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Abstract 
Pediatric low-grade gliomas (pLGGs) are the most common brain tumor in young children. While they are typically 
associated with good overall survival, children with these central nervous system tumors often experience chronic 
tumor- and therapy-related morbidities. Moreover, individuals with unresectable tumors frequently have multiple 
recurrences and persistent neurological symptoms. Deep molecular analyses of pLGGs reveal that they are caused 
by genetic alterations that converge on a single mitogenic pathway (MEK/ERK), but their growth is heavily influ-
enced by nonneoplastic cells (neurons, T cells, microglia) in their local microenvironment. The interplay between 
neoplastic cell MEK/ERK pathway activation and stromal cell support necessitates the use of predictive preclinical 
models to identify the most promising drug candidates for clinical evaluation. As part of a series of white papers 
focused on pLGGs, we discuss the current status of preclinical pLGG modeling, with the goal of improving clinical 
translation for children with these common brain tumors.

Key Points

1.	 New and complementary in vitro and in vivo pLGG preclinical models are required, 
particularly those incorporating stromal interactions.

2.	The advantages and limitations of each model must be considered.

3.	Preclinical data should meet minimum criteria for successful clinical translation.

Primary tumors of the central nervous system (CNS) are the 
most common cause of cancer-related death in children.1 In 
contrast to adults, the majority of these tumors are low-grade 
gliomas (LGGs), typically developing in children younger than 
14 years of age. Specifically, gliomas account for 50% of all 
CNS tumors seen in children between the ages of 1 and 9 years, 
with pilocytic astrocytoma (PA; World Health Organization 
grade 1 astrocytomas) representing the most common cir-
cumscribed astrocytic glioma entity (15.3%) in children and 
adolescents. These tumors most frequently arise in the cere-
bellum, and harbor genomic aberrations involving the BRAF 
kinase gene.2–4 BRAF alterations frequently include fusion 
of the BRAF kinase domain with the KIAA1549 or FAM131B 
genes or oncogenic BRAF gene mutation (BRAFV600E), re-
sulting in increased BRAF kinase activation of the MAPK (MEK/
ERK) signaling pathway.5,6 Other locations include the optic 

pathway (optic nerve, chiasm, tracts, and radiations), spe-
cifically in children with the neurofibromatosis type 1 (NF1) 
cancer predisposition syndrome,7 as well as the brainstem and 
other midline structures.8 In NF1-associated LGGs, bi-allelic 
loss of NF1 gene/protein expression is observed, which leads 
to increased MEK/ERK signaling as a result of impaired RAS 
GTPase activating protein function.9–11 While less common, 
some children with midline LGGs harbor mutations or fusions 
involving the fibroblast growth factor receptor-1 (FGFR1), 
Raf-1 proto-oncogene (RAF1) or TrkB (NTRK2) receptor, as well 
as other less frequently altered genes,12 also result in elevated 
MEK/ERK growth pathway signaling.13 The common effect of 
all the described molecular alterations is MAPK (ERK) pathway 
hyperactivation, thus representing one of the hallmarks of pe-
diatric LGGs (pLGG). Finally, in contrast to adult gliomas, addi-
tional mutations are not commonly detected, and IDH1/2 gene 
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mutations are extremely rare and more typically found in 
other WHO histopathologic entities (diffuse astrocytoma, 
oligodendroglioma).12,14

At the histologic level, PAs are characterized by a pre-
dominant solid pattern of growth, with variable compact 
areas composed of elongated cells with thick eosinophilic 
processes and frequent Rosenthal fibers (“Piloid” mor-
phology), alternating with myxoid rich, microcystic 
areas with variable oligodendrocyte-like cells and eo-
sinophilic granular bodies. Detailed morphologic and 
immunophenotypic analysis of the individual cell compo-
nents of pLGGs reveals that the tumor cells are embedded 
in a microenvironment composed of nonneoplastic cells, 
including neurons, T cells, and monocytes.10,15–17 These 
noncancerous stromal cells are key contributors to pLGG 
pathobiology, where they provide paracrine factors that 
support tumor growth and survival.18–24 The dependence 
on stromal cells is additionally illustrated by the chal-
lenges encountered when attempting to maintain human 
pLGG cells in vitro or as patient-derived xenografts in vivo, 
where the required supportive microenvironment does not 
exist.25–31

While pLGGs are not usually fatal in children (98% 5-year 
overall survival rates), they are associated with significant 
neurological and neuroendocrine deficits, such as vision 
loss, motor deficits, seizure disorders, and precocious pu-
berty.32–35 In this respect, pLGGs should be considered a 
nonfatal chronic disease of neurodevelopment, often re-
quiring multiple lines of treatment and a thoughtful con-
sideration of quality of life issues, where preservation of 
intact neurological function is paramount. As such, there is 
a need for chemopreventative strategies that focus on de-
laying the need for definitive treatment by interrupting the 
supportive tumor microenvironment or targeting glioma 
cell senescence.

The current standard of care encompasses maximal safe 
neurosurgical resection, chemotherapy (e.g., carboplatin, 
vincristine; vinblastine), and, in some rare situations, ra-
diotherapy. Since these tumors are largely diseases of 
MAPK hyperactivation, MEK inhibitors (eg, selumetinib, 
trametinib) have entered the clinical workplace through 
successfully closed36–38 and ongoing clinical trials for 
progressive pLGG. In addition, novel drugs targeting the 
MAPK pathway, such as the combination of a BRAF inhib-
itor (dabrafenib) and a MEK inhibitor (trametinib), have 
recently been approved by the FDA for first-line therapy 
in BRAFV600E-mutant pLGG (NCT02684058). Similarly, 
the BRAF inhibitor, tovorafenib, is currently in phase I/
II trials for BRAF-altered pLGG (eg, FIREFLY-1; PNOC026, 
NCT04775485), as well as in a global randomized phase III 
registration trial for newly diagnosed BRAF-altered pLGG 
(LOGGIC-Firefly 2, NCT05566795).

Prior to clinical translation into phase I/II trials, preclinical 
data must fulfill a set of requirements that center on the his-
tologic type, composition, and specificity of the preclinical 
models used, such as (but not limited to) target depend-
ency, blood-brain-barrier (BBB) penetrance, pharmaco-
kinetic (PK) and -dynamic (PD) properties. Unfortunately, 
there is currently a paucity of authenticated pLGG preclin-
ical models and a lack of guidelines to optimize effective 
clinical translation. In this white paper, a team of clin-
icians and scientists was coalesced to review the current 

preclinical platforms, provide recommendations for their 
authentication and use, and suggest approaches to ensure 
successful translation to clinical practice.

Preclinical Tissue Culture Models of 
Pediatric Low-Grade Glioma

A wide range of mouse,39,40 as well as patient- and human 
iPSC-derived LGG cell lines26,27,29,31,41–47 have been devel-
oped (Table 1). Over the past 2 decades, these platforms 
have been successfully used for drug-target development 
and testing. Although lacking a supportive tumor microen-
vironment and significant cellular heterogeneity, these cell 
line models have the advantage of scalability, long-term 
usage, short-term availability, and comparatively low cost.

One of the major barriers to establishing these cell line 
culture systems has been the induction of oncogene-
induced senescence (OIS)25,30 and the senescence-
associated secretory phenotype (SASP).28 The use of 
specialized media has enabled these lines to be maintained 
in vitro, while still preserving pLGG growth properties and 
genetic driver expression.29,31

As detailed in Table 1, current human pLGG cell lines 
are derived from children with PA (NF1 loss, BRAFV600E 
mutation, or KIAA1549: BRAF expression) or pleomor-
phic xanthoastrocytoma (PXA) (BT40 line42), and have 
been used for in vitro modeling studies.29,45,46 As such, the 
Res186 PA tumor has a homozygous PTEN deletion and 
loss of heterozygosity at the TP53 locus,46 alterations not 
typical of pLGG, whereas the BT40 PXA cell line42 harbors 
both a BRAFV600E mutation and CDKN2A deletion, a com-
bination common in PXA. Additionally, the DKFZ-BT66, 
-BT308, -BT314, and -BT317 cell lines with BRAF fusions 
or BRAFV600E mutation were derived from primary pedi-
atric PA tumors, where long-term expansion was achieved 
by blocking OIS induction through inducible SV40-TAg 
expression. The use of inducible SV40-TAg expression al-
lows these models to switch off SV40-TAg expression and 
enter OIS with activation of the SASP, making it possible 
to study senescence in a cell line model system.26,44 To 
bypass oncogene-induced senescence in the NF1-PA cell 
line, JHH-NF1-PA1, an alternative strategy leading to con-
ditional cellular reprogramming was applied through ex-
posure to a Rho kinase (ROCK) inhibitor in the presence 
of irradiated fibroblast cells or medium. This technique re-
versibly blocks senescence in epithelial cells,56 and subse-
quently maintains molecular features and phenotypes in a 
variety of normal and tumor cell cultures.57

In addition to human pLGG cell lines, human iPSC en-
gineering methods have been employed to generate 
preneoplastic cell types with specific pLGG-associated mu-
tations. As such, hiPSC lines harboring homozygous NF1 
loss or ectopic KIAA1549: BRAF expression allow for differ-
entiation into multiple progenitors, including neural stem 
cells, glial restricted progenitors, and oligodendroglial pro-
genitor cells to study the consequences of these alterations 
on progenitor cell biology in vitro and gliomagenesis in 
vivo.31 Moreover, the deployment of specific immunodefi-
cient mouse strains has allowed for in vivo modeling using 
the human iPSC-derived pLGG cell lines.31
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Critical Features of pLGGs for In Vivo 
Modeling

The rarity of low-grade tumors of glial origin in adulthood, 
as well as the clear biological and molecular differences 
between pediatric MAPK-activated compact low-grade 
gliomas and adult, typically IDH1/2 mutated, diffuse low-
grade gliomas, suggests the existence of one or more 
neural stem or progenitor cell population(s) in the devel-
oping brain. These progenitor cell populations are suscep-
tible to hyperactivation of the MEK/ERK/MAPK signaling 
pathway and are vulnerable to neoplastic transformation. 
Pediatric LGGs typically arise in specific brain locations 
(optic pathway, brainstem, cerebellum), variably cause 
clinical signs or symptoms, and rarely, if ever, evolve into 
malignant gliomas. These unique disease characteristics 
argue that optimal in vivo model(s) should recapitulate: 
(1) an early developmental origin, (2) a dependency of the 
susceptible cell(s)-of-origin on MEK/ERK signaling (MEK/
ERK dependency), and (3) histopathologic features seen in 
human pLGGs.

The early development of these tumors in childhood 
suggests that the cell of origin must undergo genetic al-
teration either during embryonic or early postnatal life. 
Support for this derives from the use of an inducible LoxP/
Cre transgenesis system in which Nf1 loss can be induced 
in GFAP- or CD133-expressing neural progenitor cells of 
Nf1-mutant mice by the administration of tamoxifen. Using 
this platform, Nf1 mouse optic gliomagenesis required 
that bi-allelic Nf1 inactivation occurs prior to birth,50,51 con-
sistent with an early cellular origin for pLGGs. Indeed, this 
principle of expression of genetic drivers in neural progen-
itor cells is not restricted to NF1-LGGs, but can be applied 
to other drivers, such as mutant BRAFV600E. Introduction 
of the BRAFV600E kinase domain into nestin-expressing 
mouse neural progenitor cells successfully generated PAs 
in mice.55

While sporadic and NF1-associated pLGGs arise in dif-
ferent brain regions, these tumors share a common fea-
ture, MEK/ERK dependency during development. Prior 
research revealed an essential role for Mek/Erk signaling 
in glial differentiation from neural stem cells in different 
regions of the developing brain. Loss of both Mek1 and 
Mek2, which eliminates Erk signaling, does not overtly af-
fect neuronal differentiation but blocks the transition from 
the neurogenic to gliogenic phase of radial glial stem 
cells during cerebral cortical development.58 This develop-
mental arrest completely blocks the generation of astro-
cytes in the cerebral cortex. Similarly, loss of Erk signaling 
due to the inactivation of a positive pathway regulator, 
Shp2, blocks the generation of an astrocyte lineage, which 
normally differentiates into Bergmann glia during cer-
ebellar development.59 As such, the dependency on Erk 
signaling in the genesis of astrocytic lineages in the de-
veloping cerebral cortex and cerebellum can potentially 
cause developmental vulnerability of a particular neural 
stem cell or astrocyte precursor cell population(s) to ab-
normal Erk pathway activation, and consequently, make it 
susceptible to pLGG formation.60 In this manner, pediatric 
low-grade gliomagenesis usurps some of the same cellular M
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and signaling dependencies observed during normal brain 
development.

Importantly, pLGG formation in mice and other species 
should be evaluated using similar criteria used to classify 
human brain tumors.61 These include the presence of (1) 
a mass-occupying lesion with architectural distortion by 
standard H&E staining (and by MRI when possible), with (2) 
increased proliferation (Ki67 labeling index > 1%), and (3) 
immunopositivity for glial immunohistochemical markers 
(eg, GFAP and OLIG2). Attention should also be paid to the 
brain location and age when these tumors arise, as well as 
the presence of neurologic signs seen in children with the 
same tumors (eg, vision loss).

Preclinical Mouse Models of Pediatric 
Low-Grade Glioma

Current preclinical models largely reflect the two most 
common genetic alterations seen in children, those with 
sporadic pLGGs (KIAA1549: BRAF genomic rearrange-
ment) and those arising in the setting of the NF1 (biallelic 
NF1 loss). These experimental platforms include geneti-
cally engineered animals (pigs and mice), human-induced 
pluripotent stem cells, and patient-derived low-grade 
glioma cell lines (Figure 1).

While genetically engineered mouse models of spo-
radic pLGG have not been successfully established to 
date,62 mice and swine have been created that develop the 
most common brain tumor in children with NF1, the optic 
pathway glioma (OPG). These models differ with respect 

to their genetic engineering: miniature pigs created with 
germline NF1 gene mutations develop OPGs with an esti-
mated penetrance of 15% following stochastic loss of the 
remaining wild-type NF1 allele.63 In contrast, mice with 
germline Nf1 gene mutations have conditional loss of the 
wild-type allele in specific neuroglial progenitor cells at 
particular times during embryonic development, leading 
to OPG development in nearly all mice.48,49,64 Using con-
ditional and inducible transgenesis methods, somatic Nf1 
loss can be limited to specific cell types (eg, neural stem 
cells, astrocytes, glial progenitors, oligodendroglial pro-
genitors) at particular times of embryonic and postnatal 
life or in the setting of particular germline Nf1 gene mu-
tations, resulting in different degrees of tumor penetrance 
and growth.50,51,65

To complement models in which tumors spontaneously 
arise in animals with intact immune systems, explant (in 
vivo) models have been generated (Table 1). These fall into 
two general categories: engineered human stem cell and 
tumor-derived implantation model systems. Tumor cells 
from low-grade gliomas can also be derived from geneti-
cally engineered mouse tumors, maintained in culture as 
primary cell lines or allografted into naïve immunocompe-
tent animals.29,50 Similarly, patient-derived tumor cell lines 
can be generated under conditions that limit senescence 
to study their growth control pathways or xenografted 
into immune-competent zebrafish (survive for <7 days) 
or immune-defective mice (for at least 6 months).29,31,44,66 
Alternatively, human induced pluripotent or embryonic 
stem cells can be engineered with biallelic NF1 mutations 
or KIAA1549: BRAF expression, differentiated into appro-
priate neuroglial progenitors or organoids and studied 

Protein

No
protein

No
protein

Conditional
knockout

Conditional
expressor

Protein

STOP

Mouse ESCs

CRISPR
engineering

Human iPSCs
or ESCs

in utero
electroporation

Swine ESCs

Mutant mouse strain
(and derivative cells)

Conditional genetic
engineering

Mutant human 2D
and 3D cell cultures

Mutant mice
(and derivative cells)

Mutant swine strain
(and derivative cells)

Figure 1.  Genetic engineering of pLGG models. Genetically engineered mice can be generated to conditionally lose expression of a tumor sup-
pressor gene (eg, NF1 gene; conditional knockout) or gain expression of an oncogenic gene (eg, KIAA1549: BRAF, BRAFV600E; conditional 
expression) using Cre-mediated excision. In these models, LoxP sites (denoted by the triangles) are inserted into the genomic DNA either flanking 
an exon of a tumor suppressor gene or a stop codon, such that when the Cre recombinase enzyme expressed in a cell type- or tissue-specific 
manner, it results in inactivation of the tumor suppressor gene (loss of protein expression) or removal of the stop codon (gain of protein ex-
pression). In addition, CRISPR/Cas9 engineering can be used to introduce specific genetic alterations in mouse embryonic stem cells (ESCs) to 
generate mutant mouse strains (and derivative tumors), human induced pluripotent stem cells (iPSCs) or ESCs to establish progenitor cell 2D cul-
tures or 3D organoid cultures, or individual embryos by electroporation to generate litters of mutant mice (and derivative tumors) in a more rapid 
through-put fashion. This figure was produced using BioRender.



N
eu

ro-
O
n
colog

y
1925Milde et al.: Preclinical pediatric low-grade glioma modeling

for their growth properties in vitro or following xeno-
transplantation into immune-defective mice to generate 
pLGGs.31 Lastly, mouse progenitor cells can be engineered 
to express KIAA1549: BRAF (or BRAFV600E) and injected into 
immune competent mice for in vivo tumor analysis.18,55,67 
Using this approach, introduction of the BRAFV600E kinase 
domain into nestin-expressing cells within the hemisphere 
or brainstem of neonatal mice resulted in LGG formation 
by 8 weeks of age.

Advantages and Disadvantages of 
Model Platforms

Each model has its own unique advantages and disadvan-
tages that impact upon its use as a preclinical platform 
(Table 2). For studies aimed at targeting basic properties 
of the low-grade glioma cells, tissue culture models afford 
rapid, high-throughput screening of compounds, and have 
led to the discovery of actionable therapeutic targets.70 
However, it is clear that pLGG cells are heavily dependent 
on mitogenic cues from non-neoplastic cells, which are not 
present in primary culture systems. Refinements to this 
platform could include the addition of non-neoplastic cells, 
like microglia or T cells, or the maintenance of tumor cells 
in cerebral organoids containing these stromal cellular 
elements. For basic science, discoveries focused on under-
standing stromal dependencies,22,71 brain tumor risk fac-
tors (eg, sex, comorbid diseases, germline NF1 mutation, 
systemic conditions)53,72 and the developmental origins of 
tumors,50 intact genetically engineered mouse models are 
superior. These platforms have been quite instructive for 
defining the cell of origin,73 the requirement for immune 
system cells and neurons,19–21,74 and the impact of systemic 
disease (eg, asthma) on tumorigenesis and progression.75

While preclinical models involving xenotransplanta-
tion provide opportunities to assess tumor responses 
to tumor-directed therapies (eg, MEK inhibitors), they 

lack an intact immune system, thus limiting their utility 
for immunomodulatory or stroma-directed therapeutic 
studies. For this reason, many preclinical studies em-
ploy authenticated genetically engineered mouse models 
with intact immune systems and preserved stromal 
dependencies.19,68,71,76

Other limitations to these models include differences in 
drug metabolism and bioavailability between mice and hu-
mans, and the inability of the mouse models to capture the 
clinical diversity of these tumors in children with respect to 
tumor location within the brain, age at development, clin-
ical symptoms, and response to therapy. Some of these 
disadvantages could be mitigated by using multiple strains 
with different tumor locations, ages of development, cells 
of origin, and genetic changes, thus more closely resem-
bling the clinical diversity of children with pLGGs. With fu-
ture characterization of their natural history and biological 
properties, the use of swine models may likewise circum-
vent some of these issues. Moreover, there is a continued 
need to develop new pLGG models with different genetic 
mutations (NTRK2, FGFR1 mutations13), brain locations 
(cerebellum, deep midline structures), and histopathology 
(HGAP77) with additional genetic alterations, as well as 
those that more accurately capture stromal interactions 
(mice with humanized immune systems).

Validation and Optimal Selection of 
Preclinical Models

As many pLGGs in children are slow-growing lesions with 
the tendency to spontaneously growth arrest or, rarely, 
even regress, it is challenging to recapitulate this level of 
heterogeneity in a single model. As such, preclinical models 
need to be well-validated and carefully selected to reflect 
their intended use. Moreover, it is unlikely that any one 
model will capture all of the features of their human coun-
terparts at the neuropathological, molecular and biological 

Pediatric
clinical trials

Large animal models

Pharmacokinetics/pharmacodynamics
safety profiles

Single and combination drug testing
off-target effects

Functional genomics
drug H-T screening

Preclinical small-animal models
Tissue culture

models

GEM Models

PDX
Models

LGG Cells

Organoids

Figure 2.  An optimized pipeline for pLGG could encompass tissue culture models for rapid drug screening and functional genomics, yielding a 
limited number of high priority candidates for in vivo testing for their impact on tumor growth and progression (both as single agents and combina-
torial therapies), as well as off-target effects, in authenticated preclinical PDX (mice, zebrafish) and genetically engineered mouse models. Prior 
to clinical translation, candidates could be evaluated in large animal models, where drug pharmacokinetic/pharmacodynamic (PK/PD) properties 
and safety profiles are more similar to humans. Typically, in pediatric phase 1 clinical trials, there is adult recommended phase 2 dose (RP2D) and 
safety data available, which is used to inform drug dosing in children. This figure was produced using BioRender.
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levels, necessitating the deployment of multiple comple-
mentary models. In this respect, pLGGs encompass a wide 
range of clearly delineated molecular-neuropathological 
entities.14,61 Nonetheless, validation and authentication 
should include a demonstration that the model faithfully 
represents key aspects of the tumor at numerous levels. 
This would include a full neuropathological (histology, 
cytology, immunohistochemical marker expression), mo-
lecular (DNA methylation profile, DNA sequencing, RNA 
sequencing), and biological (tumor-associated neurologic 
or endocrinologic problems) analyses (Table 3).

Evaluating Preclinical Data for Clinical 
Trial Translation

Given the excellent overall prognosis for pLGG, careful 
thought and evaluation of the available preclinical data 
must be performed prior to testing an experimental treat-
ment in clinical trials for children, to ensure that the risks 
to participants are reasonable compared with the poten-
tial therapeutic benefits (Figure 2). Important factors to 
consider prior to clinical testing include the biologic ra-
tionale for the treatment, safety profile (both preclinical 
and clinical, if available), pharmacokinetics, and preclinical 
efficacy.

Since most pLGGs are driven by a single pathway 
(mitogen-activated protein kinase, MAPK), targeting a pro-
tein in this pathway (eg, RAF, MEK, ERK) often provides a 
strong biologic rationale. This makes pLGGs unique rela-
tive to their high-grade counterparts, in which the number 
and complexity of genetic and genomic changes make it 
more challenging to predict the likelihood that targeting 
a single protein and/or signaling pathway will lead to a 
tumor response. Nonetheless, preclinical evaluation of 
agents (including rational combinations) to assess efficacy, 
adaptive signaling and resistance are critical. One promi-
nent example in pLGG was the phase II study of sorafenib 
for recurrent pLGG, in which 82% (9/11) of participants 
were removed from the trial after 2–3 treatment cycles for 
an accelerated progression, including all 3 with NF1 and 5 
of 6 with fusion BRAF pLGG.78 Subsequent evaluation in 
cell lines expressing KIAA1549-BRAF demonstrated par-
adoxical activation of MEK/ERK to this agent.78 Similarly, 
an increase in cell proliferation was observed following 
treatment of KIAA1549-BRAF models with first-generation 
RAF inhibitors,79 which were designed to target oncogenic 
BRAF, rather than non-mutant RAF proteins, including ac-
celerated tumor growth in xenograft mouse models.79 Had 

this data been available prior to clinical testing, these par-
adoxical progressions might have been predicted. In con-
trast, selumetinib was shown to induce partial responses 
in a PDX mouse model of BRAFV600E-mutant LGG,80 which 
successfully resulted in drug efficacy in a phase 2 clinical 
trial.36

Unlike aggressive cancers, the risk-to-benefit ratio of 
moving a new pLGG therapy into clinical trial requires a 
higher bar of safety. Despite excellent overall survival 
rates, a large percentage of pLGG survivors have impair-
ments in neurological, endocrine, and neurocognitive 
function,81 with many reporting impairments in meas-
ures of adaptive functioning.82 Therefore, in most cases, 
moving a novel therapy forward to a clinical trial in pLGG 
requires prior human safety data with a low risk of toxicity. 
Therapies with a higher toxicity profile are best evalu-
ated in clinical trials focused on recurrent disease, given 
the generally good outcomes of standard-of-care frontline 
therapy in pLGG. In addition, except in cases for which the 
therapy cannot be evaluated in an adult tumor (eg, fusion 
BRAF LGG, which is likely a pediatric tumor), first in human 
studies should be avoided in children for ethical reasons.

One crucial factor in drug efficacy is adequate exposure 
of the tumor to the drug. One of the unique considerations 
in achieving this for brain tumors is the requirement that 
the therapy crosses the blood-brain barrier (BBB), which 
restricts the entry of drugs to the central nervous system 
(CNS). To evaluate this, it is important that preclinical 
studies assess CNS pharmacokinetics. In general, when 
selecting drugs in the same class, those with better BBB 
penetration are preferable. That said, the BBB is often dis-
rupted in brain tumors, potentially allowing agents with 
poor CSF penetration into the tumors. An example of 
“blood-tumor” barrier disruption is the enhancement seen 
on MRI after gadolinium administration, which is common 
in pLGG. Thus, an effective agent in preclinical testing that 
does not cross the BBB well would not necessarily be ex-
cluded from clinical testing, otherwise an agent such as 
selumetinib, with excellent response rates for recurrent 
pLGG,36,37 but poor preclinical CSF penetration,83 would 
not have been pursued.

Prior to moving to a clinical trial, critical evaluation of 
the preclinical efficacy of any given experimental therapy 
is required. Factors to consider include whether the model 
adequately reflects the subtype of pLGG of interest (eg, 
BRAFV600E, BRAF fusion, NF1-mutant, NTRK-mutant, or 
FGFR1-mutant) and the specific clinical scenario. For ex-
ample, efficacy from Nf1 mouse models is insufficient evi-
dence to move an agent to a clinical trial for BRAF-altered 
pLGG. In addition, the genetic background needs to be 

Table 3.  Desired Preclinical Model Characteristics for Clinical Translation

Characteristics Measures

Histologic and molecular features • Similar cellular composition
• Similar histologic appearance
• Similar brain location(s)
• Similar molecular profile (DNA sequence and methylation profile; transcriptome)
• Similar prognostic and/or predictive markers

Growth dependencies • Similar tumor cell signaling pathway dependency
• Similar stromal cell-induced tumor cell dependency
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considered. For example, evaluating the efficacy of an im-
munotherapy approach requires an immunocompetent 
model. Similarly, pLGG tumor-derived models carrying in-
ducible SV40 large T antigen are excellent to screen MAPK 
drugs and senolytic agents, but they have limitations when 
it comes to evaluating apoptosis-inducing drugs.26,27,44 The 
design of the preclinical experiments, the magnitude of 
the effect, whether the response was durable, and whether 
the results were replicated in multiple models are also 
important. Preclinical study design should be rigorous 
with adequate sample size, and appropriate controls, in-
cluding comparisons to standard of care treatment (eg, 
carboplatin-based regimens in NF1-associated pLGG, RAF 
inhibitor plus MEK inhibitor for BRAFV600E pLGG) in addi-
tion to vehicle controls, assessment of the dose–response 
relationship, and evaluation of not just tumor outcomes, 
but also pharmacodynamic endpoints, such as target in-
hibition, should be performed. In particular, for in vitro 
studies, clinically achievable therapeutic concentrations 
need to be considered. Although in vitro evidence is im-
portant, ideally this is supported by in vivo studies, which 
are more likely to resemble the human disease and should 
consider human exposure pharmacokinetic parameters 
when choosing the dosing regimen. Tumor outcomes 
are ideally assessed by applying clinical trial endpoint 
parameters. It is preferable to allow the tumor to grow 
to a size that enables measurement of response (ie, both 
growth and shrinkage of tumor size compared with base-
line), rather than initiating treatment prior to this point (ie, 
secondary prophylactic treatment approach) and com-
paring tumor size between arms at the end of treatment, 
as agents that result in tumor shrinkage (and those with 
a larger effect size) are likely to be more promising than 
those that simply prolong time to progression. Efficacy in 
more than one model (and more than one laboratory), pro-
vides greater confidence.

While the ideal preclinical evidence for clinical transla-
tion may include strong biologic rationale, excellent safety 
profile, good BBB penetration, and efficacy in multiple 
models, in reality, this may not always be feasible given 
the currently available models. In such cases, a drug with 
strong biologic rationale, excellent safety data in prior 
studies, and evidence of efficacy in other agents within 
the same class, may be enough to move to clinical trial 
in relapsed/refractory pLGG. In contrast, treatments with 
higher toxicity, invasive delivery (eg, intratumoral), or un-
known toxicity (first in humans) require a higher bar of evi-
dence of preclinical efficacy to move forward into children.

Discussion and Recommendations

In this consensus statement, we review the state of the 
field of preclinical pLGG modeling, providing a compre-
hensive overview of the models currently available. We 
advocate that stringent neuropathological analyses and 
molecular diagnostics be applied to validate each model 
and to define the faithfulness with which it represents the 
studied pLGG (sub-) entity, as defined using current neu-
ropathology criteria. Ideally, pLGG models need to reca-
pitulate the defining molecular alteration (eg, NF1 loss, 

BRAF-fusion, FGFR1 mutation) without additional tech-
nical alterations for modeling purposes, which may change 
the phenotype to higher-grade tumors (ie, TP53 mutation) 
or interfere with biological functions necessary for drug 
development (ie, ectopic SV40-TAg expression to block 
p53-mediated cell death). Depending on the desired ex-
perimental design, certain models have advantages and 
limitations, which need to be considered prior to study in-
terpretation and translation. Consideration of the advan-
tages and limitations of each model used is needed for 
realistic and clinically meaningful interpretation of preclin-
ical data.

To meet the needs of future pLGG research, these pre-
clinical models will need to incorporate novel tractable and 
accurate in vitro and in vivo platforms. Experimental 3-di-
mensional in vitro model systems that combine pLGG ne-
oplastic cells with non-neoplastic stromal cells, including, 
but not limited to, immune cells, will help to elucidate the 
bidirectional interactions between these cells relevant to 
tumor pathobiology and response to treatment. In addi-
tion, these in vitro platforms are amenable to single-cell 
discovery studies, as well as medium to high-throughput 
drug screens. Similarly, genetic modeling using condi-
tional and CRISPR-based engineering methodologies 
can be employed to create pLGG variants not currently 
modeled, including FGFR1-, NTRK-, fusion BRAF- and 
BRAFV600E-driven PAs, arising within an intact brain envi-
ronment. The availability of such complementary and di-
verse authenticated platforms provide systems to validate 
next-generation molecularly-targeted treatments.

Moreover, the use of novel technologies, such as single-
cell sequencing, large genetic/genomic datasets, and ar-
tificial intelligence approaches encompassing clinical, 
imaging, genomic, transcriptomic and proteomic data, 
may supplement, inform, and even improve the results 
obtained with classical in vitro and in vivo testing. Lastly, 
we desperately need more preclinical models that more 
fully represent the spectrum, as well as the cellular hetero-
geneity, of pLGGs. With the rapid advances in cellular and 
genetic engineering and the development of methods to 
utilize big data, it is likely that a highly operational pipe-
line will be constructed for effective preclinical translation 
to improve the therapeutic options for children with these 
common brain tumors.
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