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Abstract 
Background.   Diffuse gliomas represent over 80% of malignant brain tumors ranging from low-grade to aggres-
sive high-grade lesions. Within isocitrate dehydrogenase (IDH)-mutant gliomas, there is a high variability in sur-
vival and a need to more accurately predict outcome.
Methods.   To identify and characterize a predictive signature of outcome in gliomas, we utilized an integrative mo-
lecular analysis (using methylation, mRNA, copy number variation (CNV), and mutation data), analyzing a total of 
729 IDH-mutant samples including a test set of 99 from University Health Network (UHN) and 2 validation cohorts 
including the German Cancer Research Center (DKFZ) and The Cancer Genome Atlas (TCGA).
Results.   Cox regression analysis of methylation data from the UHN cohort identified CpG-based signatures that 
split the glioma cohort into 2 prognostic groups strongly predicting survival that were validated using 2 inde-
pendent cohorts from TCGA and DKFZ (all P-values < .0001). The methylation signatures that predicted poor out-
comes also exhibited high CNV instability and hypermethylation of HOX gene probes. Integrated multi-platform 
analyses using mRNA and methylation (iRM) showed that parallel HOX gene overexpression and simultaneous 
hypermethylation were significantly associated with increased mutational load, high aneuploidy, and worse sur-
vival (P-value < .0001). A 7-HOX gene signature was developed and validated using the most significantly associ-
ated HOX genes with patient outcome in both 1p/19q codeleted and non-codeleted IDHmut gliomas.
Conclusions.   HOX gene methylation and expression provide important prognostic information in IDH-mutant 
gliomas that are not captured by current molecular diagnostics. A 7-HOX gene signature of outcome shows signif-
icant survival differences in both 1p/19q codeleted and non-codeleted IDH-mutant gliomas.

Key Points

•	 Isocitrate dehydrogenase (IDH)-mutant gliomas with both hypermethylation and 
overexpression of HOX genes have worse outcome

•	 This group of gliomas exhibited elevated copy number instability and increased 
mutational load

•	 A 7-HOX gene signature of outcome was developed with prognostic implications in both 
1p/19q codeleted and non-codeleted IDH-mutant gliomas

Integrated molecular analysis reveals hypermethylation 
and overexpression of HOX genes to be poor 
prognosticators in isocitrate dehydrogenase mutant 
glioma  
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Diffuse gliomas represent over 80% of all malignant brain 
tumors with highly variable survival outcomes, ranging 
from lower-grade tumors to high-grade aggressive malig-
nancies.1 Recent advances in molecular characterization 
of diffuse gliomas identified several molecular markers 
with diagnostic and prognostic relevance including the 
mutations in isocitrate dehydrogenase (IDH) genes.2,3 
Classically, IDH mutation (IDHmut) status was the main 
factor used for classification and prognostication of diffuse 
gliomas.4 IDH mutations often occur in younger patients 
and the presence of an IDHmut confers a distinct survival 
advantage compared to similar IDH wild-type (IDHwt) tu-
mors.2,4 Similarly, within IDHmut gliomas, combined al-
lelic loss of chromosomes 1p and 19q (1p/19q codeletion) 
is a significant predictor of improved chemosensitivity 
and overall survival.5 For the first time, molecular markers 
are now used in addition to histology as part of a recent 
World Health Organization (WHO) classification grading 
system to reduce inter-observer variability and provide ac-
curate stratification.4,6 The newest WHO classification has 
reserved “glioblastoma (GBM)” solely for IDHwt tumors, 
with previously classified IDHmut GBM now referred to as 
IDHmut grade 4 astrocytomas.6 Subsequent analyses in-
cluding homozygous deletion of the CDKN2A gene are also 
associated with worse prognosis in both 1p/19q codeleted 
and non-codeleted IDHmut gliomas, independent of his-
tologic markers including microvascular proliferation and 
necrosis and astrocytomas with CDKN2A homozygous de-
letion are now reclassified as grade 4 IDHmut tumors.6,7 
Despite these discoveries, there remains a high variability 
in outcome of IDHmut gliomas that cannot be explained by 
currently known molecular markers.8

A multi-platform pan-cancer project from The Cancer 
Genome Atlas (TCGA) Research Network investigated 6 
different platforms including DNA methylation, mRNA ex-
pression, DNA copy number, microRNA expression, pro-
tein expression, and exome mutation.9 These platforms 
often complement or exceed the accuracy of tumor classi-
fication based solely on histology or morphology and their 
integration can help identify biologically distinct subtypes 
that are not resolvable by morphology alone.10 Previously, 
we have shown that combined mRNA and methylation 
analysis distinguishes different survival classes for various 
tumor types and provides a clinically and biologically rele-
vant stratification based on molecular classification.11

DNA methylation alterations have widely been reported 
in human cancers. One recent example of this involves 
the HOX genes.12–15 Cancer-specific methylation patterns 
including global hypomethylation and gene or region-
specific hypermethylation are common.16 HOX genes are a 
highly conserved subgroup of the homeobox gene family 
that regulate numerous cellular processes including apop-
tosis and angiogenesis.12 Aberrant HOX gene expression 
and methylation are associated with various malignan-
cies, and recent research highlighted the importance of 
these genes as both biomarkers and potential therapeutic 
targets.12–15

Within the CNS (central nervous system), HOX genes 
play critical roles in the developing brain including cell 
fate determination, which aid in the establishment of 
functional neuronal networks and the formation of dis-
tinct neuronal subtypes.17 While HOX genes are mostly 
absent from healthy adult brains, the presence of HOX 
gene deregulation and aberrant expression have been 
detected in malignant brain tumors, mainly GBM.17 
Multiple prior studies exploring HOX methylation and 
gene expression in GBM demonstrated their role in 
treatment resistance, tumor aggressiveness, and poor 
prognosis.18–20 More specifically, HOXA9 has been iden-
tified as an oncogene in GBM, with activation leading 
to decreased apoptosis, increased cellular proliferation, 
and shorter survival.21–23

Within IDHmut gliomas, DNA methylation ana-
lyses using the promoter regions in IDHmut grade 4 
astrocytomas from TCGA identified and validated a 
glioma-CpG island methylator phenotype (G-CIMP) asso-
ciated with younger age and improved outcome.24 This 
signature has also been extended to IDHmut glioma.25 
Although unsupervised analysis of genome-wide methyl-
ation signatures can group tumors based on IDHmut and 
1p/19q codeletion status, further exploration of DNA meth-
ylation subtypes and integration of DNA methylation with 
other genomic platforms including gene expression is 
needed to better understand this heterogeneous disease 
and to leverage these signatures as additional predictors 
of outcome.26

In this study, we aimed to determine a biomarker signa-
ture of outcome in IDHmut gliomas using an independent 
cohort combined with 2 external validation cohorts by ex-
panding our preliminary study,27 and further characterize 

Importance of the Study

In this study, we characterized a methylation signa-
ture that is predictive of outcomes in isocitrate dehy-
drogenase (IDH)-mutant gliomas. The comprehensive 
individual and integrated RNA and methylation (iRM) 
analyses showed that IDH-mutant gliomas with 
hypermethylation and increased expression of HOX 
genes have significantly worse outcomes. We further 
identified a 7-HOX gene signature that correlated to sig-
nificantly worse survival in both 1p/19q codeleted and 
non-codeleted IDH-mutant gliomas. This provides val-
uable new insights into the potential of HOX genes for 

determination of new molecular subtypes of glioma that 
are not resolvable by conventional histological means 
and is also independent of previous molecular sub-
types. The novel prognostic subgroups based on iRM 
provide new insights into further molecular subtyping 
of IDH-mutant gliomas. These results demonstrate the 
importance of integrated HOX gene methylation and ex-
pression in gliomas, and a 7-HOX gene signature that 
can serve as a predictor of outcome in IDH-mutant 
gliomas.
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this predictive signature through multi-platform analysis 
integrating methylation, gene expression, and somatic 
mutation.

Materials and Methods

Study Overview

The overview and outline of the study are available in 
Supplementary Figure 1. Using IDHmut gliomas, we exam-
ined 3 cohorts of methylation datasets including a cohort at 
the University Health Network (UHN) as a training set, and 
2 validations set from TCGA and German Cancer Research 
Center (DKFZ) totaling 729 samples: 99 from UHN, 419 
from TCGA and 211 from DKFZ (Table 1).

UHN and DKFZ Methylation Data Processing

We profiled a total of 99 IDHmut glioma (53 astrocytomas 
and 46 oligodendrogliomas) samples based on Illumina 
Infinium HumanMethylation450 BeadChip (Illumina, San 
Diego, CA, USA) data (450K) which were processed and 

analyzed at the UHN/ Princess Margaret Genomics Center 
after local research ethics board approval. 27 In addi-
tion to our cohort from UHN, we also had a total of 211 
IDHmut glioma samples based on 450K methylation data 
from DKFZ (144 astrocytomas of which 54 were grade 2 
and 90 grade 3, and 67 grade 4 IDHmut astrocytomas). 
We used the Bioconductor package (version 3.3) for 
loading and processing of the methylation data. The gen-
erated methylation data was preprocessed using the 
Minfi package. We performed ssNoob normalization for 
the samples that passed quality control after excluding 
failed probes. Further methylation data filtering was per-
formed at cross-reactive probes and single nucleotide 
polymorphisms at CpG sites using dropLociWithSnps 
function in the Minfi package. We obtained the methyl-
ation values of each CpG site by β value ranging from 0 
(unmethylated) to 1 (fully methylated).

Copy Number Variation Obtained From 
Methylation

We obtained copy number variation (CNV) (in-
cluding CDKN2A loss) from the 450K data using a 

Table 1.  Patient Characteristics of IDH-Mutant Gliomas Based on University Health Network, The Cancer Genome Atlas, and DKFZ Cohorts.27 The 
CDKN2A Status is for the CDKN2A Homozygous Deletion.

Characteristics Cohorts

UHN TCGA DKFZ

N = 99 N = 419 N = 211

Pathological grade

2 29 (29.3%) 221 (52.7%) 54 (25.6 %)

3 59 (59.6%) 190 (45.3%) 90 (42.7%)

4 11 (11.1%) 7 (1.7%) 67 (31.8%)

Unknown 0 1 (0.2%) 0

CDKN2A status

Retained 76 (76.8%) 397 (94.7%) 173 (82%)

Lost 23 (23.2%) 22 (5.3%) 38 (18%)

WHO 2021 grade

2 26 (26.3%) 108 (25.8%) 54 (25.6 %)

3 46 (46.5%) 232 (55.4%) 75 (35.5%)

4 27 (27.3%) 29 (6.9%) 82 (38.9%)

G-CIMP status

High 47 (47.5%) 234 (55.8%) 185 (87.7%)

Low 7 (7.1%) 12 (2.9%) 26 (12.3%)

Codel 45 (45.4%) 172 (41.1%) 0

Unknown 0 1 (0.2%) 0

Age (at diagnosis)

Median (range) 39 (22–73) 39 (14–75) 36 (15–70)

Unknown 0 2 5

Survival (months)

Median (range) 90.8 (2.5–227.2) 25.8 (0–182.3) 49.7 (0.23–268)

Unknown 0 1 0

http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noad126#supplementary-data
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Bioconductor-based R package called conumee. Conumee 
generates copy number calls and shows whole chromo-
some views to pre-select genes with qualitative features. 
The current conumee package has 450K methylation pro-
files of normal tissue samples to be used as a reference.

Consensus Clustering

We performed unsupervised hierarchical clustering of sig-
nificant probes from Cox regression analysis. Rows are 
for the genes and columns are for the samples. We also 
used ConsensusClusterPlus Bioconductor package with 
Spearman correlation for the distance metric and Ward 
(Ward.2) for the linkage algorithm with 1000 resampling 
steps (epsilon = 0.8) to ensure the robustness of the puta-
tive cluster to resampling variability and stability of clus-
tering results. Silhouette statistical analysis of subgroup 
hierarchical structures indicates the optimal number of 
clusters.

Selection of 7-HOX Genes as a Biomarker to 
Predict OS

We generated a table of Cox regression analysis 
(Supplementary Table 1) for all HOX genes of methyla-
tion and mRNA in the IDHmut glioma cohort from TCGA. 
We evaluated different combinations of those HOX genes 
systematically by analyzing each platform independently 
(signed average (SA)28 of methylation and gene expres-
sion) to find the overlapped significant combinations and 
filter out the combinations with large variations. Finally, 
the most significant HOX gene combinations were ex-
tracted to use as biomarkers for further integrative anal-
ysis of methylation and gene expression data using the 
following approaches.

Step 1.

Out of 40 HOX genes, 16 significant and common HOX 
genes were selected from Supplementary Table 1 based 
on Cox regression analysis of HOX gene expression and 
methylation.

Step 2.
Various combinations of HOX genes were evaluated ran-
ging from 2 HOX genes to 16 HOX genes for both meth-
ylation and gene expression. For each combination of 
selected HOX genes, samples were split into 2 groups 
based on high-low methylation or expression values using 
SA method.28 Then, we performed survival analysis and 
calculated P-values.

Step 3.
Finally, we ranked all combinations based on P-values 
with the smallest values at the top. 7-HOX genes such as 
HOXA4, HOXA7, HOXA10, HOXA13, HOXD3, HOXD9, and 
HOXD10 were selected as composite biomarkers that sig-
nificantly predict OS in both IDHmut methylation and 
mRNA cohorts.

Determination of G-CIMP Status

The G-CIMP low is characterized by the loss of DNA meth-
ylation and is associated with worse prognosis, while the 
opposite is true for G-CIMP high tumors.24 For the TCGA 
cohort, we obtained G-CIMP status from the clinical data 
(13 cases out of 412 IDHmut Gliomas used in our study) in 
Ceccarelli et al.26 For the UHN and DKFZ cohorts, we used 
the approach proposed by Ceccarelli et al.26

Based on the methylation of 163 probes obtained based 
on overlapped 27K and 450K methylation analyses that 
were used for classifying G-CIMP status,25 we used a 
random forest classifier to identify G-CIMP status.

Statistical Analysis

All statistical analyses were done using the R 
Bioconductor package (version 3.3). All statistical tests 
performed were 2-sided, with P-values less than .05 as 
the threshold for significance, unless otherwise stated. 
To investigate the clinical relevance of integrative meth-
ylation and mRNA subtypes, we conducted Kaplan–
Meier survival analyses on the integrative subtypes of 
mRNA and methylation using the survival package in 
Bioconductor. A log-rank test was performed to calculate 
P-values.

For supervised analysis of RNAseq data, we presented 
the genes with adjusted P-values (FDR) of less than 0.05 
and with fold-change of above 2 thresholds. Genes were 
ranked based on P-values with the smallest values at the 
top. For supervised analysis of methylation data, we used 
a limma-based modeling approach where FDR < 0.05 and 
absolute mean differences > 0.1 were considered to be 
significant.

We performed multivariable analysis to identify fac-
tors associated with survival after adjusting for certain 
parameters like tumor grade of patients in order to iden-
tify factors that can predict patient survival independent of 
various factors.

Results

Identification of a Methylation Signature That 
Predicts Outcome in IDHmut Gliomas

The UHN cohort was used as a training set to identify a 
methylation signature of outcome for overall survival in 
IDHmut gliomas using a Cox proportional hazard regres-
sion analysis of each individual probe with outcome data. 
A total of 6798 significant probes (P-value < .01) corre-
sponding to 3530 genes were selected (Supplementary 
Table 2) for further analysis. The significant markers were 
grouped together as a composite to perform survival 
analysis.

Of the 6798 significant probes identified, a total of 5914 
hypermethylated probes (87%) with hazard ratios (HR) > 1 
were significantly associated with worse survival (con-
sidered negative predictors), and hypomethylation of 
884 probes (13%) with HR < 1 were significantly associ-
ated with longer survival (considered positive predictors) 

http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noad126#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noad126#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noad126#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noad126#supplementary-data
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(Supplementary Table 3).27 Using the significant probes 
with P-values < .01 from the Cox regression modeling, we 
identified a methylation signature of outcome that was sig-
nificantly associated with patient survival (P-value < .0001). 
The negative predictive probes (signatures) dominate CpG 
islands (48%) compared to positive predictive probes 
(17%), while the expected genomic coordinates for 450K 
array are 31% (Supplementary Table 3).

Consensus clustering was then performed based on all 
6798 significant probes to determine if cluster members 
were associated with clinical features and patient survival 
(to show risk groups). Figure 1A shows that the consensus 
cluster based on the methylation signatures from Cox anal-
ysis (Cox proportional hazard regression analysis) using 
our UHN methylation cohort divided the glioma cohort into 
2 prognostic subgroups.27 A Kaplan–Meier diagram depicts 
significant survival differences between these 2 groups 
(P-value < .0001) (Figure 1B).27

To determine the specific regions of these CpG sites, 
we next examined the location of these methylation sig-
natures, including the promoter and gene body regions 
(Supplementary Table 3).27 The characterization of the 
methylation signature revealed that negative predictive 
probes were enriched within the promoter and island 
methylated regions compared to the positive predictive 
probes (Supplementary Table 3).

In particular, we observed enrichment of HOX genes as re-
flected in the univariable Cox hazard analysis and these sig-
nificant HOX gene probes showed HR > 3. Figure 1C shows 
boxplots of mean methylation values of HOX genes chosen 
from Cox analysis (HOXA11AS, HOXA13, HOXA3, HOXA4, 
HOXA5, HOXA6, HOXA7, HOXB3, HOXB7, HOXB8, HOXC11, 
HOXC12, HOXC13, HOXC4, HOXD10, HOXD11, HOXD13, 
and HOXD3) for the 2 consensus cluster subgroups.27 The 
boxplot of average methylation values was calculated from 
the probes that overlapped with HOX genes, where worse 
survival consensus cluster subtype showed significantly 
elevated HOX average methylation values. HOX genes 
demonstrated significantly increased methylation values 
(hypermethylation) in the consensus cluster and were asso-
ciated with worse survival (P-value < 0.0001).

Based on the significant HOX gene probes from the Cox 
analysis, SAs were performed28 and all glioma samples were 
then split into 2 groups by median. Consistently, these HOX 
methylation signatures also showed significant survival dif-
ferences where hypermethylation of these probes was also 
associated with worse survival (negative predictors with 
HR > 1, P-value < .0001) (Figure 1D).27 Figure 1D shows HOX 
gene-specific methylation patterns from the Cox analysis 
where significant probes demonstrated survival differences 
(Kaplan–Meier diagram) by median of average methylation 
values. These results demonstrate that HOX gene methyl-
ation patterns are associated with significant survival dif-
ferences in IDHmut glioma and HOX hypermethylation is 
associated with worse survival in IDHmut glioma.

Validation of the Methylation Signature Using 2 
Independent Cohorts

To ensure the consistency of our methylation signature 
and avoid bias, 2 independent rounds of validation were 

performed using TCGA and DKFZ cohorts using the same 
methylation signature/ CpGs (all 6798 significant probes) 
obtained from above UHN test cohort (Figure 1E to I).27 
Based on the identified same methylation signature of out-
come in IDHmut glioma and consensus clustering using 
the methylation signature from the UHN cohort, IDHmut 
glioma cohorts from both TCGA and DKFZ were again 
split into 2 prognostic groups. The survival analyses of 
TCGA and DKFZ methylation datasets validated the patient 
outcome-related methylation signatures (P-value < .0001 
for both cohorts). Overall, both independent validation 
cohorts (Figure 1E and I) consistently showed that the 
methylation signatures predicting negative outcomes 
were associated with higher histologic grade, G-CIMP 
low status, and high copy number instability (specifically 
CDKN2A loss).27

Multivariable analysis (Table 2) after adjusting for clin-
ically relevant factors including grade, copy number 
(CDKN2A status), G-CIMP status, and 1p/19q codeletion 
status showed prognostic factors associated with sur-
vival in high versus low HOX groups (P-value = .000027, 
P-value = .009, P-value = .00025, respectively for UHN, 
TCGA, DKFZ cohorts). Next, pathway analysis and 
gene ontology were performed using the genes with 
negative outcomes that overlapped with significantly 
hypermethylated probe sets (HR > 1 and P-value < .01) 
using DAVID (the database for annotation, visualization, 
and integrated discovery). Gene ontology showed that 
the methylation signature was enriched for both home-
obox genes and its subset of HOX genes (Supplementary 
Figure 3. HOX genes are also reflected in the univariable 
Cox hazard analysis in the UHN cohort, where high meth-
ylation of several CpG sites at HOX genes were correl-
ated with worse outcome in IDHmut glioma. HOX gene 
details from the Cox analysis including chromosome lo-
cation and number of significant probes are included in 
Supplementary Table 4.

HOX Gene Expression and Its Association With 
Overall Survival

To better understand the association between HOX gene 
expression and methylation with patient outcomes, we 
first examined HOX gene expression and its correla-
tion with overall survival using TCGA transcriptome pro-
files downloaded from PRECOG (PREdiction of Clinical 
Outcomes from Genomic Profiles).29,30 PRECOG as an an-
alytical tool correlates CIBERSORT cell type abundance 
data from transcriptome profiles with overall survival 
outcomes across 26 tumor types from TCGA.29,30 For pos-
itive survival-associated Z scores, high expression or 
upregulation is associated with shorter survival. For neg-
ative survival-associated Z scores, high expression or 
up-regulation is associated with longer survival. Given 
that the pathway analysis demonstrated an enrichment 
for both homeobox genes and its subset of HOX genes, 
we performed survival-associated Z score analysis for 
HOX genes and non-HOX homeobox genes separately 
(Supplementary Figure 2A and B, respectively). Survival-
associated Z score analysis for HOX genes demonstrated 
that HOX genes were prognostic in gliomas with a median 

http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noad126#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noad126#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noad126#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noad126#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noad126#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noad126#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noad126#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noad126#supplementary-data
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Figure 1.  Methylome analysis of IDH-mutant gliomas identifies a distinct signature of outcome.27 (A) Consensus cluster based on the methyla-
tion signatures from Cox regression analysis of the University Health Network methylation cohort. (B) Kaplan–Meier diagram showing the sur-
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Z score of 4.5 (P-value < .0001) but not significant in any 
of the other 25 tumor types (Z score of 1.95 is associated 
with P-value = .05). Survival-associated Z score analysis 
for non-HOX homeobox genes did not demonstrate any 
significant Z scores for any of the other 26 tumor types, 
including gliomas. Consequently, our subsequent analyses 
focused only on HOX genes and not non-HOX homeobox 
genes.

Characterization and Integration of All HOX Gene 
Methylation and HOX Gene Expression

To examine whether multi-omics integration is a better 
prognostic score, 412 IDHmut glioma samples from TCGA 
with matched methylation, mRNA, CNV, and mutational 
datasets were used to identify subtypes with unique mo-
lecular signatures. Based on the average methylation 
levels of all CpGs mapped to each HOX gene, we calculated 
SA methylation values for each sample and split IDHmut 
gliomas into 2 groups consisting of hypermethylation 

and hypomethylation by median. Overall survival 
based on HOX gene methylation patterns showed that 
hypermethylation of HOX genes correlates with statis-
tically significantly worse outcomes in IDHmut glioma 
(P-value = .0023, HR = 2[1.3–3.5]) (Figure 2A). Similarly, 
HOX gene expression was also split into 2 groups con-
sisting of high and low expression groups which showed 
that overexpression of HOX genes was also associated with 
a statistically significantly worse survival (P-value < .0001, 
HR = 3[1.8–5.1]) (Figure 2B).

Following single platform-based HOX gene expression 
and methylation levels, an integrated multi-platform-based 
HOX gene subtype was created by combining individual 
subtypes (high and low-risk groups) from HOX gene ex-
pression and methylation separately by taking the me-
dian values. The integrated RNA and methylation approach 
(iRM) that groups them based on High and Low status split 
gliomas into 4 subtypes based on the directionality of HOX 
gene-based methylation and gene expression analysis 
(high methylation-high expression, low methylation-low 
expression, low methylation-high expression, and high 

Table 2.  Multivariable Cox Analyses of HOX Gene Clusters Within University Health Network, The Cancer Genome Atlas, DKFZ Cohorts.27 Overall 
Survival Characteristics Based on Grade, G-CIMP Status, CDKN2A Status. HOX gene Cluster is Obtained Based on the Signed Average of Significant 
HOX Methylation Probes From Cox Analysis and Split by Median

Covariate Multivariable Cox

HR (95% CI) P-value

UHN cohort (N = 99)

HOX gene Methylation 3.86 (1.97–7.58) 8.76E-05

Grade (3 vs.2) 0.9 (0.4–2.01) .77

Grade (3 vs. 4) 3.77 (1.3–11.4) .019

CODEL (non-code vs. Codel) 1.21 (0.13–11.16) .87

G-CIMP (high vs. low) 6.72 (1.73–26.15) .006

Age 1.00 (0.96–1.03) .88

Gender (female vs. male) 1.78 (0.91–3.49) .09

CDKN2A (Loss vs. no loss) 2.45 (1.18–5.07) .016

TCGA validation cohort (N = 419)

HOX gene Methylation 2.8 (1.6–5.1) .0005

Grade (3 vs 2) 0.5 (0.3–0.9) .013

Grade (3 vs. 4) 1.3 (0.2–10.2) .79

CODEL (non-code vs. Codel) 2.0 (0.8–5.1) .16

G-CIMP (high vs. low) 1.92E–06 (0–Inf) .997

Age 1.0 (1.0–1.1) 1.46E-05

Gender (female vs. male) 1.0 (0.6–1.7) .88

CDKN2A (Loss vs. no loss) 3.1 (1.2–7.5) .015

DKFZ validation cohort (N = 211)

HOX gene Methylation 2 (1.1–3.7) .025

Grade (3 vs. 2) 0.4 (0.3–0.7) .0003

Grade (3 vs. 4) 0.8 (0.5–1.5) .48

G-CIMP (high vs. low) 1.0 (0.5–2.3) .92

Age 1.0 (1.0–1.0) .29

Gender (female vs. male) 0.6 (0.4–0.9) .016

CDKN2A (Loss vs. no loss) 1.1 (0.5–2.1) .85
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Figure 2.  Characterization and integration of all HOX gene methylation and gene expression. HOX gene-specific methylation and gene expres-
sion patterns in similar directionality are related to patient survival. (A) Kaplan–Meier diagram showing overall survival based on HOX gene meth-
ylation pattern (hypermethylation vs. hypomethylation) with hazard ratios (95% Confidence Interval: CI). (B) Kaplan–Meier survival analysis based 
on expression of HOX genes with hazard ratios (95% CI). (C) Kaplan–Meier diagram with the survival statistics of integrative RNA-methylation 
(iRM) subtypes of similar directionality of HOX gene methylation and HOX gene expression (iRM high and iRM low). (D) Kaplan–Meier diagram 
with survival statistics of iRM subtypes of opposite directionality of HOX gene methylation and HOX gene expression. (E) Boxplot showing the 
association of these integrative subtypes with mutational rate. (F) Boxplot showing the association of these integrative subtypes with aneuploidy.
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methylation-low expression). Interestingly, the 2 integrated 
subtypes of similar directionality: High methylation-high 
expression (iRM high) and low methylation-low expres-
sion (iRM low) produced highly prognostic groups that 
predicted statistically significant survival (P-value < .0001, 
HR = 7[2.9–16.9]) (Figure 2C). The iRM (HR = 7) analysis of 
HOX genes performed better than individual HOX gene 
expression or methylation analysis with HR of 2 and 3, re-
spectively (Figure 2). The 2 integrated subtypes of opposite 
directionality: Low methylation-high expression and high 
methylation-low expression, showed no survival differ-
ences (Figure 2D). Additional boxplots demonstrating the 
association of iRM with mutational rate (Figure 2E) and 
aneuploidy (Figure 2F) showed increased mutational and 
aneuploidy counts for the iRM high group and decreased 
counts for the iRM low group. This finding demonstrates 
a high degree of correlation between integrative subtypes 
and somatic mutations, with the iRM high group associated 
with worse survival having increased mutational load and 
aneuploidy, and the iRM low group associated with better 
survival having decreased mutational load and aneuploidy. 
Individually, both methylation and expression clearly separ-
ated high and low-risk groups, while both hypermethylation 
and overexpression of HOX genes in similar directionality 
were correlated with significantly worse outcomes in these 
tumors (P-value < .0001, HR = 7[2.9–16.9]).

Supplementary Table 1 shows Cox regression anal-
ysis of individual HOX gene methylation and expression 
in IDHmut glioma including methylation of CpG sites at 
gene promoter and gene body (averaged probe values 
for each HOX gene), where majority of HOX genes have 
high HR and significant P-values (P-value < .001). Only 
iRM cohort of the same directionality (both iRM low and 
high) showed significantly increased HR and significant 
P-values (P-value < .001) for majority of HOX gene expres-
sion and methylation analyzed (Supplementary Table 1), 
while for the iRM cohort of opposite directionality, signif-
icance was lost for majority of HOX gene expression and 
methylation (Supplementary Table 1). Although methyl-
ation of some HOX genes was significantly oppositely 
correlated with HOX gene expression in 35% (13/37) of 
them (P-value < .05), significant correlation was lost for 
all those HOX genes in iRM cohort of same directionality 
(Supplementary Table 5).

7-HOX Gene Biomarker Signature Predicts 
Outcome in Glioma

To identify the most significant outcome predictors, can-
didate HOX gene biomarkers were selected from the iRM 
high group that were significantly associated with patient 
outcome using TCGA IDHmut LGG samples. A separate 
Cox analysis of outcome for both HOX methylation and 
HOX gene expression was conducted for all HOX gene 
methylation and gene expression. A total of 84% of HOX 
gene methylation HRs were significantly associated with 
survival (31/37, P-value < .05, HR > 8), and 75% of HOX gene 
expression HRs were significantly associated with survival 
(30/40, P-value < .05, HR > 1) (Supplementary Table 1).

Interestingly, when these 2 groups of HOX genes were 
compared, a total of 25 genes had significant HRs > 1 for both 

methylation and gene expression. Various combinations 
of HOX genes were then tested ranging from 2 to 16 HOX 
genes based on the SA method for iRM groups. Interestingly, 
7-HOX genes (HOXA4, HOXA7, HOXA10, HOXA13, HOXD3, 
HOXD9, and HOXD10 located on chromosomes 2 and 7) ex-
hibiting high methylation and expression can be used as bio-
markers to determine the prognosis in IDHmut glioma. iRM 
high versus iRM low groups of these 7-HOX genes showed 
a significant p-value and increased HR corresponding to 
worse outcomes in the iRM high group compared to the iRM 
low group while opposite directionality of mRNA and meth-
ylation was not significant (Figure 3A).

We next validated the prognostic significance of our 
7-HOX gene signature using hierarchical clustering meth-
ylation data. This was used to identify the association of 
methylation subtypes with mRNA subtypes, mutational 
load, and other clinical factors including grade, CDKN2A 
copy number alterations and G-CIMP status. Our data 
show a strong association of hypermethylation with 
overexpression of the 7-HOX genes (P-value < .001 based 
on the chi-squared test) and higher mutational burden 
(P-value < .001 based on the chi-squared test) (Figure 3B), 
where the heatmap is based on the methylation data of 
the 7-HOX genes. Tumor mutational burden has recently 
been shown to be associated with poor outcome in diffuse 
gliomas using a multi-omics approach.31 In addition, the 
iRM high group also exhibited high copy number insta-
bility and a significant proportion of G-CIMP low tumors. In 
fact, G-CIMP low status constituted a subset (12/147 = 8%) 
of the iRM high group, where a total of 92% (12/13) of the 
G-CIMP low samples were present in the iRM high group 
(Figure 3B). Furthermore, we show that the iRM high group 
of the 7-HOX genes is associated with higher mutational 
burden and higher aneuploidy (Figure 3C and D).

Given the robustness of the 7-HOX gene signature in 
determining overall IDHmut glioma prognosis, we then 
applied our 7-HOX gene signature to subtypes of IDHmut 
glioma such as 1p/19q codeleted and non-codeleted 
gliomas for further risk stratification. To examine this, we 
separated IDHmut glioma based on 1p/19q codeletion 
status with matched methylation and mRNA datasets 
that includes 1p/19q codeleted gliomas without G-CIMP 
low tumors and non-codeleted gliomas with G-CIMP tu-
mors. Similar to our findings using IDHmut glioma we 
show that in both subtypes of IDHmut glioma, HOX gene 
overexpression, and hypermethylation predicts worse sur-
vival for both codeleted and non-codeleted glioma (Figure 
4A to D). Consistently iRM high and iRM low tumors also 
exhibit significant survival differences for both codeleted 
and non-codeleted subtypes of IDHmut glioma with 
P-values of .001 and .0059, respectively (Figure 4E and F). 
Again, opposite direction of methylation and expression 
(high methylation/low expression and low methylation/
high expression groups) shows no survival differences 
(not shown here).

Discussion

Traditional classification of diffuse gliomas as defined by 
WHO is based on histopathological grading.6,32 Molecular 

http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noad126#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noad126#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noad126#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noad126#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noad126#supplementary-data
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characterization of these tumors has further classi-
fied gliomas based on IDH mutation status and 1p/19q 
codeletion status, and these molecular features are correl-
ated with patient survival.8,26,43

Despite this, there is still a wide range of clinical outcomes 
in patients with IDHmut gliomas that is not accounted for 
by current clinical and pathological parameters. We postu-
lated that methylation signatures might help to better un-
derstand the variability in outcome of IDHmut gliomas and 
found that there was a negative correlation between out-
come and G-CIMP low, together with high copy number in-
stability. Most importantly, this signature was enriched for 
HOX genes, where HOX gene hypermethylation was asso-
ciated with worse survival in IDHmut gliomas. Integrated 
analyses of RNA and methylation data (iRM) identified HOX 
gene hypermethylation and overexpression were associ-
ated with significantly worse outcomes in IDHmut gliomas, 
with increased mutational burden and aneuploidy.

Furthermore, we found that a subset of 7-HOX genes lo-
cated at chromosomes 2 and 7 (HOXA4, HOXA7, HOXA10, 
HOXA13, HOXD3, HOXD9, and HOXD10), exhibiting 
hypermethylation and overexpression in the iRM high 
group, can serve as potential biomarkers predicting pa-
tient survival in both 1p/19q codeleted and non-codeleted 
IDHmut gliomas.

HOX genes are an evolutionarily conserved family of 
genes, in vertebrates there are a total of 39 HOX genes di-
vided into 4 separate clusters, A through D, located on 
chromosomes 7, 17, 12, and 2, respectively.33 While aber-
rant HOX gene expression and methylation have been re-
ported in the development and progression of multiple 
cancers,12 the majority of research to date exploring HOX 
genes in gliomas is limited to GBM.17–23 We sought to iden-
tify novel signatures of outcome in IDHmut gliomas using 
a multi-platform integrated approach, and independently 
found a high enrichment of HOX genes in the negatively 
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Figure 3.  7-HOX genes as biomarkers of outcome in IDH-mutant gliomas. (A) Kaplan–Meier diagram for integrated RNA and methylation anal-
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dendrogram for IDHmut glioma types for mRNA and methylation, where heatmap is only for the methylation data for 7-HOX genes. (C) Boxplot 
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Figure 4.  Applicability of 7-HOX gene signature in the subtypes of IDHmut glioma with 1p/19q codeletion and without 1p/19q codeletion: (A) 
Overall survival shown using Kaplan–Meier diagram based on HOX gene methylation pattern (hypermethylation vs hypomethylation) in 1p/19q 
codeleted IDHmut glioma. (B) Kaplan–Meier survival analysis based on expression of HOX genes in 1p/19q codeleted IDHmut glioma. (C) Overall 
survival was shown using Kaplan–Meier diagram based on HOX gene methylation pattern (hypermethylation vs. hypomethylation) in non-
codeleted IDHmut LGG. (D) Kaplan–Meier survival analysis based on expression of HOX genes in non-codeleted IDHmut glioma. (E) Kaplan–
Meier diagram with the survival statistics of integrative RNA-methylation (iRM) subtypes of similar directionality of HOX gene methylation and 
HOX gene expression (iRM high and iRM low) in codeleted IDHmut glioma. (F) Kaplan–Meier diagram with the survival statistics of integrative 
RNA-methylation (iRM) subtypes of similar directionality of HOX gene methylation and HOX gene expression (iRM high and iRM low) in non-
codeleted IDHmut glioma.
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prognostic subgroups in all 3 study cohorts. While we ob-
served aberrant methylation and expression of HOX genes 
from all 4 clusters, our final prognostic 7-HOX gene signa-
ture in IDHmut gliomas includes HOX genes from clusters 
A and D, located on chromosomes 7p14 and 2q31, respec-
tively.12 Both of these HOX gene clusters are located at top-
ological associating domain (TAD) boundaries, in which 
chromatin interactions are highly favored.12 Deletion or 
hypermethylation of specific CTCF-binding sites at these 
TAD boundaries can promote dysregulation of HOX gene 
expression.12,34 Unlike HOX clusters A and D, HOX clusters B 
and C are not associated with a TAD boundary, and although 
they have also been reported to be dysregulated in GBM, 
may represent a different mechanism of dysregulation.12 
These findings may account for the observed enrichment of 
HOXA and HOXD clusters in our final signature.

We also unexpectedly found that the HOX genes asso-
ciated with worse prognosis displayed seemingly par-
adoxical hypermethylation and overexpression. While 
it is generally accepted that hypermethylation of gene 
promoters leads to downregulation of gene expres-
sion,35,36 several recent publications describe a paradox-
ical relationship between DNA hypermethylation and 
upregulation of gene expression and its associated clin-
ical significance.13,37–40 A recent review showed some pu-
tative mechanisms of gene expression regulation and 
hypermethylation at different gene clusters for different 
cancers.41 Interestingly, they reported positive associa-
tion of promoter methylation and corresponding gene ex-
pression of GATA4, HOXD12, ESR1, TWIST1, and MGMT.41 
Similarly, we found that HOXD12 hypermethylation and 
gene expression were correlated with poor patient survival 
in IDHmut glioma. Within gliomas, a recent paper also ex-
plored this concept of paradoxical hypermethylation and 
overexpression of genes using integrated analyses of 70 
adult gliomas and found that the majority of transcriptional 
alterations resulted from DNA methylation-independent 
mechanisms, including altered methylation at histone H3 
trimethylation at lysine 27 (H3K27me3).42 Within GBM, 
HOX clusters demonstrate a drastically reduced level of 
H3K27me3 versus normal brain, providing evidence that 
this loss may be an important mechanism of aberrant ex-
pression.42 Additional studies have identified multiple 
genes in GBM with significant methylation of their main 
CpG islands/ promoter with the use of an alternative pro-
moter, including the gene HOXA10, identified in our 7-HOX 
gene signature, and HOXC11.15,21,42 These mechanisms are 
not specific to GBM, and may serve as mechanisms to ex-
plain our findings of non-canonical hypermethylation and 
overexpression in IDHmut gliomas.

Our study is not without limitations. First, the integration 
of RNA and methylation (iRM) in our study was explora-
tory, and based on the TCGA dataset. Additional investiga-
tions with matched RNA and methylation analyses from 
the same samples are warranted in order to further validate 
our findings. Second, future wet bench studies are neces-
sary in order to provide rationale behind our observations 
and establish underlying mechanisms that have not yet 
been investigated thoroughly for gliomas, and more spe-
cifically IDH-mutant gliomas.

In summary, using an integrative multi-platform ap-
proach, we observed a significant correlation between 

HOX gene hypermethylation and overexpression (iRM 
high) with worse outcomes in IDHmut glioma, including 
both 1p/19q non-codeleted and codeleted gliomas. The 
iRM high group was also associated with high mutational 
load and high aneuploidy. From the iRM group, we devel-
oped and validated a predictive 7-HOX gene signature of 
outcome in IDHmut gliomas. These results illustrate the 
strength of combining and integrating different platforms 
and data types (methylation, mRNA, and mutations) where 
complementary and dependent integration can provide a 
better understanding of co-regulated genes and probes 
with similar profiles.11 The integration of mRNA and meth-
ylation of HOX genes that distinguishes survival provides 
a novel clinically and biologically relevant stratification for 
IDHmut gliomas that could lead to a better molecular di-
agnosis and management of these patients. Future direc-
tions include further exploration of these predictive HOX 
genes, including mechanistic studies to determine the rela-
tionship between aberrant HOX gene methylation and ex-
pression in IDHmut glioma development and progression. 
Future targeted HOX-directed therapies may aid in the 
search for new treatment options in patients with gliomas.
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