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BEX1 supports the stemness of hepatoblastoma by facilitating
Warburg effect in a PPARγ/PDK1 dependent manner
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BACKGROUND: Hepatoblastoma (HB) is a highly aggressive paediatric malignancy that exhibits a high presence of cancer stem
cells (CSCs), which related to tumour recurrence and chemotherapy resistance. Brain expressed X-linked protein 1 (BEX1) plays a
pivotal role in ciliogenesis, axon regeneration and differentiation of neural stem cells. However, the role of BEX1 in metabolic and
stemness programs in HB remains unclear.
METHODS: BEX1 expression in human and mouse HB was analyzed using gene expression profile data from NCBI GEO and
immunohistochemical validation. Seahorse extracellular flux analyzer, ultra-high-performance liquid-chromatography mass
spectrometry (LC-MS), flow cytometry, qRT-PCR, Western Blot, sphere formation assay, and diluted xenograft tumour formation
assay were used to analyze metabolic and stemness features.
RESULTS: Our results indicated that overexpression of BEX1 significantly enhanced the Warburg effect in HB cells. Furthermore,
glycolysis inhibition largely attenuated the effects of BEX1 on HB cell growth and self-renewal, suggesting that BEX1 promotes
stemness maintenance of HB cells by regulating the Warburg effect. Mechanistically, BEX1 enhances Warburg effect through the
downregulation of peroxisome proliferator-activated receptor-gamma (PPARγ). Furthermore, pyruvate dehydrogenase kinase
isozyme 1 (PDK1) is required for PPARγ-induced inhibition of Warburg effect in HB. In addition, BEX1 supports the stemness of HB
by enhancing Warburg effect in a PPARγ/PDK1 dependent manner.
CONCLUSIONS: HB patients with high BEX1 and PDK1 expression had a poor prognosis. BEX1 promotes the stemness maintenance
of HB cells via modulating the Warburg effect, which depends on PPARγ/PDK1 axis. Pioglitazone could be used to target BEX1-
mediated stemness properties in HB by upregulating PPARγ.
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INTRODUCTION
Hepatoblastoma (HB) is a rare paediatric liver tumour that mainly
affects infants under 3 years of age [1–4]. Although there
are differences in the staging systems for HB worldwide,
common prognostic factors mainly include the following aspects:
intrahepatic tumour extension, hepatic vascular invasion, multi-
focality, and distant metastasis [5]. In addition, histopathological
criteria are still controversial [6]. To date, complete surgical
resection or liver transplantation combined with chemotherapy
can significantly improve the prognosis of HB patients, with
a 3-year event-free survival (EFS) higher than 80% and a 5-year
survival rates averaging 75% [7, 8]. However, for those
patients with clinically advanced HB, treatment options are very

limited, with a 3-year EFS of only 34% [4]. Moreover, survivors
of HB patients may suffer from the side effects of chemotherapy
and immunosuppression [9]. Therefore, new and effective
therapeutic approaches are urgently needed for patients with
advanced HB.
Liver cancer stem cells (LCSCs) have high tumour-initiating

potential and are currently considered to be one of the main
reasons for tumour aggressiveness and chemoresistance [10]. HB
is a highly aggressive malignancy that exhibits a high presence of
LCSCs, however, the mechanism underlying their self-renewal
maintenance remains unclear [11–13]. Recently, Marayati et al.
found that PIM3 promotes tumourigenesis and stemness
maintenance in human HB cells. PIM3 knockout resulted in
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decreased tumour sphere formation and decreased expression of
LCSCs markers such as Oct4, Nanog, Sox2, nestin and CD133 [14].
In addition, the dysregulation of self-renewal/developmental
pathways in normal hepatic progenitor/stem cell also play a key
role in hepatocarcinogenesis [15]. As one of the major develop-
mental pathways associated with progenitor/stem cells, Wnt/β-
catenin has a mutation rate as high as 90% in HB, suggesting
Wnt/β-catenin pathway is involved in the stemness maintenance
of HB [15–17]. Of note, the oncoprotein MYC, one of the
downstream targets of the Wnt/β-catenin pathway, can induce
human HB-like tumours in mice [18, 19]. Moreover, the imprinted
genes such as brain expressed X-linked protein 1 (BEX1) [20],
insulin-like growth factor 2 (IGF2), Delta-like homolog 1 (DLK1),
Paternally-expressed gene 3 (PEG3) and PEG10 were strongly
overexpressed in mouse Myc-induced HB tumours, indicating
that these genes may be involved in the progression and
stemness maintenance of HB [6].
Previous studies have shown that BEX1 plays a key role in

the activation and expansion of liver progenitor cells during liver
regeneration [21]. BEX1 is also involved in axon regeneration,
differentiation of neural stem cells, and repair of skeletal muscles
after injury [22, 23]. In addition, BEX1 is also closely related to the
development and progression of various human cancers [24–28].
Our previous study demonstrated that BEX1 promoted the self-
renewal of HB cells by activating the Wnt/β-catenin pathway [26].
However, the role of BEX1 in the metabolic-related stemness
programs in HB is still not clear. In this study, we found that HB
cells mainly relied on the enhanced glycolysis to maintain
stemness properties. Furthermore, BEX1 supports the stemness
of HB cells by facilitating Warburg effect in a PPARγ/PDK1
dependent manner. This suggests that BEX1 promotes the self-
renewal of HB cells through multiple mechanisms. Given that CSCs
are associated with chemotherapy resistance and tumour
recurrence, BEX1 may be a potential drug target for HB.

MATERIALS AND METHODS
Reagents
The PT3-EF1α-c-Myc plasmid was a gift from Xin Chen and was obtained
from Addgene (Cambridge, MA, USA, Addgene plasmid #92046). pCMV/
SB10 was kindly gifted by Perry Hackett and was obtained from Addgene
(Addgene plasmid #24551) (Supplementary Table S1). The antibodies used
and their concentrations are detailed in Supplementary Table S2 and
Supplementary Table S3. See Supplementary Materials for information on
cell lines and other reagents.

Microarray data
Three HB-related datasets with the accession number GSE131329 [29],
GSE132037 [11] and GSE133039 [11] were downloaded from the NCBI
Gene Expression Omnibus (GEO) database (http://www.ncbi.nlm.nih.gov/
geo/) [30]. One mice HB dataset with the accession number PRJNA721822
[26] were collected from NCBI (https://www.ncbi.nlm.nih.gov/bioproject/).

Western blot analysis
For western blotting, total protein (30 µg) in lysed cells was separated by
SDS-PAGE and transferred to PVDF membranes (Invitrogen, Grand Island,
NY). Membranes were blocked with nonfat dry milk (5%) for 1 h and then
incubated with specific antibodies overnight at 4 °C. Membranes were then
incubated with horseradish peroxidase-conjugated secondary antibody for
1 h at room temperature. Protein bands were detected using an enhanced
chemiluminescence system (Pierce, USA).

Quantitative real-time PCR (qRT-PCR) analyses
Total RNA was extracted with Trizol reagent (Invitrogen, USA), and cDNA
synthesis was performed with TaKaRa PrimeScript RT reagent kit (TaKaRa
Biotechnology, Dalian, China). The real-time PCR analysis was performed
using SYBR Premix Ex Taq II (TaKaRa) following the manufacturer’s
instructions. GAPDH was used as an internal control and the primer
sequences are listed in Supplementary Table S4.

Nude mice xenograft model
The mice xenograft model was established as described previously [31].
The male Balb/c nude mice were randomly divided into experimental
groups and control groups. BEX1-knockout HuH-6 cells and BEX1-
overexpressing HepG2 cells were injected subcutaneously into the right
back of 6-week-old male Balb/c nude mice respectively. Mice were
sacrificed 40 days later and the wet weight of excised tumours was
measured. All animal experiments were approved by the ethics committee
of The First Affiliated Hospital of Zhengzhou University.

Statistical analysis
All analyses in this study were performed using SPSS software version 17.0
(SPSS). The differences between groups were compared using student’s t-
test. The Spearman correlation analysis was used to analyze the measured
variables. Survival analysis were performed using the Kaplan–Meier
method and compared using the log-rank test. The p-values less than
0.05 were considered statistically significant. Further details on the
materials and methods can be found in the Supplementary Materials.

RESULTS
BEX1 promotes the self-renewal of HB cells
To understand the role of BEX1 in HB, we first compared the
mRNA level of BEX1 in two human HB datasets (GSE131329 and
GSE132037) and one mice HB dataset (PRJNA721822). The results
show that BEX1 is elevated in both human and mice HB tissues
compared to non-tumour tissues (Fig. 1a–c). Also, we performed
IHC staining analysis to determine the protein expression levels of
BEX1 in our own cohort (n= 58). Our results further confirmed
that BEX1 was upregulated in HB compared with peri-tumour
samples (Fig. 1d). Previous studies have shown that the type of c-
Myc-driven mouse liver cancer is HB [6]. Moreover, Myc-induced
HB-like tumours in mice strikingly resembled the human
immature HB subtype [6]. The c-Myc-driven HB-like mouse model
has been widely used in liver cancer research [32, 33]. tumours
detected in the c-Myc-driven mouse model were confirmed to be
HB by pathologists in this study. Likewise, BEX1 was also
significantly elevated in c-Myc-driven HB-like liver tumours in
mice (Fig. 1e).
It is known that shRNA knockout could cause off-target effect.

Our results are unlikely to be the off-target effects of the shRNA
oligos, since the introduction of BEX1 cDNA into the knockdown
cells attenuated the effects of the shRNA oligos (Supplementary
Fig. S1). Moreover, both gain of function and loss of function
approaches indicate that BEX1 can promote the proliferation of
HB cells (Supplementary Fig. S2 and Supplementary Fig. S3). HB is
an embryonal tumour that has previously been shown to have
strong CSC properties [13]. The relationship between BEX1 and
CSC markers was further evaluated in three HB dataset. Studies
over the past decades have demonstrated several markers for
identifying CSC populations in liver cancer. In this study, we used
several established CSC markers in HB, including EpCAM [34–36],
DLK1 [37, 38], AFP [39], SALL4 [40, 41], CD24 [42, 43], and LGR5
[13, 44], to analyze the relationship between BEX1 and these CSC
markers. A positive correlation between BEX1 and CSC markers
was confirmed in these three datasets (Supplementary Fig. S4).
Our previous results showed that BEX1 co-localized with the CSC
marker SALL4 in c-Myc-driven HB tumour tissues [26]. Spheroid
formation analysis revealed that BEX1 overexpression significantly
increased the number of spheroids in both Huh-6 and HepG2
cells. In contrast, BEX1 knockdown exhibited an opposite effect
(Fig. 1f, g and Supplementary Fig. S5a, b). EpCAM has been used
as a marker for detecting cancer stem cells (CSCs) in the context of
HB [34–36]. Flow cytometry analysis showed that BEX1 over-
expression increased the proportion of EpCAM+ cells in both Huh-
6 and HepG2 cells. In contrast, BEX1 knockdown exhibited an
opposite effect (Fig. 1h, i and Supplementary Fig. S5c, d). In
addition, BEX1 overexpression promoted HB cell invasion, whereas
BEX1 knockdown inhibited HB cell invasion (Fig. 1j, k and
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Supplementary Fig. S5e, f). Moreover, the expression levels of
BEX1 and other stemness markers such as CD133 and Oct4 were
significantly increased in tumour spheroids compared with
attached cells (Fig. 1l and Supplementary Fig. S5g). Importantly,
in vivo limiting dilution assays demonstrated that BEX1-
overexpressing HepG2 cells showed increased tumour-initiating
capacity in BALB/c nude mice when compared to the capacity
exhibited by control cells (Fig. 1m). These results suggest that
BEX1 promotes the self-renewal of HB cells.

BEX1 promotes the stemness maintenance of HB cells via
modulating the Warburg effect
Metabolic reprogramming endows tumour cells with the ability to
modulate metabolic pathways to sustain diverse biological
processes [32, 45]. We analyzed the expression of glycolysis-
related genes in a c-Myc-driven HB-like mouse model using
RNAseq (Fig. 2a). The results showed that the expression levels of
most glycolysis-related genes were significantly increased in HB
tissues compared with normal liver tissues (Fig. 2b), suggesting
that glycolysis is a metabolic programme preferred by HB cells.

We next explain about genes downregulated in the HB group.
Alcohol dehydrogenase 4 (ADH4), as an important member of the
ADH family, can metabolize many substrates including ethanol
and retinol. Our heatmap shows that ADH4 is significantly
reduced in HB tissues. Similarly, previous studies have shown
that ADH4 is significantly reduced in hepatocellular carcinoma
(HCC) tissues and correlates with the survival of HCC patients [46].
The low expression of ADH4 was positively correlated with the
signaling pathways promoting tumourigenesis, such as ATR
pathway, NOTCH pathway, and mTOR pathway [47]. Our heatmap
shows that glucose-6-phosphatase catalytic subunit (G6PC) is
significantly reduced in HB tissues. G6PC, which catalyzes the final
step of glycogenolysis, is frequently downregulated to increase
glucose storage in premalignant HCC cells [48]. Studies have
shown that increased glycogen storage accelerates liver carcino-
genesis. Furthermore, G6PC deficiency in humans and mice leads
to glycogen storage disease, as well as liver enlargement and
tumourigenesis in a Yap-dependent manner [48]. Our heatmap
shows that lactate dehydrogenase subunit B (LDHB) is signifi-
cantly reduced in HB tissues. Consistently, Hong et al. found that
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Fig. 1 BEX1 overexpression promotes the self-renewal of HB cells. Analyses of BEX1 expression in (a, b) two human HB datasets and (c) one
mice HB dataset. These heatmap figures were generated using three public datasets (GSE131329, GSE132037, and PRJNA721822). Specifically,
stemness related genes were extracted, and the signal values were converted by log2(exp+1) for pheatmap clustering analysis. The false
discovery rate (FDR) was used to determine the threshold of the p-value in multiple tests. A threshold of the FDR ≤ 0.05 was used to judge the
significance of gene expression differences. In these heatmap data, BEX1 was elevated in both human and mouse HB tissues compared to
non-tumour tissues, which has a statistically significant difference (FDR ≤ 0.05). d IHC analysis of BEX1 expression in clinical HB samples
(n= 58). e IHC analysis of BEX1 expression in c-Myc-driven HB-like liver tumours in mice (n= 6). Scale bars: 50 μm. f, g Spheroid formation
assays were performed in Huh-6 and HepG2 cells with treatments as indicated. Scale bars: 20 μm. h, i Flow cytometric analysis of the EpCAM+

cell population in Huh-6 and HepG2 cells with treatments as indicated. j, k The invasion of HB cells was examined by performing an invasion
chamber assay. l Levels of BEX1, CD133, Oct4 in spheroids and attached cells were detected by western blotting. β-actin was used as a loading
control. m Limiting dilution xenograft formation of HepG2 cells infected with Lv-BEX1 or Lv-Control (n= 6 per group). IHC
immunohistochemistry. *P < 0.05, **P < 0.01.
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LDHB knockdown increased inhibitory phosphorylation of pyr-
uvate dehydrogenase (PDH) through lactate-mediated activation
of PDH kinase (PDK), thereby attenuating oxidative phosphoryla-
tion activity in HCC. They further showed that LDHB inhibition is a
key mechanism to enhance glycolysis and maintain mitochon-
drial dysfunction in HCC progression through the lactate release
[49]. At last our heatmap shows that aldehyde dehydrogenase
3a2 (Aldh3a2) is significantly decreased in HB tissues. Consis-
tently, endogenous aldehyde accumulation caused by reduced
ALDH3A2 expression produces genotoxicity and promotes cancer
progression [50]. Moreover, we have analyzed another human HB
dataset (GSE133039). The results support that most glycolysis
related genes are also highly expressed in human HB (Supple-
mentary Fig. S6). We next explored whether BEX1 promotes HB
progression by regulating glycolysis. To this end, we carried out
metabolomics analysis in HepG2 cells using untargeted ultra-
high-performance liquid-chromatography mass spectrometry (LC-
MS). Principal component analysis (PCA) and three-dimensional
PCA map of BEX1 overexpression group and control group were
performed. The results showed that the variation within groups
was small, which met the requirements of subsequent analysis
(Fig. 3a). Volcano plots showed the overall differences in
metabolites between BEX1- overexpressing HepG2 cells and
control cells (Fig. 3b). The following KEGG analyses and
biochemical assays showed that glycolysis were significantly
changed in response to BEX1 overexpression (Fig. 3c, d).
Furthermore, we compared important cellular metabolic para-
meters between HB cell with BEX1 overexpression or knockdown
and control cells. Our results showed that overexpression of
BEX1 significantly decreased basal and maximal oxygen con-
sumption rates (OCR) in HB cells, whereas knockdown of BEX1
obviously increased OCR in HB cells (Fig. 4a, b and Supplementary
Fig. S7a, b). Moreover, overexpression of BEX1 resulted in the
increased glucose uptake and extracellular lactate levels, along

with a decreased cellular ATP levels. In contrast, BEX1 knockdown
led to the decreased glucose uptake and extracellular lactate
levels, whilst cellular ATP levels were significantly increased
(Fig. 4c–e and Supplementary Fig. S7c–e). As a poor substrate for
glycolysis, galactose cannot directly enter the glycolysis pathway
[51]. To investigate whether the Warburg effect was responsible
for progression and stemness maintenance in HB, glucose in the
culture medium for BEX1-overexpressing Huh-6 and HepG2 cells
were replaced by galactose to inhibit glycolysis. As a result,
galactose largely inhibited the effects of BEX1 on HB cell growth
and self-renewal, indicating that BEX1 promotes stemness
maintenance of HB cells by regulating the Warburg effect
(Fig. 4f–h).

BEX1 enhances Warburg effect via downregulating PPARγ in
HB
We then investigated the mechanism by which BEX1 enhances
the Warburg effect. The effect of BEX1 on the global gene
expression pattern of HepG2 cells at the transcriptomic level was
examined by performing RNA sequencing (RNA-seq) analysis
(Fig. 5a). Gene set enrichment analysis (GSEA) showed that BEX1
was negatively correlated with the PPAR signalling but positively
correlated with the glycolysis pathway in HepG2 cells (Fig. 5b and
Supplementary Fig. S8a). Likewise, the negative correlation
between BEX1 and PPARγ was confirmed in another study, which
is consistent with our results [21]. As a tumour-suppressor gene in
the liver [52], PPARγ plays a key role in glucose homeostasis [53].
Western blot and real-time PCR showed that BEX1 overexpression
significantly downregulated the expression of PPARγ in both Huh-
6 and HepG2 cells, whereas BEX1 knockdown exhibited an
opposite effect (Fig. 5c, d and Supplementary Fig. S8b, c).
Previous research has shown that PPARγ can inhibit glycolysis in
some cancers. For example, PPARγ inhibits glycolysis by suppres-
sing the glycolytic enzymes PGK1 and PKM2 in breast cancer [54].
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PPARγ also mediates the inhibitory effect of Cloxiquine on the
glycolysis of melanoma cells by downregulating glycolytic genes
such as PKM2, LDHA and HK2 [55]. Next, we explored whether
PPARγ is involved in the Warburg effect regulated by BEX1 in HB
cells. As expected, the extracellular acidification rate (ECAR) of
BEX1-overexpressing HepG2 or Huh-6 cells was significantly
decreased after treatment with the PPARγ agonist pioglitazone.
Moreover, decreased lactate production and glucose consump-
tion as well as an increased ATP production were also observed in
BEX1-overexpressing HepG2 or Huh-6 cells upon treatment with
pioglitazone (Fig. 5e–l). In contrast, the ECAR of BEX1-knockout
Huh-6 or HepG2 cells was significantly increased after treatment
with the PPARγ inhibitor GW9662. Meanwhile, the lactate
production and glucose consumption were increased and ATP
production were decreased in BEX1-knockout Huh-6 or HepG2
cells upon treatment with GW9662 (Supplementary Fig. S8d–k).
Therefore, the possible mechanism of action of PPARγ agonist
pioglitazone lies in the inhibition of glycolysis [56–58], as shown
in decreased glycolytic bioenergetics parameters (Fig. 5e–l). On
the contrary, the possible mechanism of action of PPARγ inhibitor
GW9662 lies in the activation of glycolysis (Supplementary
Fig. S8d–k), which is consistent with previous reports [55].
Collectively, these results indicate that BEX1 enhances glycolysis
in HB cells by downregulating PPARγ.

PDK1 is required for PPARγ -induced inhibition of Warburg
effect in HB
To further study the mechanism of PPARγ in the regulation of
glycolysis, we evaluated the role of PPARγ on the expression of key
glycolytic enzymes. The real-time PCR results showed that the
expression levels of most enzymes involved in glycolysis did not
change significantly, except for pyruvate dehydrogenase kinase
(PDK1), PFKL and LDHA, and the expression level of PDK1 changed
most significantly (Fig. 6a, b and Supplementary Fig. S9a, b). So, we
tested the levels of PPARγ and PDK1 in the presence of PPARγ
agonist pioglitazone or inhibitors GW9662. As shown in Fig. 6c,
pioglitazone significantly increased the protein levels of PPARγ and
decreased the PDK1 levels in Huh-6 cells. On the contrary, GW9662
decreased the protein levels of PPARγ and increased the PDK1 levels
in HepG2 cells (Supplementary Fig. S9c). In addition, another study
also reported that pioglitazone can increase protein levels of PPARγ
[59], which is consistent with our results. As expected, the significant
reduction in pioglitazone-mediated ECAR, lactate production and
glucose consumption were reversed after PDK1 overexpression in
Huh-6 cells (Fig. 6d–g). In contrast, GW9662-mediated increases in
ECAR, lactate production, and glucose consumption were reversed
following PDK1 knockdown in HepG2 cells (Supplementary
Fig. S9d–g). These data suggest that PDK1 is required for PPARγ-
induced inhibition of Warburg effect in HB cells.
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BEX1 enhances the stemness maintenance of HB cells in a
PPARγ/PDK1 dependent manner
We next investigated the role of the PPARγ/PDK1 axis in BEX1-
mediated stemness maintenance in HB cells. Spheroid assays
confirmed that pioglitazone treatment reduced the enhancement
of BEX1-mediated spheroid formation in HepG2 cells. In contrast,
the reduction of spheroid formation in BEX1-knockout Huh-6 cells
was reversed after GW9662 treatment (Fig. 7a). Flow cytometry
analysis showed that pioglitazone decreased the proportion of
EpCAM+ cells in BEX1-overexpression HepG2 cells. In contrast,
GW9662 increased the proportion of EpCAM+ cells in BEX1-
knockout Huh-6 cells, indicating that BEX1 promotes HB stemness

maintenance by inhibiting PPARγ (Fig. 7b). Next, we further
verified the effect of PPARγ/PDK1 axis on the stemness
maintenance of HB cells. Western blot results showed that
pioglitazone increased the expression of PPARγ, and decreased
the expression of PDK1 and EpCAM in HepG2- empty vector (EV)
and BEX1-overexpressing HepG2 cells, respectively (Fig. 7c).
Spheroid assays demonstrated that PDK1 knockout reduced the
enhancement of BEX1- mediated spheroid formation in HepG2
cells (Fig. 7d). In contrast, GW9662 decreased PPARγ expression
and increased PDK1 and EpCAM expression in Huh-6- control (Ctrl)
and BEX1-knockout Huh-6 cells, respectively (Fig. 7e). We have
performed quantitative analysis of the protein levels and provided
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detail on statistical differences in Supplementary Fig. S10. More-
over, the reduction of spheroid formation in BEX1-knockout Huh-6
cells was reversed after PDK1 overexpression (Fig. 7f). Taken
together, these results indicate that BEX1 enhances the stemness
maintenance of HB cells in a PPARγ/PDK1 dependent manner.
However, the effects of BEX1 modulation were only partially
reverted by the PPARγ agonist/inhibitor. We hypothesized that
BEX1 might promote the stemness of HB through multiple
mechanisms. On the one hand, BEX1 promotes the stemness
maintenance of HB cells via modulating the Warburg effect, which
depends on PPARγ/PDK1 axis. On the other hand, our previous
study demonstrated that BEX1 promoted the self-renewal of HB
cells by activating the Wnt/β-catenin pathway[26]. BEX1 may also
promote the stemness of HB through other unknown mechan-
isms, which still need to be explored.

BEX1 positively correlates with PDK1 in HB patients
To explore the prognostic values of PDK1 and BEX1 in HB, we
analyzed their expression by immunohistochemistry in a cohort of
58 HB patients. The representative images in Fig. 8a show that
tissue samples with strong IHC staining for BEX1 also have strong
PDK1 staining, and vice versa. Spearman’s rank correlation analysis
showed that the expression of these two proteins was significantly
positively correlated (r= 0.335, p < 0.05) (Fig. 8b). Kaplan–Meier
analysis showed that HB patients with high BEX1 expression and

high PDK1 expression had the lowest overall survival (Fig. 8c).
These results suggest that PDK1 plays an important role in BEX1-
mediated HB progression.

DISCUSSION
BEX1 is a key molecule that regulates liver development during
embryonic period [6, 21]. As a new oncofetal gene, its abnormal
expression is closely related to the initiation and progression of liver
cancer [26]. For example, Sagawa et al. showed that BEX1 was
upregulated in preneoplastic lesions of Cx32ΔTg rats with nonalco-
holic steatohepatitis and promoted the growth of HCC cells through
NF-κB and SAPK/JNK signaling pathways [20]. Similarly, Uehara et al.
demonstrated that embryonic genes such as AFP, H19, and BEX1
were significantly increased in DEN + CCl4-induced mouse HCC
tissues [60]. Our previous study demonstrated that BEX1 promoted
the self-renewal of HB cells by activating the Wnt/β-catenin pathway
[26]. The findings of the present study suggested that BEX1 supports
the stemness of HB by enhancing Warburg effect in a PPARγ/PDK1
dependent manner. Considering that cancer stemness is closely
related to tumour recurrence and chemoresistance, BEX1 may be an
ideal candidate target for intervening HB progression and
chemoresistance.
Typically, differentiated cells rely on mitochondrial oxidative

phosphorylation for their energy needs. Instead, most cancer cells
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rely heavily on aerobic glycolysis to generate the energy needed for
cellular processes. This phenomenon is known as the “Warburg
effect”, which can be caused by the overexpression of glucose
transporters or enzymes during glycolysis mediated by oncogene
activation [61, 62]. The activation of oncogenes can cause
dysregulation of intracellular signalling pathways that affect tumour
cell metabolism and promote growth [63]. For example, in
intrahepatic cholangiocarcinoma, BEX2 has been reported to inhibit
mitochondria-related oxygen consumption and is required for the
dormant cancer stem cell maintenance [64]. In this study, we found
that overexpression of BEX1 significantly enhanced the Warburg
effect in HB cells. Furthermore, glycolysis inhibition largely attenuated
the effects of BEX1 on HB cell growth and self-renewal, suggesting
that BEX1 promotes stemness maintenance of HB cells by regulating
the Warburg effect. Indeed, the glycolytic phenotype actually favours
the stemness properties. For example, metabolic reprogramming
switch from OXPHOS to glycolysis in induced pluripotent stem cells
(iPSCs) is crucial for their efficient acquisition of a pluripotent stem
state [65]. In addition, glycolysis was also found to be a metabolic
programme preferred by CD133+ CD49f+ tumour-initiating cells
(TICS) in HCC [66], radioresistant spheroid-forming cells in nasophar-
yngeal carcinoma [67], and CD44+CD24lowEPCAM+ CSCs in breast
cancer [68]. Interestingly, high expression of oncogenic MYC in the
above three cancers was identified as a major factor driving CSC
properties [69, 70], suggesting there is a close link between MYC-
driven glycolytic phenotype and stemness [71]. As a key transcription
factor, MYC is also overexpressed in HB [6]. Our previous study
demonstrated that MYC can directly promote the expression of BEX1
[26], and we therefore postulated that MYC/BEX1 axis promotes
stemness maintenance of HB through glycolysis. However, OXPHOS
has been demonstrated as the preferred energy production mode
for CSCs in some other cancer types [72], such as leukaemia [69],
pancreatic ductal adenocarcinoma [73], glioblastoma [74] and lung
cancer [75]. Differences in tumour types may be one of the reasons
why CSCs rely primarily on glycolysis or preferentially on OXPHOS.
PPARγ plays a key role in glucose homeostasis, lipid metabo-

lism, insulin sensitivity and cell fate [72]. Pioglitazone and GW9662
are selective PPARγ agonist or antagonist that directly bind to

PPARγ with high affinity [76]. In addition to increasing PPARγ
protein levels [59], pioglitazone can also affect the post-
translational modification of PPARγ and thus affect PPARγ activity
[77–79]. It has been demonstrated that PPARγ is composed of
different functional domains, including an N-terminal trans-
activation domain (AF1), a C-terminal ligand-binding domain
(LBD) and a highly conserved DNA binding domain (DBD) [80].
Recent studies have shown that PPARγ is regulated by post-
translational modification such as phosphorylation [81]. Notably,
some anti-diabetic PPARγ ligands such as pioglitazone and
rosiglitazone have been reported to have a unique biochemical
function: blocking the phosphorylation of PPARγ by cyclin
dependent kinase 5 (Cdk5) at serine 273 [77–79]. Specifically,
pioglitazone directly binds to the LBD of PPARγ and cause a
conformational change that interferes with Cdk5’s ability to
phosphorylate serine 273, which in turn increase the activity of
PPARγ. In contrast, the PPARγ antagonist GW9662 promotes
CDK5-mediated phosphorylation of PPARγ at serine 273, thereby
reducing PPARγ activity [79]. Together, these studies suggest that
CDK5-mediated phosphorylation of PPARγ is a direct target of
pioglitazone and GW9662. PPARγ has been shown to be a tumour
suppressor gene in the liver, which inhibits HCC cell growth by
reducing cell proliferation, migration, and angiogenesis
[52, 82, 83]. Moreover, PPARγ inhibits glycolysis by suppressing
the glycolytic enzymes PGK1 and PKM2 in breast cancer [54].
PPARγ mediates the inhibitory effect of Cloxiquine on the
glycolysis of melanoma cells by down-regulating glycolytic genes
such as PKM2, LDHA and HK2 [55]. Our results suggest that BEX1
enhances the Warburg effect by downregulating PPARγ in HB. We
further analyzed the effect of PPARγ on the expression of key
glycolytic enzymes in HB cells. PPARγ did not alter the expression
of most glycolytic enzymes except for PDK1 and LDHA, and the
expression level of PDK1 changed most significantly. PDK1
promotes glycolysis by phosphorylating the PDH complex, which
prevents the conversion of pyruvate to acetyl-CoA into mitochon-
dria [84, 85]. Overexpression of PDK1 promotes the progression of
many human cancers, such as liver [86], breast [87], kidney [88]
and colon cancers [89]. Our results showed that the reduction in
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PPARγ-mediated ECAR, lactate production and glucose consump-
tion was reversed after PDK1 overexpression in HB cells, indicating
that PDK1 is required for PPARγ-induced inhibition of Warburg
effect in HB.
Our results indicate that BEX1 enhances the stemness main-

tenance of HB cells in a PPARγ/PDK1 dependent manner. BEX1
inhibits the expression of PPARγ, resulting in the overexpression of
its downstream molecule PDK1 in HB. We next investigated the
role of the PPARγ/PDK1 axis in BEX1-mediated stemness main-
tenance in HB. Our results revealed the reduction of spheroid
formation in BEX1-knockout HB cells was reversed after GW9662

treatment, indicating that BEX1 promotes HB stemness main-
tenance by inhibiting PPARγ. Moreover, the reduction of spheroid
formation in BEX1-knockout HB cells was reversed after PDK1
overexpression, suggesting PDK1 promotes stemness mainte-
nance of HB cells. Consistent with our results, PDK1 also promotes
stemness maintenance in iPSCs [90], embryonic stem cell [91] and
many other tumours such as glioma [92], HCC [86], and breast
cancer [93].
In conclusion, BEX1 supports the stemness of HB by enhancing

the Warburg effect in a PPARγ/PDK1-dependent manner (Fig. 8d).
Given that CSCs are associated with tumour recurrence and
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chemotherapy resistance, BEX1 may be a promising target for new
therapeutic strategies for HB.
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