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Abstract

Fibroblast growth factor receptors (FGFR) are emerging as an important therapeutic target for patients with advanced, refractory cancers.
Most selective FGFR inhibitors under investigation show reversible binding, and their activity is limited by acquired drug resistance. This
review summarizes the preclinical and clinical development of futibatinib, an irreversible FGFR1-4 inhibitor. Futibatinib stands out among
FGFR inhibitors because of its covalent binding mechanism and low susceptibility to acquired resistance. Preclinical data indicated robust
activity of futibatinib against acquired resistance mutations in the FGFR kinase domain. In early-phase studies, futibatinib showed activity in
cholangiocarcinoma, and gastric, urothelial, breast, central nervous system, and head and neck cancers harboring various FGFR aberrations.
Exploratory analyses indicated clinical benefit with futibatinib after prior FGFR inhibitor use. In a pivotal phase Il trial, futibatinib demon-
strated durable objective responses (42% objective response rate) and tolerability in previously treated patients with advanced intrahepatic
cholangiocarcinoma harboring FGFRZ2 fusions or rearrangements. A manageable safety profile was observed across studies, and patient
quality of life was maintained with futibatinib treatment in patients with cholangiocarcinoma. Hyperphosphatemia, the most common
adverse event with futibatinib, was well managed and did not lead to treatment discontinuation. These data show clinically meaningful ben-
efit with futibatinib in FGFR2-rearrangement-positive cholangiocarcinoma and provide support for further investigation of futibatinib across
other indications. Future directions for this agent include elucidating mechanisms of resistance and exploration of combination therapy
approaches.
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Implications for Practice

Patients with FGFR-altered cancers have limited treatment options in advanced stages. Promising responses have been observed
with FGFR inhibitors; however, acquired resistance is an emerging concern. This review summarizes data surrounding futibatinib, the
only second-generation FGFR1-4 inhibitors in phase Il/lll clinical development. Futibatinib has shown durable efficacy and tolerability in
cholangiocarcinoma with FGFR2 fusions/rearrangements, and recently received approval from the US Food and Drug Administration for
this indication. Futibatinib has demonstrated antitumor activity across several FGFR-aberrant tumors, spurring the initiation of several
phase |l trials of futibatinib or futibatinib-containing combinations in other tumor types.

describe the role of FGFR and FGFR inhibitors in cancer
and discuss recent data supporting futibatinib as a clinically
meaningful, second-generation FGFR inhibitor.

Introduction

Fibroblast growth factors (FGFs) and their receptors (FGFRs)
play an integral role in regulating a wide range of biological
processes' and dysregulation of the FGFR pathway is asso-

ciated with oncogenesis.>” Approximately 7% of all cancers
harbor FGFR aberrations, with type and prevalence varying
widely.® Thus, FGFR has emerged as an important therapeu-
tic target. Most FGFR inhibitors in development are ATP-
competitive, reversible inhibitors, which are associated with
acquired resistance.>* Futibatinib, an irreversible FGFR1-4
inhibitor, is the most advanced covalent inhibitor in clinical
development for multiple cancer types.!! Here, we briefly

FGFR as an Oncologic Target

The FGFR pathway includes a family of 22 FGF ligands,
which primarily convey cellular signals through 4 transmem-
brane tyrosine kinase receptors (FGFR1-4).'213 Typically,
FGFR activation induces cell proliferation and migration,'
but it can also drive cell differentiation or negatively regu-
late proliferation.'>'® Aberrant FGFR signaling (generally
constitutive FGFR activation) can promote tumorigenesis,
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support tumor survival, and confer resistance to chemother-
apy through anti-apoptotic signaling,>7!”!% rendering FGFR-
altered tumors difficult to treat."

Analysis of 17 different cancer types showed that 7%
had FGFR aberrations, found most commonly in urothe-
lial, breast, endometrial, and squamous cell lung cancer
(Fig. 1). Gene amplifications, mutations, and rearrangements
accounted for 66%, 26%, and 8% of FGFR aberrations
identified, respectively.® These findings suggest FGFR inhi-
bition as a potential therapeutic strategy in multiple tumor

types.

Selective, Small-Molecule FGFR Inhibitors

FGFR inhibitors mostly target the FGFR kinase domain, inhib-
iting FGFR signaling. Although several therapeutic modalities
are being investigated for FGFR inhibition (reviewed else-
where®), small-molecule FGFR inhibitors remain the most
widely investigated. These inhibitors vary in their selectivity
(specific to FGFR or multikinase) and mode of binding to
the FGFR kinase domain (type I, type II, reversible, or irre-
versible).* Reversible ATP-competitive FGFR inhibitors cur-
rently under investigation, including derazantinib, erdafitinib,
pemigatinib, and infigratinib (Table 1; Supplementary Table
S1), engage primarily in noncovalent interactions with amino
acids in the hinge and surrounding regions of the ATP-binding
pocket in the FGFR kinase domain. Irreversible inhibitors,
such as PRN1371, futibatinib, and fisogatinib, form a cova-
lent bond, generally with a conserved cysteine in the FGFR
kinase domain.**

Selective FGFR inhibitors have shown promising activity
in various FGFR-aberrant cancer types. To date, the US Food
and Drug Administration (FDA) has approved erdafitinib
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in patients with metastatic urothelial carcinoma harboring
FGFR2/3 aberrations who were previously treated,”” and
pemigatinib and infigratinib for second- or later-line treat-
ment of unresectable cholangiocarcinoma (CCA) with FGFR2
fusions or rearrangements.*>>> An emerging concern with
these inhibitors is acquired resistance, which leads to disease
progression.”*®” One mechanism of acquired resistance is
the development of secondary “gatekeeper” mutations in the
FGFR kinase domain that “block” FGFR inhibitor binding
through steric hindrance.”¥-**8 Reversible inhibitors, such as
erdafitinib, infigratinib, and pemigatinib, are largely ineffec-
tive against these mutations.’® Second-generation inhibitors
that retain activity against these mutations and have a lower
susceptibility to resistance are sorely needed.

Futibatinib, a Potent, Irreversible FGFR1-4 Inhibitor

Futibatinib is a structurally novel, highly selective, and potent
FGFR inhibitor,' which binds covalently and irreversibly to a
conserved cysteine residue in the FGFR kinase domain within
the ATP-binding pocket™ (Fig. 2). As this cysteine residue is
conserved across all FGFR receptors, futibatinib inhibits the
kinase activity of all 4 FGFR isoforms. The distinct binding
site and irreversible binding render futibatinib less susceptible
to drug resistance mutations than reversible, ATP-competitive
inhibitors.

Preclinical Development

In vitro characterization of futibatinib against a panel of 296
kinases demonstrated high selectivity and potent inhibition of
all 4 FGFR isoforms with half-maximal inhibitory concentra-
tion values ranging from 1.4 nmol/L to 3.7 nmol/L."! Futibatinib
selectively inhibited cancer cell lines of diverse tissue origins
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Figure 1. Incidence of FGFR aberrations across cancer types. This bar chart shows the incidence of the indicated FGFR aberrations across various
cancer types, data collated from a number of published reports.?8'320% |n cases where a range of incidences were noted, the upper limit of the range is
indicated in this chart. Abbreviation: NMIBC, non-muscle invasive bladder cancer.
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Figure 2. Futibatinib structure and predicted binding of futibatinib and other reversible FGFR inhibitors to the FGFR kinase domain. (A) Chemical
structure of futibatinib and in vitro inhibitory activity. Adapted from Cancer Research, 2020, 80(22), 4986-4997, Sootome H, Fujita H, Ito K, et al.,
Futibatinib Is a Novel Irreversible FGFR 1-4 Inhibitor That Shows Selective Antitumor Activity against FGFR-Deregulated Tumors, with permission from
AACR." (B) Predicted interactions of futibatinib, erdafitinib, and pemigatinib with the ATP binding pocket of the FGFR2 wild-type kinase domain. Amino
acid residues altered in identified resistance mutations are labeled and shown as ball and stick models. Kinase domain regions are depicted as follows:
gold, hinge region; red, catalytic loop; blue, activation domain; purple, c-alpha-helix; green, P-loop; cyan, DFG motif. Futibatinib (pink and blue stick
figure) binds covalently to C492 in the P-loop (yellow stick), enabling it to persist in the ATP-binding pocket irrespective of the presence of resistance
mutations, which block access of reversible FGFR inhibitors such as erdafitinib, pemigatinib, or infigratinib (green and blue stick figures). Reproduced

with permission from Goyal et al. 2023.%¢ Abbreviations: DFG, Asp-Phe-Gly; FGFR, fibroblast growth factor receptors; IC

sor half-maximal inhibitory

concentration. From The New England Journal of Medicine, Goyal L, Meric-Bernstam F, Hollebecque A, et al., Futibatinib for FGFR2-Rearranged
Intrahepatic Cholangiocarcinoma, 388, 228-239. Copyright © (2023) Massachusetts Medical Society. Reprinted with permission from Massachusetts

Medical Society.

(gastric, lung, multiple myeloma, bladder, endometrial, and
breast) harboring a variety of FGFR aberrations. Additionally,
futibatinib treatment led to significant dose-dependent tumor
reductions and sustained FGFR kinase inhibition in FGFR-
aberrant human tumor xenograft mice models.

In vitro futibatinib treatment of gastric cancer cells was
associated with a lower risk of developing drug resistance due
to FGEFR escape mutations than the reversible FGFR inhibitor
AZD4547." Futibatinib also demonstrated greater inhibition
of secondary FGFR2 kinase domain drug-resistant mutations,
including the gatekeeper mutation V565I/L, than AZD4547,
infigratinib, pemigatinib, or erdafitinib.!!

In an unbiased library-based analysis, the activity of futi-
batinib and other FGFR inhibitors were examined against
drug-resistant FGFR2 kinase domain mutations generated
by random mutagenesis®” and transfected in a Ba/F3 cell sys-
tem dependent on FGFR2 signaling for growth. Futibatinib
showed the most robust inhibition of drug-resistant FGFR2
kinase domain mutations (also clinically relevant®*®57:¢0) as
well as the lowest propensity for emergence of resistant clones
with prolonged treatment.

Futibatinib Early Clinical Data: Dose Selection and
Pharmacology

A first-in-human, phase 1  dose-escalation  study
(NCT02052778) evaluated futibatinib safety and pharma-
cokinetics/pharmacodynamics in 86 patients with advanced
solid tumors (83% with FGF/FGFR aberrations) who were
heavily pretreated.®! Futibatinib was administered on daily
(QD) continuous dosing (4-24 mg QD; 7 = 44) and 3 times
a week (TIW) intermittent dosing (8-200 mg TIW; n = 42)
schedules. Dose-limiting toxicities (DLTs), all related to liver

enzyme elevations, occurred in 3 patients receiving futibatinib
24 mg QD. No DLTs were observed with TITW dosing. All QD
doses tested showed dose-proportional pharmacokinetics,
whereas TIW dosing was associated with saturation between
80 mg and 200 mg TIW. As renal handling of phosphorus
is mediated by FGF23 signaling,®> serum phosphorus levels
were evaluated as an on-target effect and chosen as a pharma-
codynamic marker. While serum phosphorus levels correlated
positively with futibatinib dose and exposure for both QD
and TIW dosing, this correlation was stronger with QD vs.
TIW dosing. Similar data were observed in a phase I dose-
escalation study in patients with advanced solid tumors from
Japan (JapicCTI-142552).% Based on these data, futibatinib
20 mg QD was selected as the recommended phase II dose.

Futibatinib showed a manageable safety profile.®’ The
most common treatment-emergent adverse events were
hyperphosphatemia, diarrhea, and constipation. In addition,
encouraging preliminary antitumor activity was observed
in this heavily pretreated population, particularly in those
with intrahepatic CCA (iCCA). Across cohorts, 5 patients
(6%) experienced partial responses (PRs) and 48% (n = 41)
achieved stable disease (SD). Most patients with PRs or SD
had tumors harboring FGF/FGFR aberrations; those with
PRs included 3 patients with iCCA, all harboring FGFR2
fusions, and 2 patients with FGFR1-mutant brain tumors.
Among patients with CCA, 75% (18/24) experienced a PR
or SD.

Futibatinib pharmacokinetics were evaluated in healthy
adult volunteers in multiple open-label, phase 1 studies.
An absorption, distribution, metabolism, and excretion
study with ["*C]-futibatinib identified futibatinib as the
most abundant component circulating in plasma; other
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metabolites accounted for 9%-13% of circulating compo-
nents.** [C]-futibatinib was mainly excreted through the
fecal route after metabolism, and no unmetabolized futibati-
nib was detected in the feces or urine.

In a food-effect and drug-drug interaction (DDI) study
with a proton pump inhibitor (PPI; lansoprazole), consum-
ing a high-fat, high-calorie meal slightly lowered futibatinib
oral bioavailability, and delayed time to futibatinib maximum
plasma concentration, but the differences were not clinically
meaningful. Coadministration of lansoprazole had no clini-
cally relevant effect on futibatinib pharmacokinetics, indicat-
ing that futibatinib can be coadministered with PPIs.®%¢5

Other phase I studies in healthy adult volunteers evaluated
the involvement of futibatinib in the common drug metab-
olizing CYP3A pathway.®® DDIs were assessed between
futibatinib and midazolam (a sensitive CYP3A substrate),
itraconazole (a strong dual inhibitor of CYP3A and P-gp),
and rifampin (a strong dual inducer of CYP3A and P-gp).®
Multiple doses of futibatinib did not affect the pharmacoki-
netics of midazolam; therefore, futibatinib is not expected to
affect the exposure of concomitant medications metabolized
via CYP3A. However, itraconazole coadministration resulted
in higher peak plasma concentrations and significant increases
in plasma exposure of futibatinib compared with futibatinib
alone, and coadministration of rifampin decreased futibatinib
exposure. Thus, coadministering futibatinib with strong dual
inhibitors or inducers of CYP3A and P-gp should be avoided
because of potential significant DDIs.

Activity of Futibatinib in CCA

Based on results from the phase I dose escalation study,’! the
phase I dose expansion study evaluated futibatinib in a larger
population of patients with advanced solid tumors harbor-
ing FGF/FGFR aberrations, including a sizeable CCA pop-
ulation.” Among 64 patients with FGFR-altered CCA who
received futibatinib 20 mg QD, the objective response rate
(ORR) was 15.6%, and in the subgroup of patients with
iCCA harboring FGFR2 fusions/rearrangements (1 = 42), the
ORR was 16.7%. Median duration of response (DOR) was
5.3 months and 6.9 months, respectively, and disease control
rate (DCR) was 72% and 79 %, respectively. In patients with
FGFR2 fusion/rearrangement—positive iCCA treated with
either futibatinib 20 mg or 16 mg QD, the overall ORR was
25.4% (15/59). These data formed the basis for further study
of futibatinib in patients with FGFR2-rearrangement—posi-
tive iCCA.

The pivotal phase II FOENIX-CCA2 study investigated
futibatinib in 103 patients with advanced unresectable iCCA
harboring FGFR2 fusions or rearrangements after one or
more lines of systemic chemotherapy.** FOENIX-CCA2 sur-
passed its primary endpoint target with an ORR of 41.7%
(43/103; 95% CI, 32.1-51.9), as assessed by independent
central review (Fig. 3A). Responses were rapid and dura-
ble: median time to response was 2.5 months (range, 0.7-
7.4), median DOR was 9.7 months (95% CI, 7.6-17.0), and
72% (31/43) of responders had responses lasting at least 6
months (Fig. 3B). Objective responses were consistent across
subgroups, including patients with poor prognostic factors,
such as patients 65 years and older or who were heavily pre-
treated (=3 prior therapies). Preliminary survival data were
promising; after a median follow-up of 17.1 months, median
progression-free survival (PFS) was 9.0 months (95% CIL, 6.9-
13.1) and median overall survival (OS) was 21.7 months (Fig.

The Oncologist, 2023, Vol. 28, No. 11

3C, 3D). The 1-year OS rate was 72%. Results were simi-
lar at extended follow-up (median 25.0 months) with a con-
firmed ORR of 41.7%, mature median OS of 20.0 months
(12-month OS rate, 73%), and median PFS of 8.9 months.%
Based on these data, futibatinib was granted accelerated
approval by the FDA for patients with previously treated,
unresectable, locally advanced, or metastatic FGFR2-fusion/
rearrangement-positive iCCA.*

Genomic Profiling of Futibatinib Clinical Activity in CCA

Exploratory molecular profiling analyses from FOENIX-
CCA2 examined futibatinib activity by FGFR aberration
type or in the context of co-occurring genomic alterations
(Fig. 3A).*® Futibatinib response did not appreciably vary
with fusion partner type: ORRs were 41.7% and 44.6% in
patients with BICC1 and non-BICC1 fusions, respectively.

ORRs were consistent regardless of the presence of co-
alterations in TP53 (ORR, 38.5%; 43.8% with unaltered
TP53), CDKN2A (40.0%; 43.8% with unaltered CDKN2A),
and CDKN2B (43.8%; 42.9% with unaltered CDKN2B)
(Fig. 3A).* Median PFS with futibatinib was 7.0 and 9.0
months in TP53-altered and unaltered populations, respec-
tively, 4.9 and 9.7 months in CDKN2A-altered and unal-
tered populations, respectively, and 4.8 and 11.0 months in
CDKN2B-altered and unaltered populations, respectively.*
While cross-trial comparisons should be made with caution,
a similar analysis of pemigatinib treatment in patients with
CCA harboring FGFR2 fusions/rearrangements found no
response to pemigatinib treatment and a lower median PFS
(2.8 months) in patients with TP353 co-alterations, while
patients without TP53 co-alterations experienced an ORR
of 38.8% and a median PFS of 9.0 months.’” Patients with
CDKN2A/B alterations treated with either pemigatinib or
futibatinib had a lower median PFS, and those treated with
pemigatinib experienced a lower ORR, than patients without
alterations.*®” These data provide interesting information
about the activity of these treatments in the context of the
CCA genetic landscape; however, the findings are limited by
the small number of patients with co-alterations and the post
hoc exploratory nature of these analyses.

Response to Futibatinib in Patients With iCCA With Prior
FGEFR Inhibitor Treatment

Preliminary data suggest that futibatinib showed antitumor
activity in patients with iCCA with progression after previ-
ous FGFR inhibitor treatment. In the dose-escalation study,
one responder had a history of disease progression on prior
infigratinib before receiving futibatinib treatment for 15.6
months.®! In the dose expansion study, 5 of 28 patients with
prior FGFR inhibitor therapy (17.9%) experienced objective
responses with futibatinib.®” Duration of response ranged from
3.5 months (with response ongoing at data cutoff) to 20.4
months. Of the 5 responders, 3 had FGFR2 fusions, 1 a FGFR2
mutation, and 1 a FGFR2 amplification/rearrangement.
An additional 15 patients previously treated with an FGFR
inhibitor had stable disease. Of note, mechanisms of acquired
resistance to prior FGFR inhibitor therapy were not cap-
tured because immediate pretreatment and post-progression
biopsies were not required in the study.

In a separate analysis, clonal dynamics using cell-free circu-
lating tumor DNA (ctDNA) were evaluated in 4 patients from
a single site within the phase I patient population.®® These
patients received prior infigratinib or Debio 1347, and each
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Figure 3. Futibatinib efficacy in the FOENIX-CCA2 study. (A) Best percentage change from baseline in target lesion size in individual patients with bars

color coded to indicate best overall response assessed per ICR. Horizontal line represents the threshold for PR (>30% reduction in lesion size) per

RECIST v1. FGFR2 aberrations were assessed by testing of tumor tissue in local labs or using FoundationOne CDx (FoundationOne) assays in central

or local labs as shown. The FGFRZ2 aberration for each patient (rearrangement or fusion) is indicated along with the fusion partner where identified.
One patient had an FGFR2 S799fs*22 mutation in addition to an FGFRZ2 fusion (indicated with an asterisk). The most frequently altered oncogene or

tumor suppressor genes are indicated. Three patients were not included in the figure because they were missing tumor assessments: 1 did not have a
post-baseline assessment, and 2 had no target lesions available per ICR. (B) Duration and type of response per patient. (C) Kaplan-Meier plot of PFS.
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experienced clinical benefit with futibatinib (2 PR, 2 SD) with
SD or PR lasting 5.1-17.2 months. In 3 patients, analysis of
ctDNA at progression on the prior FGFR inhibitor indicated
the development of acquired resistance mutations: ES66A,
H683L, K660M, K715R, M5381, N550H, N550K, N550T,
and V565E% Analyses of ctDNA at the start of futibatinib
treatment and upon subsequent progression in all 4 patients
suggested that futibatinib had differential activity against
individual FGFR2 secondary mutations compared with the
prior FGFR inhibitors. The mutation allele frequency of
V565F increased upon futibatinib treatment, whereas levels
of E566A and N550K were unchanged. These results suggest
that the spectrum of acquired resistance mutations varies and
may influence choice of therapy. In follow-up experiments,
futibatinib retained activity against FGFR2 kinase domain
mutations in preclinical iCCA models. The investigators con-
cluded that these preliminary investigations support the clini-
cal utility of futibatinib in patients with acquired resistance to
ATP-competitive reversible FGFR inhibitors.

These analyses were consistent with preclinical experiments
showing superior activity of futibatinib against acquired
resistance mutations.'’”> However, data on mechanisms of
futibatinib resistance remain limited and further research is
needed to understand the role of futibatinib after progression
on FGFR inhibitors.

Activity of Futibatinib inTumorTypes OtherThan
CCA

In addition to CCA, futibatinib activity has been observed in
at least 7 other tumor types harboring 10 different categories
of FGFR1-4 aberrations (Table 2). Among 19 patients with
urothelial cancer in the phase I expansion study,®” 3 patients
had PRs (16% ORR), all with FGFR1/3-mutant tumors. The
ORR in this urothelial cohort was numerically lower than
that in trials of other selective FGFR inhibitors,*”" possi-
bly because these patients were heavily pretreated: 58%
received >3 prior regimens, with 42% previously treated
with an FGFR inhibitor. Based on these data, a phase II study
(NCT04601857) was initiated to study futibatinib in com-
bination with pembrolizumab in patients with advanced or
metastatic urothelial cancer.”?

Futibatinib showed activity in gastric cancer in 2 phase
I studies. In the phase I expansion study, 2 of 9 patients
achieved a PR (ORR 22%).%” One responder had an FGFR2
amplification and the other had an FGFR3 fusion. In the
Japanese phase I dose-expansion study, patients with gastric
cancer harboring an FGFR2 amplification with a copy num-
ber >10 experienced an ORR of 36.4% and DCR of 54.5%
vs. 0% and 10% in those with FGFR2 amplification copy
number <10.%

Responses to futibatinib were also observed in primary cen-
tral nervous system (CNS), breast, and head and neck tumors
(Table 2).¢7 In the phase I dose-escalation study, 2 patients

The Oncologist, 2023, Vol. 28, No. 11

with primary CNS tumors (glioblastoma and anaplastic oli-
godendroglioma) harboring FGFR1 mutations experienced
PRs,%" while in the phase I expansion study, 1 patient with
glioblastoma harboring an FGFR1 fusion experienced a PR. A
patient with triple-negative breast cancer with FGFR2 ampli-
fication from the phase I expansion study (16-mg cohort)
and another with FGFR2-amplified breast cancer from the
phase I study in Japan experienced durable responses with
futibatinib.*¢” In a compassionate use program, a patient
with an FGFR1-rearranged myeloid neoplasm treated with
futibatinib had complete hematologic and cytogenetic remis-
sion.” Notably, these phase I trials helped to identify previ-
ously uncharacterized FGFR aberrations and tumor types as
potential FGFR inhibitor targets, including FGF-amplified
and FGFR1-mutated urothelial carcinoma and FGFR-fusion
positive head and neck cancer.

Altogether, these data support further investigation of
futibatinib in multiple FGFR-aberrant tumor types and as
a disease-agnostic treatment for patients with FGFR-altered
advanced solid tumors.

Futibatinib Safety andTolerability

Safety data in the 2 largest populations of patients who
received futibatinib 20 mg QD, the phase I expansion 20-mg
cohort (7 = 170)%7 and the phase II iCCA study (z = 103),*
indicated a manageable safety profile for futibatinib consistent
with that of other FGFR inhibitors.*3#44¢:51.73 Adverse events
(AEs) were common in both studies (reported in >98% of
patients), including hyperphosphatemia, diarrhea, constipa-
tion, fatigue, dry mouth, and alopecia (Table 3). In the phase
I expansion and phase II iCCA studies, any-cause grade >3
AEs were reported in 72% and 77% of patients, respectively;
grade >3 treatment-related AEs (TRAEs) occurred in 43 % and
57% of patients, respectively, with grade 3 hyperphosphate-
mia most commonly reported in >10% of patients (phase I
expansion, 22%; phase II, 30%). One grade 4 TRAE was
reported in each study (increased gamma glutamyl-transferase
and increased alanine aminotransferase). Serious TRAEs were
reported in 6% and 10% of patients in the phase I expansion
and phase II iCCA studies, respectively; no treatment-related
deaths occurred in either study.

The most common AE across studies was hyperphosphatemia
(Table 3)*5%6367 gimilar to findings with pemigatinib and
infigratinib.*'7* Hyperphosphatemia is an on-target effect
of FGFR inhibition because decreased FGF23-FGFR1 sig-
naling leads to increased phosphate reabsorption and hyper-
phosphatemia in proximal tubules.®? The numerically higher
rates of hyperphosphatemia reported with futibatinib vs.
pemigatinib and infigratinib*°’7* may be related to between-
study differences in dosing schedules, safety assessments, and
grade definitions. Hyperphosphatemia was not defined in
the National Cancer Institute Common Criteria for Adverse
Events version 4.03, the version used for safety assessments in

Upper and lower 95% Cls indicated as dotted lines. Tick marks represent data censored at the time of the last tumor assessment for patients who did
not progress or die. (D) Kaplan-Meier plot of OS. Upper and lower 95% Cls indicated as dotted lines. Tick marks represent data censored at the date of
the last follow-up (or data cutoff date, whichever is earlier) for patients who were alive or whose death was not confirmed. *The widths of the Cls have
not been adjusted for multiplicity. Abbreviations: CR, complete response; ICR, independent central review; mo, month; NE, not evaluable; no, number;
OS, overall survival; PD, progressive disease; PFS, progression-free survival; PR, partial response; RECIST, Response Evaluation Criteria in Solid Tumors;
SD, stable disease. From The New England Journal of Medicine, Goyal L, Meric-Bernstam F, Hollebecque A, et al, Futibatinib for FGFR2-Rearranged
Intrahepatic Cholangiocarcinoma, 388, 228-239. Copyright © (2023) Massachusetts Medical Society. Reprinted with permission from Massachusetts

Medical Society.
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patient global health status was maintained, with no clini-
cally meaningful changes in individual functional measures
(physical, role, cognitive, emotional, and social). Individual
symptom measures on the EORTC QLQ-C30 were also sta-
ble except for constipation, which met criteria for a clinically
meaningful change at cycle 4 only. Mean EQ-VAS scores
were sustained and the status across all EQ-5D-3L dimen-
sions remained the same or improved over this period. Most
patients (82%-95%) maintained the same or better Eastern
Cooperative Oncology Group performance status score rel-
ative to baseline. Overall, these data suggest patient QoL
was not negatively impacted by AEs while on futibatinib
treatment.

Ongoing Studies and Future Directions for
Development of Futibatinib

Based on phase I data, phase II studies are examining the
safety and activity of futibatinib in various FGFR-aberrant
cancer types including metastatic breast cancer and urothe-
lial cancer (Table 4). A tumor-agnostic phase II study will
investigate futibatinib as a disease-agnostic treatment option
for patients with FGFR-rearranged advanced solid tumors.
Building on the phase II iCCA study results, an ongoing
open-label, randomized phase III study will assess futibatinib
as a first-line treatment vs. gemcitabine—cisplatin for patients
with FGFR2 fusion/rearrangement-positive iCCA.

Futibatinib combination studies are another important
future prospect. The combination of FGFR inhibitors with
immunotherapy is supported by preclinical evidence,®
and phase II trials are evaluating futibatinib combined
with pembrolizumab in metastatic urothelial carcinoma
(NCT04601857) and metastatic hepatocellular carcinoma
(NCT04828486). In preclinical models, futibatinib com-
bined with cytotoxic chemotherapy, MEK inhibitors, or PI3K
pathway inhibitors induced synergistic tumor regression®!-3;
trials evaluating the combination of futibatinib with AKT
and MEK inhibitors are ongoing (JapicCTI-194864;
NCT04965818). There is also rationale for the combination
of FGFR inhibitors with VEGF inhibitors.** Future explo-
ration of futibatinib combined with other treatments could
yield additional clinical benefits, particularly to combat tyro-
sine kinase inhibitor resistance.

Summary

FGFR dysregulation drives oncogenesis across a broad
range of tumor types. Although many FGFR inhibitors are
currently in clinical development, futibatinib has a unique
mechanism of action as an irreversible FGFR1-4 inhibitor
with potential activity against acquired secondary FGFR
kinase domain mutations. In early studies, futibatinib
demonstrated activity in diverse tumor types harboring
various FGFR aberrations. Based on durable responses and
manageable safety in the phase II FOENIX-CCA2 study
futibatinib was approved for patients with iCCA harbor-
ing FGFR2 fusions/rearrangements. These data, combined
with the unique irreversible mechanism of action, set futi-
batinib apart as a leading second-generation FGFR inhibi-
tor, while both preclinical evidence and exploratory clinical
results suggest a role for futibatinib after failure of prior
FGFR inhibitor treatment. Further studies are required to
assess mechanisms of futibatinib resistance and combina-
tion therapy approaches using this agent.
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