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Abstract 
Background.  Resistance to existing therapies is a significant challenge in improving outcomes for glioblastoma 
(GBM) patients. Metabolic plasticity has emerged as an important contributor to therapy resistance, including ra-
diation therapy (RT). Here, we investigated how GBM cells reprogram their glucose metabolism in response to RT 
to promote radiation resistance.
Methods.  Effects of radiation on glucose metabolism of human GBM specimens were examined in vitro and in 
vivo with the use of metabolic and enzymatic assays, targeted metabolomics, and FDG-PET. Radiosensitization 
potential of interfering with M2 isoform of pyruvate kinase (PKM2) activity was tested via gliomasphere formation 
assays and in vivo human GBM models.
Results.  Here, we show that RT induces increased glucose utilization by GBM cells, and this is accompanied with 
translocation of GLUT3 transporters to the cell membrane. Irradiated GBM cells route glucose carbons through the 
pentose phosphate pathway (PPP) to harness the antioxidant power of the PPP and support survival after radiation. 
This response is regulated in part by the PKM2. Activators of PKM2 can antagonize the radiation-induced rewiring 
of glucose metabolism and radiosensitize GBM cells in vitro and in vivo.
Conclusions.  These findings open the possibility that interventions designed to target cancer-specific regulators 
of metabolic plasticity, such as PKM2, rather than specific metabolic pathways, have the potential to improve the 
radiotherapeutic outcomes in GBM patients.

Key Points

- GBM rewires glucose metabolism to resist oxidative stress induced by radiation.

- GLUT3 translocates to the cell surface for more efficient glucose uptake after radiation.

- PKM2 regulates glucose flux through the antioxidant PPP following radiation.

More than two-thirds of adults diagnosed with glioblas-
toma (GBM) will die within 2 years of diagnosis, making 
GBM one of the most lethal of cancers. Post-surgical radia-
tion therapy (RT) combined with temozolomide1, and more 
recently the addition of alternating electrical tumor treating 
fields2 are currently the only treatment approaches that sig-
nificantly improve overall survival, over surgery alone. Yet, 

GBM tumors inevitably recur, largely within the radiation 
field3. Overcoming radiation resistance of these tumors is one 
of the major remaining frontiers in radiation oncology that, if 
resolved, could potentially dramatically improve outcomes in 
this disease.

Amongst the recognized drivers of the remarkable 
radioresistance in GBM is tumor metabolism and its potential 

M2 isoform of pyruvate kinase rewires glucose 
metabolism during radiation therapy to promote an 
antioxidant response and glioblastoma radioresistance  
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for promoting resistance to oxidative stress, such as gen-
erated during RT. Disparate oncogenic mutations often 
converge on canonical metabolic pathways that fulfill the 
enhanced biosynthetic demands during cancer growth, 
making altered metabolism a recognized hallmark of 
cancer4, including GBM5. Aerobic glucose catabolism via 
glycolysis (aerobic glycolysis) is thought to provide an 
advantage to cancer cells by enhancing the pool of glyco-
lytic intermediates that serve as input for various biosyn-
thetic pathways branching from glycolysis. This partially 
explains the “Warburg effect” observed in most tumors6,7. 
Relevant to RT, glycolytic branches, such as the pentose 
phosphate pathway (PPP) are also critical contributors to 
the cell’s pool of reducing equivalents that maintain a bal-
anced redox status and can thus promote survival under 
oxidative stress conditions8.

The last decade brought the recognition that tumors 
do not have a fixed, albeit aberrant, metabolic pro-
file but rather exhibit remarkable metabolic plasticity 
that allows for rapid, on-demand reprogramming in an 
ever-changing tumor microenvironment. We and others 
have provided evidence for inherent metabolic plas-
ticity in GBM cells9,10 that presumably provides survival 
advantages and contributes to therapeutic resistance. 
The impact of radiation on tumor metabolism, and the 
molecular regulators involved in metabolic reprogram-
ming during RT remain largely uninvestigated. Here we 
aim to narrow this knowledge gap as it applies to GBM 
radiotherapy.

The M2 isoform of pyruvate kinase (PKM2) is a tumor-
specific, candidate mediator of GBM metabolic plasticity. 
PKM2 acts as a “metabolic switch” to promote rewiring of 
metabolic fluxes in a context-dependent manner by rapidly 
shifting between different oligomeric states11. Under pro-
liferating conditions, growth factor signaling inhibits the 
enzymatic activity of PKM212. This creates a bottleneck in 
glycolysis making upstream glycolytic intermediates avail-
able for anabolic pathways, such as the PPP, that support 
tumor growth. In addition, the PPP contributes to the main-
tenance of cellular redox balance via the production of 
NADPH, promoting survival under oxidative stress condi-
tions13 but the therapeutic implications in RT-resistant can-
cers remain unknown.

Here, we show that irradiated GBM cells rewire their 
glucose metabolism to drive a metabolic antioxidant re-
sponse via the PPP that promotes resistance to the oxi-
dative stress induced by radiation, and that PKM2 is a 

major regulator of this response. Evidence that PKM2 is 
overexpressed in GBM tumors, while normal brain tissue 
expresses the constitutively active PKM114,15, points to 
PKM2 as a potentially actionable therapeutic target for 
combining with RT. Here, we provide initial evidence that 
supports this approach.

Materials and Methods

Cell Culture

Primary human glioblastoma lines, GBM217, GBM374, and 
GBM382 were established at UCLA as described in Laks et 
al.16. Patient-derived xenografts (GBM38)17 were provided 
by Dr. Jann Sarkaria (Mayo Clinic). See Supplementary 
Materials and Methods for more details.

Irradiation and Treatments

Cells were irradiated at room temperature using an exper-
imental X-ray irradiator (Gulmay Medical Inc, Suwanee, 
GA) at a dose rate of 7.1702 Gy/min. Unless otherwise 
stated, cells were treated with 10 μM of the PKM2 acti-
vator, TEPP46 (MedChem Express) 3 h prior to irradiation. 
2-Deoxy-D-Glucose, 2DG (Sigma) was used at a dose of 
5 mM in glucose-free complete GBM media, 2 h prior to 
irradiation. GSH-MEE (Sigma) was used at 5 mM, 5 min-
utes prior to irradiation. See Supplementary Materials and 
Methods for more details.

Gliomasphere Formation Assay

Gliomasphere-forming capacity was determined by 
plating cells in GBM media, into 96-well non-treated plates, 
at a range of cell densities appropriate for the different cell 
lines and doses of radiation. The surviving fraction was de-
termined as previously described18. See Supplementary 
Materials and Methods for more details.

Glucose Uptake, Lactate Production, and ROS 
Detection

See Supplementary Materials and Methods.

Importance of the Study

Glioblastomas (GBM) are aggressive brain tumors with 
dismal prognosis that is in part due to a remarkable 
resistance to modern therapies, including radiation 
therapy (RT). This study shows that GBM respond to 
radiation by rewiring glucose metabolism in a way that 
promotes survival during RT. Following RT, glioblast-
omas upregulate glucose consumption by increasing 
GLUT3 at the cell surface. Glucose-derived metabolites 

are preferentially routed through the antioxidant PPP, 
thus optimizing for survival during the lethal oxidative 
stress induced by radiation. PKM2, is identified as one 
of the main molecular regulators of the increased flux 
through the PPP. Small molecule activators of PKM2 
show promise for significantly enhancing the thera-
peutic benefit of RT and improving overall outcomes in 
this deadly disease.
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1991Bailleul et al.: Metabolic rewiring drives glioblastoma radioresistance
N

eu
ro-

O
n

colog
y

G6PDH, 6PGD, and PKM2 Activity Assays

See Supplementary Materials and Methods.

In Vitro Metabolomics

For metabolite extraction and measurement methods See 
Supplementary Materials and Methods.

Immunofluorescence and Immunocytochemistry

See Supplementary Materials and Methods.

Protein Extraction, Cell Fractionation, Western 
Blotting, RNA Extraction, and Real-time 
Quantitative Polymerase Chain Reaction

See Supplementary Materials and Methods.

Subcutaneous Tumor Models in Mice

GBM374 cells were suspended in a solution of 1:1 mixture 
of Matrigel® basement membrane matrix (Corning) and 
DMEM medium and 50 000 cells were injected subcutane-
ously in the hind legs of NSG. For details on treatments see 
Supplementary Materials and Methods.

Intracranial Tumor Models: Survival Studies

GBM cells were implanted into the right striatum of the 
brains of mice using a stereotactic device. For more details 
on implantation methods, treatments, and IHC staining of 
brain tissue see Supplementary Materials and Methods.

In Vivo Stable Isotope Tracing

For details see Supplementary Materials and Methods.

In Vivo Micro-PET/Micro-computed Tomography 
Imaging

Male NSG mice were implanted subcutaneously with 
GBM374 gliomaspheres. Once the tumors were palpable, 
mice underwent micro-PET imaging immediately followed 
by micro-computed tomography imaging in the Genisys8 
scanner (Sofie Biosciences). For details see Supplementary 
Materials and Methods.

Brain Penetration of PKM2-Activator

For sample preparation and detection see Supplementary 
Materials and Methods.

Statistics

Unless otherwise stated, statistical significance was de-
termined by performing 2-sided t tests or 2-way ANOVA 

using Prism v9.3.0. P values were considered significant 
below 0.05 (*P < .05; **P < .01, ***P < .001, and ****P < 
.0001). All experiments were independently repeated at 
least 3 times.

See Supplementary Materials and Methods for statistical 
analysis of Subcutaneous tumor model and Intracranial 
model.

Data Availability

Raw data for the metabolomics study were generated at 
the UCLA Metabolomics center and at the University of 
Michigan Metabolomics core. Derived data supporting 
the findings of this study are available from the corre-
sponding author upon request. Other data generated in 
this study are presented within the article and its supple-
mentary files.

Ethics

For in vivo experiments, all animal procedures were ap-
proved by the UCLA Institutional Animal Care and Use 
Committee and by the University Committee on Use and 
Care of Animals at the University of Michigan.

Results

Radiation induces an enhanced “Warburg-like” 
metabolic phenotype in GBM

To determine the effect of radiation on glucose utiliza-
tion, we used patient-derived, treatment-naïve GBM spe-
cimens with defined genetic features and mutation status 
(see Materials and Methods), that were propagated as 
gliomaspheres (gs) shown to maintain the phenotype 
of originating tumors19. The fluorescent analogue of glu-
cose, 2NBDG was used as a surrogate for “glucose up-
take”. The in vitro basal glucose uptake (Supplementary 
Figure 1A) reflected the relative growth rates of the dif-
ferent gliomasphere specimens (Supplementary Figure 
1B, C). Adherent (ad) cultures, established by growing 
gliomaspheres in the presence of serum, took up more 
2NBDG relative to gliomaspheres (Supplementary Figure 
1D). All cultures significantly increased 2NBDG uptake 
following radiation by as much as 2-fold, in a radiation 
dose-dependent manner (Figure 1A–C, Supplementary 
Figure 1E, F), despite the expected slower growth rate 
(Supplementary Figure 1G) and smaller spheroid sizes 
of irradiated gliomaspheres (see Figure 3F). To deter-
mine if the enhanced glucose uptake persists beyond 
the first 72 h following radiation, we measured 2NBDG 
uptake in sequential generations of gliomaspheres 
(Supplementary Figure 1H). Glucose uptake remained 
elevated for up to 2 weeks following the initial radia-
tion exposure with a single dose of 8 Gy (Figure 1D and 
Supplementary Figure 1I).

To validate the observations obtained with the 2NBDG 
method, we used biochemistry analyzers (YSI) as a com-
plementary method that allows for a more direct, time-
resolved, per cell basis measure of extracellular glucose 
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concentration in growth media without disturbance to cell 
growth. This method confirmed the enhanced uptake of 
glucose by gliomaspheres with similar time kinetics fol-
lowing radiation (Figure 1E, F).

In general, cancer cells, including GBMs, convert 
most of the glucose carbons to lactate via glycolysis, 
even when oxygen is readily available (Warburg effect6). 
Similarly, irradiated gliomaspheres secrete more lactate 
(Figure 1G), suggesting that at least some of the “extra” 
glucose taken up following radiation is being converted 
to lactate.

To determine whether the enhanced glucose utilization 
following radiation also occurs in vivo, we used the glu-
cose analogue [18F]fluorodeoxyglucose ([18F]-FDG), which 
allows for imaging of glucose uptake in vivo via PET. 
Consistent with the in vitro observations, subcutaneous 
GBM tumors took up significantly more glucose at 24 h and 
5 days following radiation (Figure 1H, I, Supplementary 
Figure 1J, K).

Radiation induces translocation of glucose 
transporter 3 (GLUT3) to the cell membrane

To probe the mechanism behind the increase in glucose up-
take by irradiated gliomaspheres we analyzed levels of the 
main glucose transporters (GLUT) and hexokinases (HK) in 
GBM cells (Figure 2A). Only HK2 gene expression levels in-
creased following radiation (Figure 2A). At the protein level, 
GLUT1 levels were extremely low compared to GLUT3 and 
did not change following radiation (Supplementary Figure 
2A). While GLUT3 was abundant (Supplementary Figure 
2A) its total protein levels decreased following radiation 
(Figure 2B), reflecting the decreased gene expression levels 
(Figure 2A). Although gene expression levels of HK2, the 
predominant isoform in GBM, increased following radia-
tion (Figure 2A), this did not correlate with increased pro-
tein levels (Figure 2C, Supplementary Figure 2B). Therefore, 
total protein levels of GLUTs or HKs did not explain the 
increase in glucose uptake following radiation.
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Figure 1. Radiation increases glucose consumption in GBM. (A–D) Glucose uptake measured via flow cytometry (2NBDG assay) in GBM217 
(A), GBM374 (B) and GBM382 (C) gliomaspheres (gs). Unpaired t-tests, n = 3. (D) Glucose uptake after sequential generations of GBM217gs and 
GBM374gs following radiation. Unpaired t-tests, n = 3–4. (E–F) Glucose consumption rate determined via YSI biochemistry analyzer, in GBM217gs 
(E) and GBM374gs (F). Paired t-tests, n = 3. (G) Lactate secretion rate per cell determined via YSI. Paired t-tests, n = 3. (H–I) Glucose uptake meas-
ured via PET scan in tumor-bearing mice infused intravenously with 18F-FDG. Tumors outlined with a white circle on representative images (H). 
FDG uptake levels. Paired t-tests, n = 4 (I).
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We then explored the possibility that glucose transporters 
translocate to the cell membrane more efficiently fol-
lowing radiation, thus providing irradiated GBM cells with 
a greater capacity to take up glucose. Immunofluorescence 
analysis revealed increased levels of GLUT3 on the cell sur-
face following radiation, in both gliomaspheres (Figure 2D) 
and adherent cultures (Supplementary Figure 2C), whereas 
GLUT1 cell surface levels remained relatively similar 
(Supplementary Figure 2D). The radiation-induced increase 
in cell surface levels of GLUT3 was also confirmed via cell 
fractionation methods (Figure 2E, F) and quantitatively via 
flow cytometry (Figure 2G–I) and closely mirrored the ki-
netics of glucose uptake by gliomaspheres (Figure 2G–I, 
right hand panels). The fold change in 2NBDG uptake in-
duced by radiation linearly correlated with the fold change 
in cell surface levels of GLUT3 (Figure 2J), providing a plau-
sible explanation for the increase in glucose uptake by ir-
radiated gliomaspheres (Figure 1).

Radiation rewires glucose metabolism to enhance 
PPP activity

We hypothesized that the increase in glucose uptake by 
irradiated gliomaspheres is a response to the oxidative 
stress induced by radiation. To test this, we irradiated 
gliomaspheres in the presence of a potent antioxidant, 

reduced glutathione (GSH), provided in the form of gluta-
thione reduced ethyl ester (GSH-MEE), a membrane/lipid 
permeable derivative of GSH, at concentrations that pre-
vent the accumulation of radiation-induced reactive ox-
ygen species (ROS) (Figure 3A, Supplementary Figure 3A). 
GSH partially or fully prevented the increase in glucose up-
take (Figure 3B), pointing to an adaptive role for glucose in 
mitigating the oxidative stress induced by radiation.

To understand the fate of glucose carbons in irradiated 
gliomaspheres, we measured metabolite levels via LC-MS 
using untargeted and targeted metabolomics. Untargeted 
analysis revealed that total abundance levels of glucose 
and metabolites in upper glycolysis, such as phosphoryl-
ated glucose/fructose-6-phosphate (G6P/F6P), fructose-
1,6-bisphosphate (F1,6BP), and 3-phosphoglycerate 
(3PG) increased following radiation (Figure 3C and 
Supplementary Figure 3B, C). G6P serves as the branching 
point of glycolysis into the oxidative (ox) arm of the PPP 
(oxPPP), while F6P, F1,6BP, and 3PG can reversibly feed 
into the non-oxidative (non-ox) PPP arm (Figure 3D). 
Analysis of abundance levels of PPP metabolites, such 
as 6-phosphogluconate (6PG) and ribulose-5-phosphate 
(R5P) in the oxPPP, and sedoheptulose 7-phosphate (S7P) 
in the non-oxPPP revealed increased abundance in irradi-
ated gliomaspheres (Figure 3C and Supplementary Figure 
3B, C).
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Abundance of metabolite levels is the net result of me-
tabolite production and consumption and does not in-
form on metabolic flux. Therefore, to better understand 
the flux of glucose carbons following radiation, we per-
formed 1,2-13C2-glucose tracing experiments and analyzed 
the 13C-labeled metabolite levels via LC-MS to distinguish 
glucose carbons routed through the PPP from those oxi-
dized strictly via glycolysis20 (Figure 3D, E). As depicted 
in Figure 3D, HK converts 1,2-13C2-glucose to 1,2-13C2-G6P, 
which can either be metabolized through glycolysis or 
through the PPP. When metabolized through glycolysis, 
the downstream metabolites will maintain 2 13C-labeled 
carbons (M+2). When 1,2-13C2-G6P is shunted through 
the PPP, an oxidative decarboxylation reaction removes 
the 13C label on the first position of glucose, generating 
singly 13C-labeled metabolites (M+1), some of which 

feed back into the glycolysis pathway via the non-oxPPP 
(Figure 3D). We used the difference in lactate 13C-labeling 
(Supplementary Figure 3D, E) normalized by the rate of 
glucose consumption (as determined in Figure 1E, F) to 
calculate absolute flux of glucose carbons through the PPP. 
Despite the heterogeneity in sphere sizes and growth rates 
(Figure 3E, F), targeted metabolomics analysis revealed a 
clear increase in PPP flux in irradiated gliomaspheres that 
becomes significant by 24 h following radiation and is sus-
tained for up to at least 72 h, the last time point analyzed 
(Figure 3G, H).

The 1,2-13C2-glucose tracer is less adequate for deter-
mining PPP flux in vivo due to label mixing in other tis-
sues and the circulatory system that would produce 
many different, unexpected forms of labeled glucose. 
Therefore, we used a uniformly labeled 13C-glucose tracer 
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Figure 3. Irradiated gliomaspheres enhance flux through the PPP. (A) ROS levels determined with CellROX 5 min after radiation. Unpaired t-tests, 
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colytic and PPP metabolite levels. Pyruvate levels were not detectable. (D) 1,2-13C2 glucose flux and labeled carbon distribution through glycolysis 
(left panel) and the PPP (top right panel). Net flux through the PPP results in 3 M+0 lactates, one M+1 lactate and one M+2 lactate. (E) Protocol for 
glucose flux measurement. (F) Images of GBM374gs growth (10×). (G–H) Relative PPP flux was determined via glucose tracing experiments, using 
M+1 and M+2 lactate levels and glucose uptake rates in GBM217gs and GBM374gs treated as depicted in Figure 3E. Two-way ANOVA, n = 3. (I) 
Tissues were harvested from patient-derived GBM38 intracranial tumors, then assessed for 13C labeling by LC-MS. Fractions of ribose 5-phos-
phate (R5P) produced directly from the oxidative arm of the PPP were determined by dividing the M+5 fraction of R5P by the M+6 fraction of G6P. 
Unpaired t-tests, n = 6–7.

http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noad103#supplementary-data


1995Bailleul et al.: Metabolic rewiring drives glioblastoma radioresistance
N

eu
ro-

O
n

colog
y

to infuse a mouse intracranial model of patient-derived 
gliomaspheres (Figure 3I). We observed that the G6P-
derived fraction of R5P was increased in irradiated tu-
mors, indicative of enhanced PPP activity (Figure 3I and 
Supplementary Figure 3F).

PKM2 enables the radiation-induced increase in 
PPP activity to harness its antioxidant power

The enzymatic activity of the first rate-limiting enzyme in 
the PPP, glucose-6-phosphate dehydrogenase (G6PDH), or 
the second enzyme, 6-phosphogluconate dehydrogenase 
(6PGD) were not affected by radiation, although oxidative 
stress induced by hydrogen peroxide (H2O2) significantly 
downregulates G6PDH activity (Supplementary Figure 
4A, B). This indicated that the radiation-induced shunting 
of glucose carbons through the PPP (Figure 3G, H) cannot 
be explained by alterations in PPP enzyme activity. Others 

have shown that acute oxidative stress induced via means 
other than radiation, inhibits the enzymatic activity of the 
last rate-limiting enzyme in glycolysis, PKM2 and that this 
supports antioxidant production by promoting glucose ox-
idation via the PPP13. Since the increase in glucose uptake 
by irradiated gliomaspheres (Figure 1) is accompanied by 
increased PPP flux (Figure 3G–I) and this seems to be a re-
sponse to oxidative stress generated by radiation (Figure 
3B), we considered the possibility that oxidative stress in-
duced by radiation inhibits PKM2 activity, resulting in in-
creased PPP flux.

Although radiation had no effect on PKM2 protein levels 
(Supplementary Figure 4C–E) it suppressed its enzymatic 
activity (Figure 4A), but this was prevented by the addition 
of GSH-MEE (Figure 4B and Supplementary Figure 4F), sug-
gesting that radiation-induced oxidative stress promotes the 
suppression of PKM2 activity. The addition of the reducing 
agent dithiothreitol (DTT) to the cell lysate prior to meas-
uring PK activity, partially restored PKM2 activity (Figure 
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Figure 4. Radiation suppresses PKM2 enzymatic activity, which regulates glucose flux through the PPP. (A) Violin plots of PK activity in 
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4B and Supplementary Figure 4F), pointing to a revers-
ible oxidizing event as the likely culprit for the suppressed 
PKM2 activity. TEPP46, a small molecule activator of PKM221 
(Supplementary Figure 4G, H) prevented the suppression of 
PKM2 activity (Figure 4C) and the increase in lactate secre-
tion following radiation (Figure 4D). Although TEPP46 had no 
effect on basal PPP flux, it dampened the radiation-induced 
increase (Figure 4E), pointing to PKM2 as a promoter of en-
hanced PPP flux following radiation of gliomaspheres.

The increase in PPP flux is accompanied by increased 
NADPH and GSH abundance levels (Supplementary 
Figure 4I, J), suggesting a PPP contribution to the NADPH/
GSH pool following radiation. While PKM2 activators do 
not seem to affect NADPH levels (Figure 4F, G), pointing 
to other sources of NADPH production following ra-
diation, they do reduce GSH levels (Figure 4H, I). This 
suggests that radiation-induced ROS levels should be 
exacerbated when PKM2 is activated. Indeed, TEPP46 in-
creases ROS levels following radiation (Figure 4J, K). 
Alternatively, NADPH supply via the PPP can be increased 
by providing cells with 2-deoxyglucose (2DG). Although 

2DG is a commonly used glycolysis inhibitor that cannot 
be shunted into the glycolysis pathway downstream of 
phosphoglucose isomerase, it can still be shunted into 
the PPP to produce NADPH22,23. 2DG dampened ROS ac-
cumulation in irradiated gliomaspheres (Figure 4J, K), 
likely by stimulating NADPH production via the PPP and 
maintaining reduced GSH pools. Analysis of PKM2 ex-
pression levels in the TCGA glioblastoma cohort revealed 
a strong correlation to progression-free survival (Figure 
4L), highlighting an important role for PKM2 in GBM and 
suggesting that PKM2 might be a potential therapeutic 
target.

PKM2 activators sensitize GBM to radiation 
therapy

We evaluated the potential of pharmacological activa-
tion of PKM2 via TEPP46 in radiosensitizing GBM. Using 
a modified in vitro clonogenic “sphere forming assays” 
(SFA, See Materials and Methods) we showed that TEPP46 
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radiosensitizes gliomaspheres from all 3 lines (Figure 
5A–C) and this effect lasts beyond the first generation of 
gliomaspheres (Figure 5D). Relevant to potential in vivo 
application, TEPP46 had no apparent effect as a single 
agent or as a radiosensitizer on normal human astrocytes 
in vitro (Figure 5E), indicating that PKM2 activators will not 
affect normal brain cells, which likely rely more on PKM1 
for their metabolic needs14.

In vivo, we determined the effect of combining TEPP46 
with radiation in subcutaneous (sub-c) and orthotopic xen-
ograft models of human GBM. In the 374gs sub-c model, 
TEPP46 alone was initially more efficient at controlling 
tumor growth than fractionated radiation (Figure 6A). 
However, combining TEPP46 with radiation resulted in sus-
tained tumor control over time and in some cases, tumor 
regression (Figure 6A and Supplementary Figure 5A, B). 
Linear mixed-effects modeling identified significant nega-
tive effects of the combination regimen on tumor growth 
rate (Supplementary Figure 5C, D). The tumor average 
maximum growth rates, as estimated by smoothing spline 
for vehicle, radiation, TEPP46 or combined treatment were 

0.18, 0.14, 0.17, and 0.07, respectively. TEPP46 had no ap-
parent effect on the weights of the mice, supporting a fa-
vorable overall toxicity profile (Supplementary Figure 5E).

Previous studies show that TEPP46 penetrates the blood 
brain barrier24, therefore we evaluated the therapeutic po-
tential of TEPP46 in orthotopic GBM models with different 
median survival times: 217gs, median survival ~3 weeks 
and 374gs, median survival ~5 weeks. Our own evaluation 
of the in vivo pharmacokinetics of TEPP46 administered 
intraperitoneally showed that the brain-to-plasma area 
under the curve (0–24 h) for TEPP46 in non-tumor bearing 
mice is ~13%, with a plasma and brain half-life of around 
4 h (Figure 6B). As a single agent, TEPP46 had no impact 
on the overall survival for either model however, the com-
bination treatment had a significant radiosensitizing effect, 
but only at the higher dose of 50 mg/kg of TEPP46 (Figure 
6C, D). This combination treatment resulted in the greatest 
estimated median survival of 33 and 56 days for GBM217 
and GBM374, respectively, and the lowest hazard ratio 
among all the groups, with 8 Gy as the reference group 
(Figure 6C, D, Supplementary Figure 5F, G). Notably, we 
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observed long-term survivors with no detectable tumors 
in both TEPP46 doses in the GBM374 model (Figure 6E, 
Supplementary Figure 5H). These results suggest that the 
lower dosing of TEPP46 might not be reaching therapeutic 
concentrations in the brain. Despite this apparent limitation 
of TEPP46 availability in vivo, 3 out of 8 mice survived tumor-
free for over 3 months, in the slower-growing GBM374 
model (Figure 6C and E and Supplementary Figure 5H, I).

Discussion

The reconfiguration of carbohydrate metabolism as a 
regulated response to cellular oxidative stress has been 
recognized for over 2 decades, including the oxidative 
stress-induced rerouting of glucose carbons into the 
oxPPP25,26. Here, we report that GBM cells retain a remark-
able degree of metabolic plasticity that supports their sur-
vival during oxidative stress induced by RT. They consume 
additional glucose following irradiation (Figure 1), akin to 
our observations in breast cancer27. Early studies have re-
ported similar observations of a rapid rise in glucose uptake 
during RT, via [18F]-FDG-PET imaging of mouse and human 
tumors28,29, pointing to a more general response of tumors 
treated with RT. Antioxidants prevent the increase in glucose 
uptake (Figure 3A, B), pointing to the radiation-induced ox-
idative stress as the likely ‘signal’ for this response, in line 
with reports of a ROS-dependent increase in tumor glucose 
demand following radiation of mammary carcinomas30.

Our findings show that radiation promotes a net outward 
translocation of GLUT3 to the cell’s surface accounting 
for the changes in glucose transport following radiation 
(Figure 6F). Although the mechanism of radiation-induced 
translocation of GLUT3 remains to be determined, the 
involvement of GLUT3 in facilitating increased glucose 
consumption by irradiated GBM cells is not surprising. 
GLUT3 has a higher affinity for glucose than GLUT1, 2- 
or 4- and ~5-fold greater transport capacity than GLUT1 
or 431, ensuring efficient glucose uptake. GLUT3 is crit-
ical to the survival of GBM stem cells in low glucose32 
and subpopulations of GBM are GLUT3-addicted33. While 
GLUT1 and GLUT3 are the 2 main transporters in cerebral 
glucose metabolism, only GLUT3 levels predict for poor 
GBM survival32,33.

Our findings show that the radiation-induced increase 
in PPP flux is regulated, in part, by the suppression of 
PKM2 activity in gliomaspheres, due to an oxidative event 
(Figure 4A, B). Oxidized, kinase-inactive PKM2 blocks pyr-
uvate production, making upstream glycolytic intermedi-
ates available for the PPP, one of the main sources of 
cellular NADPH13. PKM2 activators reduce flux of glucose 
carbons through the PPP (Figure 4E), exacerbates ROS 
levels (Figure 4J, K) and radiosensitize GBM (Figures 5 and 
6). Together, these findings posit that enhanced carbon flux 
through the PPP is a PKM2-regulated, pro-survival meta-
bolic response in irradiated GBM (Figure 6F). Although not 
investigated here, another potential benefit from enhanced 
PPP flux is the generation of nucleotide precursors for DNA 
repair34, a possibility that warrants further investigation.

Although seemingly contradictory, our findings are in 
line with others showing radiosensitization of GBM cells 

by knocking down PKM2 expression35,36. PKM2 can readily 
switch between an enzymatically active-tetramer and an 
inactive-dimer, altering glycolytic flux. The dimers can also 
translocate to the nucleus where they moonlight as regu-
lators of DNA repair, as is demonstrated by the Sizemore 
and Wu studies35,36. Knocking down PKM2 would abrogate 
both the dimeric and tetrameric forms of PKM2, therefore 
abrogating both of its functions as a regulator of glyco-
lytic flux in the cytosol and a regulator of DNA repair in 
the nucleus, whereas our approach is to alter the balance 
between the 2 conformations using the small molecule ac-
tivator TEPP46, that could have greater clinical relevance.

Clearly, normal cells are also capable of reconfiguring 
glycolytic flux as a way to mitigate oxidative stress22,25,26 
and redox-sensitive metabolic enzymes, such as GAPDH 
can regulate this response in normal cells37. Therefore, 
identifying cancer-specific regulators of redox metabolic 
plasticity for therapeutic targeting is crucial to the suc-
cess of this approach. PKM2 is overexpressed in GBM15,24, 
making it an attractive target of “metabolic plasticity’ for 
GBM radiosensitization. Small molecule activators of 
PKM2 show promise in slowing tumor growth in xeno-
graft models21,38 prompting clinical trial testing as single 
agents (Clinicaltrials.gov, NCT04328740, recruiting), yet 
to be combined with other anti-cancer therapies, in-
cluding RT. The development of PKM2 imaging agents in 
brain tumors15,39,40, provides an additional opportunity for 
coupling treatment with target imaging to optimize po-
tential for benefit. Despite critical differences, many par-
allels exist between the metabolic regulation of rapidly 
proliferating cancer cells and activated immune effector 
cells41. Evidence exists, although none in tumor models, 
suggesting that activation of PKM2 hampers immune cell 
activation42,43. Therefore, PKM2 targeting needs further val-
idation in the context of an intact immune system to fully 
support its radiotherapeutic potential.
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