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Abstract
Motivation: The rapid and extensive transmission of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to an unprece-
dented global health emergency, affecting millions of people and causing an immense socioeconomic impact. The identification of SARS-CoV-2
phosphorylation sites plays an important role in unraveling the complex molecular mechanisms behind infection and the resulting alterations in
host cell pathways. However, currently available prediction tools for identifying these sites lack accuracy and efficiency.

Results: In this study, we presented a comprehensive biological function analysis of SARS-CoV-2 infection in a clonal human lung epithelial A549
cell, revealing dramatic changes in protein phosphorylation pathways in host cells. Moreover, a novel deep learning predictor called PSPred-ALE
is specifically designed to identify phosphorylation sites in human host cells that are infected with SARS-CoV-2. The key idea of PSPred-ALE lies
in the use of a self-adaptive learning embedding algorithm, which enables the automatic extraction of context sequential features from protein
sequences. In addition, the tool uses multihead attention module that enables the capturing of global information, further improving the accuracy
of predictions. Comparative analysis of features demonstrated that the self-adaptive learning embedding features are superior to hand-crafted
statistical features in capturing discriminative sequence information. Benchmarking comparison shows that PSPred-ALE outperforms the state-
of-the-art prediction tools and achieves robust performance. Therefore, the proposed model can effectively identify phosphorylation sites assis-
tant the biomedical scientists in understanding the mechanism of phosphorylation in SARS-CoV-2 infection.

Availability and implementation: PSPred-ALE is available at https://github.com/jiaoshihu/PSPred-ALE and Zenodo (https://doi.org/10.5281/zen
odo.8330277).

1 Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) is an enveloped positive-sense RNA virus that is
closely related to SARS-CoV and several SARS-related coro-
naviruses (Lai et al. 2020, Zhou et al. 2020). The pathophysi-
ological features of SARS-CoV-2 include acute respiratory
distress and can lead to respiratory failure, multiorgan failure,
and death (Herold et al. 2020). It has had a significant impact
on human health and the global socioeconomic since its emer-
gence in 2019 (Wolf et al. 2023). To develop antiviral thera-
pies, scientists have recently used phosphoproteomic
approaches to study the molecular mechanisms of SARS-
CoV-2 infection by quantifying changes in protein abundance
and phosphorylation (Bouhaddou et al. 2020, Hekman et al.
2020). Analysis of phosphorylation events after host infection
may reveal the drug targets with therapeutic potential (Ochoa
et al. 2016, 2020). Phosphorylation is a critical reversible
post-translational modification (PTM) in proteins that regu-
lates many essential processes in eukaryotes and prokaryotes.

These processes include muscle contraction, neural activity,
cell proliferation, cell signaling, differentiation, and develop-
ment (Humphrey et al. 2015, Ardito et al. 2017, Takeuchi
et al. 2017). Phosphorylation occurs when a phosphate group
is covalently added to specific amino acid residues, such as
serine (S), as shown in Fig. 1. This phosphorylation causes the
protein to become charged, thereby altering the protein’s
structure, activities, and function (Huang et al. 2018).
Therefore, the identification of this PTM in SARS-CoV-2 in-
fection is crucial and can offer valuable insights into the infec-
tion mechanism, facilitating the development of essential
drugs and therapeutic strategies (Gordon et al. 2020, Smith
and Smith 2020).

Although wet experiments such as mass spectrometry can
identify phosphorylation modification sites in high through-
put, most laboratories do not have the necessary instruments
and knowledge to use this technique (Steinke and Cook 1995,
Beausoleil et al. 2006, Lyu et al. 2018). In addition, experi-
mental techniques usually involve the utilization of expensive
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equipment and are always labor intensive. Consequently, us-
ing machine learning approaches to solve these problems has
becoming popular due to its natural advantages. While a few
computational models have been proposed for this purpose in
recent years (Wang et al. 2017, Wang et al. 2020, Guo et al.
2021), only one machine learning predictor called DeepIPs,
has been specifically designed to predict phosphorylation sites
in host cells infected with SARS-CoV-2 (Lv et al. 2021). This
predictor uses a CNN-LSTM based deep learning framework
to make the prediction. The prediction accuracy of this model
is about 80%. One possible reason is that current feature ex-
traction methods are insufficient to extract more sequence in-
formation for machine learning algorithms to learned.
Therefore, although this work greatly promoted the research
on predicting SARS-CoV-2 phosphorylation modification
sites, there is still an urgent need to explore and develop
higher-performance predictors.

Here, we first demonstrate that SARS-CoV-2 infection does
result in changes in phosphorylation modifications through
bioinformatic analysis of A549 cells infected with SARS-CoV-
2. Subsequently, we proposed PSPred-ALE, a novel SARS-
CoV-2 phosphorylation modification site prediction model
based on self-adaptive learning embedding. Our PSPred-ALE
is a fully end-to-end architecture that does not require any fea-
ture engineering and can automatically learn and extract con-
textual information from sequences based on the embedding
algorithm. Specially, the multihead attention mechanism is
also applied to capture the global information in protein
sequences and facilitates the model’s understanding of dis-
criminative features. On the other hand, we also investigated
the performance of four conventional machine learning algo-
rithms and 20 commonly used protein feature extraction
methods. Comprehensive comparative experiments demon-
strated that PSPred-ALE outperforms the state-of-the-art

Figure 1. Framework of PSPred-ALE for SARS-CoV-2 phosphorylation modification site identification
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(SOTA) SARS-CoV-2 phosphorylation modification site pre-
dictors and handcrafted feature-based methods. This reveals
that the features learned by the adaptive learning embedding
mechanism are more effective and potentially than that of
handcrafted feature engineering. Moreover, we also provide a
2D visualization comparison between different feature repre-
sentation spaces to illustrate their efficacy in separating posi-
tive and negative samples. These experiments mentioned
above also demonstrate the robustness and generalization of
PSPred-ALE. We anticipate that this model will promote the
exploration of new phosphorylation modification sites in
SARS-CoV-2 infection and the understanding of the related
pathogenesis and therapeutic strategies.

2 Materials and methods

2.1 Bioinformation analysis methods

RNA sequencing data (GSE 184536) for bioinformation
analysis were downloaded from the GEO databases (https://
www.ncbi.nlm.nih.gov/geo). The dataset contains indepen-
dent biological triplicates of transformed lung alveolar (hu-
man A549) cells infected with SARS-CoV-2 (USA-WA1/
2020, MOI: 2) for 2/6/12/24 h. Differentially expressed genes
(DEGs) were analyzed by the R/limma package. To obtain
significant DEGs, jLogFC > 0.1j and P-value of .01 were set
as the thresholds. Pathway enrichment and analysis of biolog-
ical processes (BPs) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) were performed by the R/clusterProfiler
package based on the two databases of the KEGG and Gene
Ontology (GO). P< .05 and enriched gene numbers (count)
�2 were considered for the edges. Finally, the heatmap was
used to show the results of the enrichment analysis.
According to the results of GO analysis, experiments are dif-
ferentiated into two groups (the high expression group and
the low expression group). Then the gene set enrichment
analysis (GSEA) (Subramanian et al. 2005) was performed by
the R/clusterProfiler package and the R/biomaRt package in
the viral infection group compared with the control groups,
respectively. We computed the consistency P-value for each
gene set, and P-value <.05 was considered to be enrichment
significant. The enrichment curves of multiple functional
groups were shown by R/GenePlot2 package, and their
P-values were labeled. The association between infection time
and BPs was analyzed using GSEA.

2.2 Datasets

The prediction of phosphorylation sites can be conceptualized as
a binary classification task, where each specific residue is classi-
fied as a phosphorylated or nonphosphorylated site. When han-
dling such classification tasks, a meticulously curated dataset
that contains both positive and negative data is the foremost and
critical factor to consider. In this work, we adopt the dataset col-
lected by Lv et al. (2021) for training and evaluating machine
learning models. Specifically, the construction of this dataset
mainly includes the following steps to obtain a high-quality
benchmark dataset: (i) a total of 14119 experimentally verified
phosphorylation sites were collected from the literature, which
were identified in human A549 cells infected with SARS-CoV-2
(Stukalov et al. 2021). These sites were carefully curated to en-
sure accuracy and reliability; (ii) the CD-HIT software (Li and
Godzik 2006) was used to reduce the sequence redundancy and
avoid model overfitting with the identity threshold value of 0.3;
(iii) the processed sequences were truncated into peptide

segments with serine/threonine (S/T) or tyrosine (Y) located at
the center. If the central amino acid of a fragment is phosphory-
lated, the fragment is defined as a positive sample; otherwise, it
is labeled as a negative sample. In this study, we only focused on
predicting phosphorylation on the S/T due to insufficient sam-
ples of Y phosphorylation. A sequence having a phosphoryla-
tion site can be represented using following sequence structures:
S pð Þ ¼ A�nA�ðn�1Þ . . . A�2A�1P Aþ1Aþ2 . . . Aþðn�1ÞAþn. Here,
the highlighted letter P denotes the S/T at the positive phosphor-
ylation site, while An denotes the neighboring amino acids of the
central phosphorylation site. The symbol “n” indicates the posi-
tion of a given amino acid relative to the central residue, where
A�n and Aþn are the nth residues on the left and right sides of
the positive site, respectively. Here, the segment sequence length
w is uniformly 33 for both positive samples and negative sam-
ples; (iv) to solve the imbalance problem, the same number of
negative samples as positive samples are randomly selected from
all negative samples. The final dataset contains 10 774 samples,
which can be expressed in a concise notation as follows:
D ¼ Dþ [D�, where Dþ and D� represent positive and nega-
tive samples respectively, both of which contain 5387 sequences.
(v) Eighty percent of the samples were used for training and vali-
dation of the models, and the remaining 20% were used as
completely independent blind tests.

2.3 Model overview

The fundamental concept behind PSPred-ALE is the utilization
of adaptive learning embeddings and self-attention mechanisms
(Vaswani et al. 2017). This is achieved through the implementa-
tion of several techniques aimed at constructing and optimizing
the model, which comprises four sub-modules, including the em-
bedding layer, encoder layer, decoder layer and projection layer.
The encoder layer and decoder layer share the same structure.
The hyperparameters for the proposed PSPred-ALE model can
be found in Supplementary Table S1. The main modules are de-
scribed in detail as follows:

1) Embedding layer: The core idea of this module is to map
each amino acid residue to a unique randomly initialized
low-dimension and dense vector that can be learned and
adjusts adaptively during model training via backpropa-
gation. Thus, the whole peptide segment can be repre-
sented by a unique matrix through embedding layer.
However, the above embedding methods do not consider
the order of amino acids in the protein sequence, which
is crucial for structure and function. Thus, the positional
embedding was used to encode the amino acid position,
which will provide additional information about the
amino acid order of the protein sequence. For the amino
acid at the p position in the sequence, the positional em-
bedding is represented as a dk-dimensional vector. The
ith element PEðpÞi of this vector can be expressed as
follows:

PEðpÞ2i ¼ sinðp=10 0002i=dkÞ (1)

PEðpÞ2iþ1 ¼ cosðp=10 0002i=dkÞ; (2)

where 2i and 2iþ 1 represent the even and odd dimen-
sions, respectively. The use of positional embedding
allows us to capture both absolute and relative posi-
tional information of the amino acids in the sequence.
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To obtain the final embedding for the entire protein se-
quence, we add the amino acid embedding and the corre-
sponding positional embedding together. This combined
embedding represents the entire sequence and captures
both the amino acid identities and their relative positions
in the sequence. By incorporating both types of embed-
dings, the model can effectively capture the sequential in-
formation in the protein sequence and use it to make
predictions.

2) Encoder layer: The encoder block takes as input the em-
bedding vectors produced by the embedding layer. It
comprises two key components: a multihead attention
block and a feature optimization block. The encoder
layer serves as the core of our model, enabling the em-
bedding vectors to capture the context of each residue at
different positions, and focus on relevant information
while minimizing the impact of irrelevant information.
The multihead attention mechanism comprises several
self-attentions and the mathematical formulation for
self-attention is as follows:

Q ¼ XWQ

K ¼ XWK

V ¼ XWV

8<
: (3)

Self � Attention Q; K; Vð Þ ¼ softmax
QKTffiffiffiffiffi

dk

p
 !

V; (4)

where X 2 R
L�dm is embedding layer output matrix, dm

is the embedding dimension and L is the input sequence
length. Q, K, V 2 R

L�dk are the query, key and value,
respectively, which are obtained by applying linear
transformations of X with weight matrices WQ, WK,
WV 2 R

dm�dk . dk is the dimension of the query, key and
value vector. Both dm and dk are hyperparameters that
need to be set manually.The feature optimization block
consists of fully connected layers, with the number of
channels gradually increasing and then decreasing. This
block is designed to ensure that the input and output
dimensions are consistent, and to obtain a better feature
representation.

3) Projection layer: The last module of our model is referred
to as the projection layer, which is composed of fully con-
nected layers and nonlinear activation functions. The fea-
ture matrix obtained from the previous layer represents the
input sequence, with each column corresponding to the
context vector of a specific residue. To obtain the learned
representations of the entire sequence, we reshape the fea-
ture matrix into a 1D feature vector. This flattened feature
vector is then passed through the projection layer, which
transforms the sequence representations into a probabilistic
distribution of classes. By computing the probabilities for
each class, we can determine the likelihood of the central
amino acid of a fragment being a phosphorylation site or a
nonphosphorylation site.

2.4 Implementation of traditional machine learning

models

To use machine learning algorithms implementation for dis-
tinguishing protein phosphorylation sites, it is necessary to
convert biological sequence data into numeric feature vectors

through various encoding methods, since these algorithms
cannot process the amino acid sequences directly. This pro-
cess of transforming the sequences into mathematical expres-
sions that accurately capture the intrinsic correlations with
the desired targets is called feature extraction or feature
encoding (Liu 2019). The typical studies of phosphorylation
site prediction heavily use traditional machine learning algo-
rithms and handcrafted feature extraction methods to build
prediction tools. However, no studies have specifically exam-
ined the effectiveness of classical protein features and conven-
tional machine classifiers in identifying phosphorylation sites
associated with SARS-CoV-2 infection thus far. Therefore, to
gain a better understanding of the most effective methods for
representing phosphorylation site protein sequences, we have
undertaken a comprehensive study that compares an adaptive
learning embedding features-based model with handcrafted
features-based models. By exploring both approaches, we can
better determine which method is more effective in predicting
phosphorylation sites in SARS-CoV-2 infection, and thus pro-
vide insights into how to optimize computational tools for
studying protein modification sites. Comparing the perfor-
mance of different methods can be a challenging task when
there are a large number of handcrafted features to consider.
To address this issue, we have chosen to focus on twenty of
the most popular statistical features for prediction and analy-
sis. These features include amino acid composition (AAC),
AAindex, learn from alignments (AESNN), amphiphilic
pseudo-amino acid composition (APAAC), adaptive skip di-
peptide composition (ASDC), BLOSUM62 (BLOSUM), com-
position of k-Spaced amino acid group pairs (CKSAAGP),
composition (CTDC), k-spaced conjoint triad (CTriad), di-
peptide deviation from expected mean (DDE), PseAAC of
distance-pairs and reduced alphabet (DP), di-peptide compo-
sition (DPC), enhanced amino acid composition (EAAC), en-
hanced grouped amino acid composition (EGAAC), k-spaced
conjoint triad (KSCT), overlapping property features (OPF),
pseudo-amino acid composition (PAAC), quasi-sequence-
order (QSOrder), ZScale, and composition of k-spaced amino
acid pairs (CKSAAP). We have selected four of the most com-
monly used classification algorithms in biological sequence
analysis and prediction to build models. These algorithms in-
clude Support Vector Machine (SVM), Random Forest (RF),
Light Gradient Boosting Machine (LGBM), and eXtreme
Gradient Boosting (XGBT). These algorithms were chosen
based on their well-established performance in the field and
their ability to effectively handle complex and high-
dimensional data, such as protein sequences. To implement
and compare the different features and classifiers mentioned
above, we have utilized the iLearn package (Chen et al. 2021)
for extracting the statistical features and the scikit-learn API
(Swami and Jain 2013) for implementing the traditional ma-
chine learning algorithms. Grid search was used to fine-tune
the hyperparameters of the classifiers, and the search range is
provided in Supplementary Table S2.

2.5 Performance evaluation strategies

We selected five commonly used metrics for evaluating the
performance of binary classification models, namely, accu-
racy (ACC), sensitivity (SE), specificity (SP), area under the re-
ceiver operating characteristic curve (AUC), and Matthew’s
correlation coefficient (MCC). Detailed descriptions and cal-
culation formulas for these metrics are presented in the sup-
plementary material (Evaluation metrics section).
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3 Results and discussion

3.1 Bioinformation analysis of A549 cells with

SARS-CoV-2 infection

We performed principal component analysis (PCA) on the
mRNA dataset to reduce the dimensionality of the data and
visualize sample differences between infected and uninfected
groups. The PCA showed that the eigenvalues of the two first
principal components represented 92.49% of the total vari-
ance (PC1: 87%; PC2: 5.49%) of the observations (Fig. 2A).
Figure 2A also shows significant segregation of the infected
and uninfected groups along the second dimension, which
suggests that human lung epithelial A549 cell infection with
the novel coronavirus will have an impact on host cells,

especially 24 h after infection. We concentrate on the BPs oc-
curring across various time scales following infection in order
to obtain understanding of potential cellular function altera-
tions. To find the genes implicated in significantly altered
pathways, we first mapped all the DEGs in the KEGG data-
base. At 12 and 24 h after infection, it revealed a high enrich-
ment of immune-related pathways (Fig. 2B). Moreover, GO
enrichment analysis revealed that most phosphorylation-
related pathways were more enriched in uninfected groups
than in infected groups (Fig. 2C). During the stage of SARS-
CoV-2 infection, phosphorylation signaling stands in place of
transcriptional control as the main host defense mechanism
(Bouhaddou et al. 2020). The GSEA results showed no signifi-
cant changes in protein phosphorylation pathway in A549

Figure 2. (A) PCA of A549 cells infected with SARS-CoV-2 at different hours post-infection (hpi) compared to uninfected cells. (B–C) Heatmap of the top

26 KEGG pathways (B) and top 25 GO pathways (C) in SARS-CoV-2 infection groups and uninfected groups at different time course of post-infection.

GSEA was performed against the KEGG datasets or GO dataset for BPs. The color of the lattices represents the false discovery rate value for each

enriched KEGG term or GO term. (D–G) Enrichment analysis of GO involved the dephosphorylation pathway. GSEA of 2 hpi (D), 6 hpi (E), 12 hpi (F), 24 hpi

(G), P-value and P-adjusted are indicated. Con2h, mock-infected A549 cells (2 hpi); SARS2h, SARS-CoV-2-infected A549 cells (2 hpi); Con6h, mock-

infected A549 cells (6 hpi); SARS6h, SARS-CoV-2-infected A549 cells (6 hpi); Con12h, mock-infected A549 cells (12 hpi); SARS12h, SARS-CoV-2-infected

A549 cells (12 hpi); Con24h, mock-infected A549 cells (24 hpi); SARS24h, SARS-CoV-2-infected A549 cells (24 hpi)
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cells after 2 and 6 h of virus infection (Fig. 2D and E), but sig-
nificant changes in protein phosphorylation pathway after 12
and 24 h of infection, which is highly suggestive of self-
defense of host lung epithelial cells starting 12 h after virus in-
fection (Fig. 2F and G). Here, we investigate the relationship
between viral infection and host response, demonstrating sig-
nificant variations in immune-related pathways, metabolic
pathways, and protein phosphorylation events in host cells.
Consistent with reports in the literature (Nilsson-Payant et al.
2021), the transcriptional response to the virus peaked at 12 h
post infection and then increased steadily until 24 h post
infection.

3.2 Performance comparison of PSPred-ALE with

existing predictors

To evaluate the proposed PSPred-ALE, we compared its perfor-
mance with four SOTA prediction tools, including DeepPSP,
MusiteDeep2017, MusiteDeep2020, and DeepIPs. The perfor-
mance metrics of MusiteDeep2017, MusiteDeep2020 and
DeepPSP were obtained by Lv et al. by rebuilding the models.
Thus, all compared models are compared fairly based on the
same dataset with a sequence length of 33. The performance
results of these compared predictors are summarized in Table 1
and shown in Fig. 3.

As evidenced by Fig. 3A, our newly proposed PSPred-ALE
exhibits significantly superior performance than the current
SOTA predictor DeepIPs, when evaluated using 5-fold cross val-
idation. Specifically, the ACC, AUC, SE, SP, and MCC values
are about 3.13%, 2.40%, 4.19%, 2.07%, and 6.12% higher
than those of DeepIPs, respectively. To better evaluate model’s
performance, it’s important to compare it with other existing
phosphorylation site prediction tools using independent test
data. This allows for a more comprehensive assessment of its ac-
curacy and robustness. As shown in Table 1 and Fig. 3B, our
model achieved overall better performance on the independent
dataset. Specifically, the ACC, AUC, and MCC of our model is
about 2.1%–2.9%, 1.3%–3.1%, and 2.9%–5.7% higher than
those of other three predictors, respectively. Although our mod-
el’s SE and SP values are not the highest, they are only slightly
worse than the best. It is worth noting that the SE and SP values
of our model are similar, both at about 83%, while the gap be-
tween these two indicators of existing predictors is very large,
with the largest being close to 7.1%. This means that our model
is more balanced in its ability to identify both negative and posi-
tive samples. To this end, the results demonstrate that our
PSPred-ALE is superior to the SOTA approaches for the identifi-
cation of phosphorylation sites related to the SARS-CoV-2
infection.

3.3 Window size optimization

To accurately identify phosphorylation sites, it is important to
consider the bias of amino acids specific to their positions rel-
ative to the phosphorylation site. This requires determining
the optimal window for flanking sequences around phosphor-
ylation sites. On the other hand, the performance of the pre-
dictive model is strongly related to the input sequence length.
We analyzed the impact of window size w on the predictive
performance using the training dataset. The scope of w
ranged from 5 to 33, with an increment of 2 amino acids.
Figure 4A shows the predictive accuracies obtained through a
5-fold cross validation test for models using different window
sizes. When the window size is between 5 and 23, the model’s
performance increases dramatically with the window size.
When it reaches 29, the model’s performance no longer
improves with the window change. w¼ 29 was chosen as it
corresponded to the maximum accuracy value achieved
through 5-fold cross validation. So, we use a sequence length
of 29 for the next step analysis. The shorter sequence of
inputs means a lower consumption of computing resources.
To further demonstrate the efficacy of PSPred-ALE, indepen-
dent testing was conducted, yielding an ACC of 83.14%,
AUC of 0.907, SE of 83.15%, SP of 83.13%, and MCC of
0.663. All these results are also summarized in Table 1 and
presented in Fig. 3B.

3.4 Conventional machine learning models using

handcrafted features

All compared models were performed and evaluated on the
training dataset, with a 5-fold cross validation approach.
Figure 4B presents the predictive performances of the com-
pared models, and Supplementary Table S3 provides more de-
tailed results. The following observations can be made based
on the results.

As we can see from Fig. 4B, the performance of handcrafted
feature extraction methods varies greatly. While some encod-
ings may produce highly accurate predictors, others may per-
form poorly and yield less reliable results. Overall, the four
classifiers share the same pattern on different features, where
the LGBM classifier tended to perform the best, while the RF
classifier tended to perform the worst. Regarding the different
feature encoding methods, some of them consistently perform
well across all four algorithms. For example, EAAC performs
well across all four machine learning algorithms but particu-
larly well with LGBM and XGBT. The BLOSUM achieves the
second-highest accuracy on four classifiers except RF. On the
other hand, some feature extraction methods consistently per-
form poorly across all machine learning algorithms, such as
CTriad, which has the lowest cross validation accuracy for all
four algorithms. Specially, the EAAC and BLOSUM on the
LGBM classifier achieved scores of 81.49% and 81.08%,

Table 1. Comparison of the proposed PSPred-ALE and existing methods on training and testing datasets.

Model 5-Fold cross validation Independent testing

ACC (%) AUC SE (%) SP (%) MCC ACC (%) AUC SE (%) SE (%) MCC

DeepPSP 80.21 0.876 76.65 83.78 0.606
MusiteDeep2017 80.17 0.880 78.87 81.46 0.604
MusiteDeep2020 80.95 0.887 82.95 78.96 0.620
DeepIPs 80.45 0.887 79.70 81.19 0.610 80.63 0.894 79.61 83.50 0.632
Ours (w¼33) 83.58 0.911 83.89 83.26 0.671 83.06 0.907 82.58 83.54 0.661
Ours (w¼29) 84.03 0.913 84.22 83.84 0.681 83.14 0.907 83.15 83.13 0.663
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respectively, which is about 1.04% and 0.63% higher than
that of DeepIPs, respectively. This also proves that the feature
representation method used by DeepIPs has no advantage
over handcrafted features. In summary, the results suggest
that the choice of feature extraction method and machine
learning algorithm can have a significant impact on the per-
formance of a protein classification task, and that a combina-
tion of EAAC or BLOSUM and LGBM may be a particularly
effective approach for this dataset.

3.5 Conventional machine learning models using

adaptive learning embedding features

To gain a more intuitive understanding of the effectiveness of
the adaptive learning embedding features, we further utilized
them to train traditional machine learning models. We output
the learned representation matrix before the fully connected
layer and flatten for each sample. Then, these features were
input to the classifiers to obtain corresponding models. The
results metrics are also presented in Supplementary Table S4

and plotted in Fig. 4B. We can see that the adaptive learning
embedding features (ALE) learned by our method outperform
all the statistical-based traditional handcrafted features on the
traditional classifiers. Notably, the results of the adaptive
learning embedding features on the four classifiers are very
close, all at about 81.5%, which is better than DeepIPs and
all handcrafted features. Comprehensively, the adaptive learn-
ing embedding features is better and more stable for repre-
senting the protein sequence in this study.

3.6 Feature visualization comparison by dimension

reduction

To provide an intuitive demonstration of the effectiveness of
PSPred-ALE, we reduced the feature space to a 2D space using
principal component analysis (PCA) (Shlens 2014) and uniform
manifold approximation and projection (UMAP) (Mcinnes et al.
2018) on training datasets. This allows us to gain insights into
the learned features and how they contribute to the model’s
predictions. The resulting plots are shown in Fig. 5. PCA is a

Figure 3. (A) and (B) Performance comparison between PSPred-ALE and existing predictors using 5-fold cross validation and an independent test,

respectively

Figure 4. (A) The impact of the window size on the model’s performance. (B) The performance comparison of twenty handcrafted features and adaptive

learning embedding features on four traditional machine learning classifiers
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well-established and widely used linear method for dimension
reduction, while UMAP is a newer, more advanced nonlinear
method that is particularly effective at preserving the structure
and relationships between data points in high-dimensional
space. As we can see from Fig. 5, the PCA and UMAP plots
show similar patterns. For handcrafted feature EAAC, although
it can also be seen that some samples are aggregated, most of
them are still mixed (Fig. 5A and E). For PSPred-ALE, the posi-
tive and negative samples are mixed before training because the
embeddings are initialized randomly. This demonstrated that the
model lacked distinguishing ability at this stage. As the number
of training epochs increases, the negative and positive points are
gradually distinguished from each other (Fig. 5C and G). After
training, there is an obvious gap between positive sample clus-
ters and negative sample clusters in the PCA space (Fig. 5D).
The UMAP space also shows a clear trend where the positive
samples tend to be distributed on the upper side, while the nega-
tive samples tend to be distributed on the lower side, and there is
also an obvious boundary in the middle (Fig. 5H). Both methods
indicate that our model indeed learns some distinguishable fea-
tures better than the handcrafted features after training to sepa-
rate two classes of samples. Meanwhile, a considerable portion
of the samples fall in the opposing regions, which explains why
our model still has a 17% error rate to some degree. We conjec-
ture that the positive samples that were incorrectly classified as
negative by our method may possess certain features that were
not captured by our model. Thus, it is necessary to conduct fur-
ther investigation into the unique sequence patterns and proper-
ties of these indistinguishable samples in the future. Overall, the
results of the dimensionality reduction analysis provide addi-
tional evidence that our model is effective at accurately classify-
ing samples and capturing important information from the input
raw protein sequences.

4 Conclusion

The identification of SARS-CoV-2 phosphorylation modifica-
tion sites is a significant endeavor that can facilitate the devel-
opment of related new drugs and treatment strategies, which
indirectly contribute to global health care. According to the
results of the bioinformatics analysis, it is clear that protein

phosphorylation events are significantly altered upon cellular
infection with SARS-CoV-2. However, the current lack of ma-
chine learning tools specifically designed for identifying these
modification sites poses a challenge in this field. In this work,
we developed a novel deep learning predictor named PSPred-
ALE for identifying SARS-CoV-2 phosphorylation modifica-
tion sites. The framework utilizes only the protein primary
sequence for prediction. In particular, we use an adaptive
learning embedding algorithm to generate better protein
sequence representations, which can overcome the inefficien-
cies of traditional computational methods that rely on hand-
crafted feature engineering. The experimental results
demonstrate that our model is capable of adaptively extract-
ing high-quality and discriminative features from different
class examples, resulting in a significant improvement in pre-
diction performance. The comparative experiments show that
PSPred-ALE achieves superior performance on most evalua-
tion metrics when compared to existing methods, thereby pro-
viding further evidence that protein sequences themselves
contain sufficient information to predict SARS-CoV-2 phos-
phorylation modification sites. To facilitate use by the rele-
vant research community, we have made the source code for
implementing PSPred-ALE publicly available. Due to the cur-
rent lack of accurate models for predicting phosphorylation
modification sites of SARS-CoV-2, our study presents a com-
prehensive methodology that can serve as a foundation for fu-
ture research in this field. We expect that PSPred-ALE will be
a valuable tool to complement wet lab experiments in identi-
fying phosphorylation modification sites of SARS-CoV-2 in-
fection, and its application can help reveal relevant biological
functional mechanisms and perform numerous sequence-
based analyses.
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Supplementary data are available at Bioinformatics online.
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Figure 5. Dimension reduction of samples by PCA and UMAP. (A) and (E) are the PCA and UMAP visualizations of the handcrafted feature EAAC,

respectively. (B–D) are the PCA visualizations of adaptive learning embedding features during the training process at 1, 20, and 100 epochs, respectively.

(F–H) are the UMAP visualizations of adaptive learning embedding features during the training process at 1, 20, and 100 epochs, respectively

8 Jiao et al.

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad627#supplementary-data


Funding

The work was supported by the JSPS KAKENHI
[JP23H03411, JP22K12144], the JST [JPMJPF2017]; the
National Natural Science Foundation of China [62271329,
62250028, 62131004, 62202081]; and the Municipal
Government of Quzhou [2022D040].

References

Ardito F, Giuliani M, Perrone D et al. The crucial role of protein phos-
phorylation in cell signaling and its use as targeted therapy (review).
Int J Mol Med 2017;40:271–80.

Beausoleil SA, Villén J, Gerber SA et al. A probability-based approach
for high-throughput protein phosphorylation analysis and site locali-
zation. Nat Biotechnol 2006;24:1285–92.

Bouhaddou M, Memon D, Meyer B et al. The global phosphorylation
landscape of SARS-CoV-2 infection. Cell 2020;182:685–712.e619.

Chen Z, Zhao P, Li C et al. iLearnPlus: a comprehensive and automated
machine-learning platform for nucleic acid and protein sequence analy-
sis, prediction and visualization. Nucleic Acids Res 2021;49:e60.

Gordon DE, Jang GM, Bouhaddou M et al. A SARS-CoV-2 protein in-
teraction map reveals targets for drug repurposing. Nature 2020;
583:459–68.

Guo L, Wang Y, Xu X et al. DeepPSP: a global–local information-based
deep neural network for the prediction of protein phosphorylation
sites. J Proteome Res 2021;20:346–56.

Hekman RM, Hume AJ, Goel RK et al. Actionable cytopathogenic host
responses of human alveolar type 2 cells to SARS-CoV-2. Mol Cell
2020;80:1104–22.e1109.

Herold F, Törpel A, Hamacher D et al. A discussion on different
approaches for prescribing physical interventions – four roads lead
to Rome, but which one should we choose? J Pers Med 2020;10:55.

Humphrey SJ, James DE, Mann M. Protein phosphorylation: a major
switch mechanism for metabolic regulation. Trends Endocrinol
Metab 2015;26:676–87.

Huang K-Y, Lee T-Y, Kao W-C et al. dbPTM in 2019: exploring disease
association and cross-talk of post-translational modifications.
Nucleic Acids Res 2018;47:D298–308.

Lai C-C, Shih T-P, Ko W-C et al. Severe acute respiratory syndrome corona-
virus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19):
the epidemic and the challenges. Int J Antimicrob Agents 2020;55:
105924.

Li W, Godzik A. Cd-hit: a fast program for clustering and comparing
large sets of protein or nucleotide sequences. Bioinformatics 2006;
22:1658–9.

Liu B. BioSeq-Analysis: a platform for DNA, RNA and protein sequence
analysis based on machine learning approaches. Brief Bioinform
2019;20:1280–94.

Lv H, Dao F-Y, Zulfiqar H et al. DeepIPs: comprehensive assessment
and computational identification of phosphorylation sites of SARS-
CoV-2 infection using a deep learning-based approach. Brief
Bioinform 2021;22:bbab244.

Lyu J, Wang Y, Mao J et al. A pseudo-targeted MS method for the sensi-
tive analysis of protein phosphorylation in protein complexes. Anal
Chem 2018;90:6214–21.

McInnes L, Healy J, Saul N et al. UMAP: uniform manifold approxima-
tion and projection for dimension reduction. JOSS 2018;3:861.

Nilsson-Payant BE, Uhl S, Grimont A et al. The NF-jB transcriptional
footprint is essential for SARS-CoV-2 replication. J Virol 2021;95:
e0125721.
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