from routine H&E slides of CRC patients. Used as a pre-
screening tool, MSIntuit can rule out almost half of the non-MSI
population while correctly classifying more than 96% of dMMR/MSI
patients, on par with current gold standard methods (92–95%).

The major strength of the study is the blind validation of the
model on 600 consecutive CRC cases diagnosed across nine different
pathology labs in the span of two years, thus reducing the risk of
selection bias. Most importantly, prediction and performance assess-
ment procedures were pre-specified and the validation was performed
in a one-shot fashion to avoid the risk of overfitting. Finally, MSI-PCR
was used to confirm doubtful cases of MMR-IHC to ensure the accu-
racy of the dMMR/MSI labels and validationwas done on two different
scanners not used during model training. Altogether, we believe this
demonstrates the strength of our validation, as well as the robustness
of MSIntuit.

A key technical strength of the approach is the use of SSL to
extract features from the histology images. Using this method, we
were able to train a feature extractor tailored for histology on four
million CRC histology images without the need for any labels. As
already pointed out by previous studies, we observed that such
methods were more robust to scanner variations and largely out-
performed feature extractors pretrained on ImageNet dataset for MSI
prediction task, an approach still widely used in medical imaging21–23.

We also showed that MSIntuit outperformed MSPath, a scoring
system which uses clinical and pathological variables known to be
associated with MSI. It is worthy to note that this system is subject to
interobserver variability and requires a time-consuming assessment of
several histological features by pathologists, which explains why it is
not used in clinical practice given their highworkload. Importantly, the

Fig. 4 | Top: MSIntuit prediction heatmaps showing MSI score for each
112 × 112 μm tile on representative non-MSI (left) and MSI (right) cases.
Bottom: Corresponding most predictive regions of non-MSI (left) and MSI regions

(right). Regions predictive of MSI displayed poor differentiation, tumour infiltrat-
ing lymphocytes while regions predictive of non-MSI were well differentiated
tumour glands.
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combination of MSIntuit and this system yielded a performance
improvement, suggesting that MSIntuit brings additional information
to variables known to be associated with MSI.

With recent In-vitro Diagnostic ‘Conformité Européenne’ (CE-IVD)
certification, this study paves the way for MSIntuit use in clinical rou-
tine. A key objective of this study was to ensure that the MSIntuit tool
could be deployed in clinical centres. To examine the impact of using
different scanners at different sites, we digitised 600 slides with two
different scanners. We found that MSIntuit was robust to these

variations and reached almost perfect agreement and similar perfor-
mances on both DP200 and UFS scanners. To ensure that the sensi-
tivity of theMSIntuit toolwouldbemaintained across eachnewclinical
centre, we developed a calibration approach outperforming existing
methods for MSI prediction18. We found that setting a clinically rele-
vant operating threshold could be done by using 30 MSI slides.

For pathology labs pressured to support an ever-increasing
number of biomarkers to screen for while facing a growing shortage
of pathologists, the advent of AI-enabled solutions that ease and

Fig. 5 | Model interpretability and comparison with a clinico-pathological MSI
scoring system. a Proportion of histology patterns associated with non-MSI and
MSI according to MSIntuit. Four pathologists reviewed the 400 tiles most pre-
dictive of MSI (n = 200) and non-MSI (n = 200) statuses, blinded to their scores.
Majority of tiles predictive of both MSI and non-MSI contained tumour cells, with
MSI: 70%, non-MSI: 60%. Tiles predictive ofMSI were associated with inflammation
(MSI: 50%, non-MSI: 13%, p <0.001) and mucin (MSI: 28%, non-MSI: 6%, p <0.001).
Tiles predictive of non-MSI were associated with normal glands (MSI: 4%, non-MSI:
26%, p <0.001). P-values were computed using a two-sided test for proportions

based on normal (z) test. No adjustment for multiple comparisons were made.
b Top: Example slide of anMSI patient which was incorrectly classified by MSIntuit
(score: 0.13, bottom 10%). Middle: The slide displayed well differentiated regions,
without any histological patterns known to be associated with MSI. Bottom: cor-
respondingMSIntuit heatmap. c Performance comparison of MSIntuit andMSPath
on a subset of 202 patients from MPATH-DP200 cohort. MSIntuit (respectively
MSPath) reached an AUC, Sensitivity and Specificity of 0.88, 0.97, 0.45 (respec-
tively 0.75, 0.97, 0.40). Source data are provided as a Source Data file.
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optimise biomarker screening seems necessary. Using MSIntuit in
clinical routine, pathologists could rapidly rule out almost 50% of non-
MSI cases prior to any standardMSI testing technique. With MMR-IHC
turnaround time varying between two to seven days in different clin-
ical settings and MSI-PCR results delivery that can take more than a
week, pre-screening for non-MSI patients with an AI-enabled solution
in a few hours holds a real potential of time-savings, both for pathol-
ogists and patients. This approach will have a direct impact on
oncologist decision making and help bring the best treatment to
patients sooner. It could also optimise costs and organisation of MSI
testing in pathology labs, especially for countries applying universal
MSI screening. As highlighted by Kacew et al., a medico-economic
evaluation of such AI-enabled solutions should be carried out to con-
firm the potential savings in cancer management costs24.

Our study has several limitations. MSIntuit was developed and
validated solely on slides from surgical specimens. With the recent
promising results of NICHE-2 trial, neoadjuvant immunotherapy may
become the standard of care for CRC patients harbouring MSI phe-
notype, thus making dMMR/MSI diagnosis on biopsies ubiquitous25.
Given that MMR-IHC (four immunostainings) and PCR-MSI consumes
tissue, using such tools on biopsies would be of particular interest,
especially in the case of unresectable CRC where tissue from biopsy
specimens can be in very limited supply. While MSIntuit has not been
validated on biopsies yet, Echle et al. reported good performance
when transferring a model trained to identify MSI on resection speci-
mens on a cohort of biopsies18. Although suggesting that MSIntuit
could also work on biopsies, further validation on these specimens
must be carried out to confirm this hypothesis. At last, MSIntuit cali-
bration requires 30 MSI slides, which can sometimes be difficult to
obtain in small centres. Albeit routinely used formanymedical devices,
calibration might hinder clinical deployment of such tools. Further
work needs to be carried out to ensure AI models are agnostic to
variability in data acquisition across centres.

With the increasing number of biomarkers to be routinely tested
in clinical practice, the need for tools that can both ease and ramp up
biomarker testing is paramount. Our tool represents the first step
towards the development of AI-based solutions that could identify
actionable biomarkers from a single H&E slide used in clinical routine,
bringing us closer to reaching the full potential of precision medicine.

Methods
Ethical compliance
All experiments were conducted in accordance with the General Data
Protection Regulation (GDPR) and the French laws and regulations.
Medipath data subjects have generally been informed for the re-use of
their samples anddata collectedduring the care for researchpurposes.
Medipath has obtained an approval of the “Ministere de l’Enseigne-
ment Superieur, de la Recherche et de l’Innovation (MESRI)” for the
storage of samples for research purposes and has nominatively rein-
formed patients for the re-use of their data for the experiments
described in this study. Patients were not compensated for their par-
ticipation in the study.

Cohort description
Three cohorts were used in our study: a discovery cohort to train our
model, an independent development cohort to gain insights about the
model performance, and an independent validation cohort, blinded to
patients’MSI statuses, to assess the performance of MSIntuit in a one-
shot fashion. Inclusion criteria for all cohorts were as follows:
unequivocal histological diagnosis of CRC, available histological slides
of resected specimens from the primary tumour, available MSI status.
The discovery cohort, denoted TCGA here, is a multicentric cohort of
859 whole slide images (WSI) from 434 patients from the Colon Ade-
nocarcinoma project of TCGA (TCGA-COAD) diagnosed in 24 US
centres26. 427 Formalin-Fixed Paraffin-Embedded (FFPE) and 432 snap

frozen H&E-stainedWSIs from these patients associated with MSI-PCR
status were used to develop ourmodel. TCGA slides were digitised at a
microns per pixel resolution of 0.25 or 0.5. The Pathology AI Platform
(PAIP) cohort was used as a development set and comprised colorectal
tumour samples of n = 47 patients, collected from three centres in
South Korea27. PAIP slides were digitised at a MPP resolution of 0.25.
TheMSI status of these patientswas determinedusingMSI-PCR assays.
The validation cohort used for the blind validation consisted of 600
anonymised FFPE H&E WSIs of 600 consecutive resected CRC diag-
nosed at Medipath pathology laboratories (France) in 2017 and 2018.
Patients were originally treated in more than ten centres in France.
Tumour samples from these patients were sent to Medipath labora-
tories. For each patient, one H&E slide was chosen following our
guidelines (Supplementary methods). Slide samples were prepared in
one single technical platformusing the workflowof clinical routine. All
slides were digitised at a MPP resolution of 0.25 using two scanners,
PhilipsUFS (Philips, Amsterdam, TheNetherlands) andVentanaDP200
(Roche Diagnostics GmbH, Mannheim, Germany), leading to two sets
of 600 WSIs referred to as MPATH-UFS and MPATH-DP200. dMMR
status was assessed using MMR-IHC for the four MMR proteins, and
confirmed by MSI-PCR for n = 33 indeterminate cases (doubt in MMR-
IHC interpretation or suspicion of Lynch Syndrome). Clin-
icopathologic features of these three cohorts can be found in Sup-
plementary Table 10.

Preprocessing of whole-slide images
A preprocessing pipeline was applied to reduce dimensionality and
clean the data before training any model (Fig. 6a). The first step of
our pipeline consisted of detecting the tissue on the WSI: a U-Net
neural network was used to segment part of the image that contains
relevant matter, and discard artefacts such as blur, pen marker etc.,
as well as the background28. U-Net is a fully convolutional neural
network architecture widely used for biomedical image segmenta-
tion tasks. This U-Net network was previously trained on 460 H&E
and IHC slides from an internal dataset where tissue was manually
annotated, and validated on 115 slides with a Dice score of 0.96. This
network was applied on images of size 2048 × 2048 μm (512 × 512 px,
at a resolution of 4 MPP) extracted from the WSI. The second step
consisted of splitting the slide into smaller images, called “tiles”, of
112 × 112 μm (224 × 224 px, at a resolution of 0.5MPP). At least 50% of
the tile had to be detected as foreground by the U-Net model to be
kept. For training, a maximum of 8,000 tiles were extracted from
each slide while all tiles were extracted for inference. The final step
consisted of extracting features from each tile: 2048 relevant fea-
tures were extracted using a wide 50-layer residual net (ResNet50)
network (the bottleneck number of channels is twice as large in
every block) trained in a self-supervised fashion with Momentum
Contrast (MoCo) v212,29. This network was trained on four million
tiles from the TCGA-COAD dataset, with heavy data augmentation
(random cropping, random flips, colour jitter, random grayscale,
gaussian blur), and without using any labels. Feature extractor
weights were frozen both for inference and training.

Performance metrics
The clinical value of the models was evaluated using sensitivity, spe-
cificity, and negative predictive value (NPV) metrics. Raw performance
of the models was also evaluated using the AUROC. Confidence
intervals were generated using bootstrapping with 1000 repetitions.

Automated quality check
Automated quality check (QC) consisted of two steps: detection of
large artefact regions and detection of tumour regions (Figs. 1b, 6b).
For the first step, artefact regions such as blurry areas were discarded
thanks to the U-Net described in the previous section Preprocessing of
whole-slide images. The tissue mask generated by the U-Net was then
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briefly examined by a technician to check if there were regions with
large artefacts, potentially leading to a newdigitisation of the slide. For
the second step, a tumour detection model was applied to determine
which tiles were tumoural and which tiles were not. This model is a
multilayer perceptron (MLP)withonehidden layer of 256neuronswith
Rectified Linear Unit (ReLU) activation, trained using the features
generated at the end of the preprocessing step (see Preprocessing of
whole-slide images) of 642,122 tiles from50 tumour annotated slides of
TCGA-COAD. A minimum number of 500 tumour tiles, which corre-
sponds to approximately 6 mm2, was set as the cut-off to pass QC,

based on empirical evidence obtained from the development cohorts
(Supplementary Fig. 5).

Model description
A variant of the Chowdermodelwas trained on the discovery cohort to
predictMSI status (output) from slide features (input) generated at the
end of the preprocessing step (see Preprocessing of whole-slide ima-
ges, Fig. 6c)30. The first layer of Chowder is an MLP with 128 hidden
neurons and sigmoid activation that was applied to each tile’s features
to output one score. The ten top and bottom scores were then

Fig. 6 | MSIntuit processing pipeline. a Whole slide image preprocessing: first, a
U-Net neural network is used to segment part of the image that contains tissue, and
discard the background as well as artefacts. The detected tissue is then split into
smaller images called tiles, of 224 × 224 pixels. For each tile, a feature vector of size
2,048 is then extracted using a wide ResNet50 pre-trained with self-supervised
learning on 4 million colon cancer images. b Tumour detection quality check:
second, aMLP previously trained to distinguish tumour fromnormal tiles is used to

identify tumour tiles, using the features generated in step a) as input. If the number
of tumour tiles detected is above 500, the quality check is passed, otherwise the
slide is discarded. c MSI prediction with Chowder: third, the features generated in
step a) are used of anMLP that assigns a score to each tile. The ten top and bottom
scores are concatenated and used as input for another MLP that aggregates the
scores to output a prediction for the slide. Source data are provided as a Source
Data file.

Article https://doi.org/10.1038/s41467-023-42453-6

Nature Communications |         (2023) 14:6695 9



concatenated and fed into anMLPwith 128 and 64 hidden neurons and
sigmoid activations. The model was trained with binary cross entropy
as loss, with weights balanced with respect to the prevalence of MSI in
the discovery set.

Calibration step
To address the issue of variations in data acquisition protocols (e.g.
stainers or scanners) that may impact deep learning model prediction
distributions, we used a calibration step. This step ensured that
MSIntuit yielded a clinically relevant sensitivity without sacrificing the
tool’s specificity. For both MPATH-DP200 and MPATH-UFS, 30 slides
from the same randomly selected dMMR/MSI patients were used to
define the operating threshold leading to 1/30 misclassification
(meaning, one slidewas classified as “MSS-AI”, and 29were classified as
“Undetermined”). The impact of the slide selection during the cali-
bration step is reported in Supplementary Table 11. The number of
slides used in this calibration step was chosen after a sensitivity ana-
lysis on several internal datasets showed that 30 slides were sufficient
to ensure with a high likelihood that the sensitivity of MSIntuit on the
validation set was between 0.93 and 0.97. In clinical practice, the
calibration step is handled by MSIntuit’s technical team, and is a pre-
requisite for any installation in a new pathology laboratory.

Tool’s consistency across slides from different blocks of the
same tumour
For a subset of 200 patients of MPATH-DP200 dataset, one to four
other tumour slides coming from different blocks of the same surgical
resectionwere digitised, resulting in a total of 398 additional slides.We
characterised the tumourmorphology of these slides using a ResNet18
model from theTIAToolbox library trained to classify each tile into one
of the following categories: adipose tissue, debris, lymphocytes,
mucus, smooth muscle, normal colon mucosa, cancer-associated
stroma, colorectal adenocarcinoma31. We then assessed the variations
in MSIntuit predictions according to the slide chosen to be processed
by the tool. We also determined how each tissue type category
impacted MSIntuit prediction, and which kind of slide was preferable
to be selected for MSIntuit processing.

Statistical analyses
Pearson’s correlation coefficient was used to assess the correlation of
MSIntuit’s scores on the two scanners. Cohen’s kappa statistic was
used to assess the agreement between MSIntuit’s predicted classes
across the two scanners and the patients’ MSI status. Fleiss’ Kappa
statistic was used to study the agreement of MSIntuit’s predicted
classes for the same slides digitised eight times and patient’s MSI sta-
tus.McNemar’s test wasused to assess the significance of performance
difference by selecting in each tumour, the slide with highest and
lowest amount of each tissue category. All tests were two-tailed and
p-values < 0.05 were considered statistically significant.

Comparison of MSIntuit with MSPath scoring system
We compared the performance of MSIntuit against MSPath on cases
fromMPATH-DP200 cohort. MSPath is a scoring system thatmeasures
the probability of a tumour to be MSI using the following clinico-
pathological variables: the age at diagnosis, the anatomical site, the
histologic type, the grade, the presence of Crohn-like reaction and the
presence of tumour infiltrating lymphocytes (TILs)20. The age at diag-
nosis, the anatomical site, the histologic type and the grade were
retrieved from clinical data. Cases with one of these variables missing
were excluded, leaving 202 cases for the analysis. The assessment of
Crohn-like reaction and TILs was divided between three pathologists
(D.E. and two experts: K.v.L,M.S) andwas conducted followingMSPath
guidelines. Before starting the assessment on the whole cohort, five
cases were scored independently by the three pathologists. The
assessment of TILs was discordant for two cases; these cases were

therefore reviewed in a collegial manner to ensure the assessment
would be performed in a homogeneous way. The analysis was
then performed on the remaining cases by the pathologists blinded
to the MSI status, using the same slide as the one processed by
MSIntuit.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All images and the associated MSI status for the TCGA cohort used in
this study are publicly available at https://portal.gdc.cancer.gov/ and
cBioPortal (https://www.cbioportal.org/). Deidentified pathology ima-
ges and annotations from the PAIP cohort can be obtained via
appropriate data access requests at http://www.wisepaip.org/paip.
Datasets MPATH-DP200 and MPATH-UFS are the property of Owkin,
France and are available upon request for academic use only. Source
data are provided with this paper.

Code availability
An implementation of the U-Net is available at https://github.com/
milesial/Pytorch-UNet. An implementation ofMoCov2 is available at
https://github.com/facebookresearch/moco. An implementation
of Chowder algorithm is made available at https://github.com/
CharlieCheckpt/msintuit (https://zenodo.org/badge/latestdoi/
670039349)32.

References
1. https://www.fda.gov/news-events/press-announcements/fda-

approves-first-cancer-treatment-any-solid-tumor-specific-genetic-
feature.

2. Molecular testing strategies for Lynch syndrome in people with
colorectal cancer: recommendations. NICE Pathways. https://
www.nice.org.uk/guidance/dg27/chapter/1-Recommendations
(Accessed 13 Nov 2019).

3. National Comprehensive Cancer Network Genetic/Familial High-
Risk Assessment: Colorectal (Version 1 2018); Available online:
https://www.nccn.org/professionals/physician_gls/pdf/genetics_
colon.pdf.

4. Henry, J. T. & Johnson, B. Current and evolving biomarkers for
precision oncology in the management of metastatic colorectal
cancer. Chin. Clin. Oncol. 8, 49 (2019).

5. Bychkov, A. & Fukuoka, J. Evaluation of the global supply of
pathologists. Lab. Invest. 102, 1361–1361 (2022).

6. Kather, J. N. et al. Deep learningcanpredictmicrosatellite instability
directly from histology in gastrointestinal cancer. Nat. Med. 25,
1054–1056 (2019).

7. Yamashita, R. et al. Deep learning model for the prediction of
microsatellite instability in colorectal cancer: a diagnostic study.
Lancet Oncol. 22, 132–141 (2021).

8. Bilal, M. et al. Development and validation of a weakly supervised
deep learning framework to predict the status of molecular path-
ways and keymutations in colorectal cancer from routine histology
images: a retrospective study. Lancet Digit Health 3, e763–e772
(2021).

9. Jiang,W. et al. Clinical actionability of triagingDNAmismatch repair
deficient colorectal cancer from biopsy samples using deep
learning. EBioMedicine 81, 104120 (2022).

10. Kleppe, A. Area under the curve may hide poor generalisation to
external datasets. ESMO Open 7, 100429 (2022).

11. He, K. et al. Masked autoencoders are scalable vision learners.
arXiv:2111.06377 (2021).

12. Chen, X., Fan, H., Girshick, R. & He, K. Improved baselines with
momentum contrastive learning. arXiv:2003.04297 (2020).

Article https://doi.org/10.1038/s41467-023-42453-6

Nature Communications |         (2023) 14:6695 10

https://portal.gdc.cancer.gov/
https://www.cbioportal.org/
http://www.wisepaip.org/paip
https://github.com/milesial/Pytorch-UNet
https://github.com/milesial/Pytorch-UNet
https://github.com/facebookresearch/moco
https://github.com/CharlieCheckpt/msintuit
https://github.com/CharlieCheckpt/msintuit
https://zenodo.org/badge/latestdoi/670039349
https://zenodo.org/badge/latestdoi/670039349
https://www.fda.gov/news-events/press-announcements/fda-approves-first-cancer-treatment-any-solid-tumor-specific-genetic-feature
https://www.fda.gov/news-events/press-announcements/fda-approves-first-cancer-treatment-any-solid-tumor-specific-genetic-feature
https://www.fda.gov/news-events/press-announcements/fda-approves-first-cancer-treatment-any-solid-tumor-specific-genetic-feature
https://www.nice.org.uk/guidance/dg27/chapter/1-Recommendations
https://www.nice.org.uk/guidance/dg27/chapter/1-Recommendations
https://www.nccn.org/professionals/physician_gls/pdf/genetics_colon.pdf
https://www.nccn.org/professionals/physician_gls/pdf/genetics_colon.pdf


13. Kather, J. N., Halama, N. & Marx, A. 100,000 histological images of
human colorectal cancer and healthy tissue. https://doi.org/10.
5281/zenodo.1214456 (2018)

14. Guyot D’Asnières De Salins, A. et al. Discordance between immu-
nochemistry of mismatch repair proteins and molecular testing of
microsatellite instability in colorectal cancer. ESMO Open 6,
100120 (2021).

15. Howard, F. M. et al. The impact of site-specific digital histology
signatures on deep learning model accuracy and bias. Nat. Com-
mun. 12, 4423 (2021).

16. Janowczyk, A., Zuo, R., Gilmore, H., Feldman, M. & Madabhushi, A.
HistoQC: an open-source quality control tool for digital pathology
slides. JCO Clin. Cancer Inf. 3, 1–7 (2019).

17. Greenson, J. K. et al. Pathologic predictors ofmicrosatellite instability
in colorectal cancer. Am. J. Surg. Pathol. 33, 126–133 (2009).

18. Echle, A. et al. Clinical-grade detection of microsatellite instability
in colorectal tumors by deep learning. Gastroenterology 159,
1406–1416.e11 (2020).

19. Hildebrand, L. A., Pierce, C. J., Dennis, M., Paracha, M. & Maoz, A.
Artificial intelligence for histology-baseddetection ofmicrosatellite
instability and prediction of response to immunotherapy in color-
ectal cancer. Cancers 13 (2021).

20. Jenkins, M. A. et al. Pathology features in Bethesda guidelines
predict colorectal cancer microsatellite instability: a population-
based study. Gastroenterology 133, 48–56 (2007).

21. Deng, J. et al. ImageNet: A large-scale hierarchical image database.
In: 2009 IEEE Conference on Computer Vision and Pattern Recog-
nition (eds Essa, I., Kang, S. B. & Pollefeys, M.) 248–255 (IEEE, 2009).

22. Schirris, Y., Gavves, E., Nederlof, I., Horlings, H. M. & Teuwen, J.
DeepSMILE: Contrastive self-supervised pre-training benefits MSI
and HRD classification directly from H&E whole-slide images in
colorectal and breast cancer.Med. Image Anal. 79, 102464 (2022).

23. Saillard, C. et al. Self-supervised learning improves dMMR/MSI
detection from histology slides across multiple cancers. In: Pro-
ceedings of the MICCAI Workshop on Computational Pathology,
Vol. 156 (eds Atzori, M. et al.) 191–205 (Machine Learning
Research, 2021).

24. Kacew, A. J. et al. Artificial intelligence can cut costs while main-
taining accuracy in colorectal cancer genotyping. Front. Oncol. 11,
630953 (2021).

25. Chalabi M., et al. Neoadjuvant immune checkpoint inhibition in
locally advanced MMR-deficient colon cancer: the NICHE-2 study.
ESMO Congress 2022, LBA7.

26. ‘Tcga-coad.’ https://wiki.cancerimagingarchive.net/display/Public/
TCGA-COAD.

27. PAIP2020 Challenge, https://paip2020.grand-challenge.org/.
28. Ronneberger, O., Fischer, P. & Brox, T. inMedical Image Computing

and Computer-Assisted Intervention—MICCAI 2015 (eds Navab, N.,
Hornegger, J., Wells, W. M. & Frangi, A.) 234–241 (Springer Inter-
national Publishing, 2015).

29. Zagoruyko, S. & Komodakis, N. Wide residual networks.
arXiv:1605.07146 (2016).

30. Courtiol, P., Tramel, E. W., Sanselme, M. &Wainrib, G. Classification
and disease localization in histopathology using only global labels:
a weakly-supervised approach. arXiv:1802.02212 (2018).

31. Pocock, J. et al. TIAToolbox as an end-to-end library for advanced
tissue image analytics. Commun. Med. 2, 120 (2022).

32. Saillard C., et al. Validation of MSIntuit, an AI-based pre-screening
tool for MSI detection from colorectal cancer histology slides.
Zenodo https://zenodo.org/record/8301721 (2023)

Acknowledgements
The results published here are in whole or part based upon data gen-
erated by the TCGA Research Network: https://www.cancer.gov/tcga.

Regarding the PAIP dataset: De-identified pathology images and anno-
tations used in this research were prepared and provided by the Seoul
National University Hospital by a grant of the Korea Health Technology
R&D Project through the Korea Health Industry Development Institute
(KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea
(grant number: HI18C0316). This work was granted access to the HPC
resources of IDRIS under the allocation AD011012519 made by GENCI.
We thank Pierre Courtiol, Simon Jégou, Benoit Schmauch, and Olivier
Moindrot for their contribution in the early development of the model.
We thank Sanjana Vasudevan for her corrections of the manuscript. We
also thank Dr Alicia Tourneret, Dr Damienne Declerck, Céline Coppolani,
PaulineMespoulhe, andCaroline Rancati for their help in collecting data
for the validation cohort.

Author contributions
Study conception and design: CS, AF, M. Sefta, MA; data collection:
TG, AA, SC, JR, DE, SR; Software: CS, RD, OT, NL; analysis and inter-
pretation of results: CS, RD, OT, TG, AA, SC, JR, DE, KvL, M. Svrcek,
JNK; draft manuscript preparation: CS, AF, LG, OT, CW. All authors
reviewed the results and approved the final version of the manuscript.

Competing interests
C.S., R.D., O.T., N.L., K.v.L., C.W., M. Sefta, M.A., L.G., A.F. are
employees of Owkin Inc. T.G., A.A., S.C., J.R., S.R. are employees of
Medipath. J.N.K. declares consulting services for Owkin, France, for
Panakeia Technologies, UK, and for DoMore Diagnostics, Norway.
J.N.K. declares honoraria for Roche, Eisai, Fresenius. M. Svrcek
declares consulting services for Owkin, France. The remaining authors
declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-023-42453-6.

Correspondence and requests for materials should be addressed to
Charlie Saillard.

Peer review information Nature Communications thanks the anon-
ymous reviewer(s) for their contribution to the peer review of this work.
A peer review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2023

Article https://doi.org/10.1038/s41467-023-42453-6

Nature Communications |         (2023) 14:6695 11

https://doi.org/10.5281/zenodo.1214456
https://doi.org/10.5281/zenodo.1214456
https://wiki.cancerimagingarchive.net/display/Public/TCGA-COAD
https://wiki.cancerimagingarchive.net/display/Public/TCGA-COAD
https://paip2020.grand-challenge.org/
https://zenodo.org/record/8301721
https://www.cancer.gov/tcga
https://doi.org/10.1038/s41467-023-42453-6
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Validation of MSIntuit as an AI-based pre-screening tool for MSI detection from colorectal�cancer histology slides
	Results
	Quality check and calibration as preliminary steps for a clinical-ready AI-based tool
	MSIntuit performance was boosted using self-supervised learning,�allowing it to rule out almost half of the non-MSI population with high sensitivity
	MSIntuit reached excellent agreement on two scanners, and is repeatable across multiple rescanning of the same slide
	MSIntuit results were consistent across slides obtained from different regions of the tumour
	MSIntuit provides interpretable results for pathologists

	Discussion
	Methods
	Ethical compliance
	Cohort description
	Preprocessing of whole-slide images
	Performance metrics
	Automated quality check
	Model description
	Calibration step
	Tool’s consistency across slides from different blocks of the same tumour
	Statistical analyses
	Comparison of MSIntuit with MSPath scoring system
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




