
Diverse clonal fates emerge upon drug treatment of 
homogeneous cancer cells

Yogesh Goyal1,2,3,4, Gianna T. Busch4, Maalavika Pillai1,2,3, Jingxin Li5, Ryan H. Boe5, 
Emanuelle I. Grody1,2,3, Manoj Chelvanambi6, Ian P. Dardani4, Benjamin Emert7, Nicholas 
Bodkin1,2,3, Jonas Braun1,2,3, Dylan Fingerman8, Amanpreet Kaur4, Naveen Jain5, 
Pavithran T. Ravindran5, Ian A. Mellis4,7, Karun Kiani5, Gretchen M. Alicea9,10, Mitchell 
E. Fane9,10, Syeda Subia Ahmed1,2,3, Haiyin Li8, Yeqing Chen8, Cedric Chai1,2,3,11, Jessica 
Kaster8, Russell G. Witt6, Rossana Lazcano6,12, Davis R. Ingram6,12, Sarah B. Johnson6, 
Khalida Wani6, Margaret C. Dunagin4,13, Alexander J. Lazar6,14, Ashani T. Weeraratna9,10, 
Jennifer A. Wargo6, Meenhard Herlyn8, Arjun Raj4,13

1Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern 
University, Chicago, IL, USA.

2Center for Synthetic Biology, Northwestern University, Chicago, IL, USA.

Reprints and permissions information is available at http://www.nature.com/reprints.

Correspondence and requests for materials should be addressed to Yogesh Goyal or Arjun Raj. yogesh.goyal@northwestern.edu; 
arjunrajlab@gmail.com.
Author contributions Y.G. and A.R. conceived and designed the project. Y.G. designed, performed and analysed all experiments, 
supervised by A.R. M.P., G.T.B. and E.I.G. assisted Y.G. with FateMap experiments and analysis. R.H.B., P.T.R., J.L. and M.P. 
assisted Y.G. with bulk RNA-seq experiments and analysis. M.P. performed specific analysis for revisions with inputs from Y.G. 
and A.R. I.P.D., G.T.B., S.S.A., E.I.G., M.C.D. and C.C. assisted Y.G. with tissue sectioning and automated RNA FISH and DAPI 
scans and analysis. Y.G., B.E. and K.K. designed and optimized the PCR ‘side reaction’ primers for recovering the barcodes from 
scRNA-seq libraries. R.H.B., G.T.B. and J.L. extracted gDNA for WGS experiments and N.B. performed the WGS analysis with 
inputs from Y.G. and A.R. A.K. assisted Y.G. in the design and implementation of spheroid experiments. G.T.B., N.J., J.L., J.B., 
M.P. and I.A.M. assisted Y.G. with barcode library preparation and the computational pipeline. Y.G. designed the mouse barcoding 
experiments, and D.F., H.L., Y.C., G.M.A. and M.E.F. performed the mouse experiments with input from Y.G., M.H., A.R. and A.T.W. 
Y.G. and G.T.B. prepared barcode libraries for mouse experiments. M.C., R.H.B., R.G.W., R.L., D.R.I., S.B.J., K.W., M.P., A.J.L. 
and J.A.W. performed human patient experiments and analysis with inputs from Y.G. and A.R. Y.G., G.T.B. and E.I.G. prepared all 
illustrations used in this study. Y.G. and A.R. wrote the manuscript with input from all authors.

Online content
Any methods, additional references, Nature Portfolio reporting summaries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contributions and competing interests; and statements of data and code 
availability are available at https://doi.org/10.1038/s41586-023-06342-8.

Reporting summary
Further information on research design is available in the Nature Portfolio Reporting Summary linked to this article.

Competing interests A.R. receives royalties related to Stellaris RNA FISH probes. Y.G. received consultancy fees from the 
Schmidt Science Fellows and the Rhodes Trust. A.J.L. reports financial relationships with AbbVie, Adaptimmune, AstraZeneca, 
Bain Capital, Bayer, Bio-AI Health, BMS, Caris, Deciphera, Foghorn Therapeutics, Gothams, GSK, Illumina, Invitae/Archer DX, 
Iterion Therapeutics, Merck, Novartis, Nucleai, OncoKB (MSKCC), Pfizer, Regeneron, Roche/Genentech, SpringWorks, Tempus and 
Thermo Fisher. J.A.W. is an inventor on US patent application no. PCT/US17/53.717 submitted by the University of Texas MD 
Anderson Cancer Center, which covers methods to enhance immune checkpoint blockade responses by modulating the microbiome. 
J.A.W. reports compensation for the speaker’s bureau and honoraria from Imedex, Dava Oncology, Omniprex, Illumina, Gilead, 
PeerView, Physician Education Resource, MedImmune, Exelixis and Bristol Myers Squibb; and has served as a consultant and/or 
advisory board member for Roche/Genentech, Novartis, AstraZeneca, GlaxoSmithKline, Bristol Myers Squibb, Micronoma, OSE 
therapeutics, Merck and Everimmune. J.A.W. receives stock options from Micronoma and OSE therapeutics. All other authors declare 
no competing interests.

Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/
s41586-023-06342-8.

HHS Public Access
Author manuscript
Nature. Author manuscript; available in PMC 2023 November 07.

Published in final edited form as:
Nature. 2023 August ; 620(7974): 651–659. doi:10.1038/s41586-023-06342-8.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.nature.com/reprints


3Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of 
Medicine, Chicago, IL, USA.

4Department of Bioengineering, School of Engineering and Applied Sciences, University of 
Pennsylvania, Philadelphia, PA, USA.

5Genetics and Epigenetics, Cell and Molecular Biology Graduate Group, Perelman School of 
Medicine, University of Pennsylvania, Philadelphia, PA, USA.

6Department of Genomic Medicine, Division of Cancer Medicine, The University of Texas MD 
Anderson Cancer Center, Houston, TX, USA.

7Genomics and Computational Biology Graduate Group, Perelman School of Medicine, University 
of Pennsylvania, Philadelphia, PA, USA.

8The Wistar Institute, Philadelphia, PA, USA.

9Department of Biochemistry and Molecular Biology, Johns Hopkins School of Public Health, 
Baltimore, MD, USA.

10Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins School of Medicine, 
Baltimore, MD, USA.

11Center for Reproductive Science, Northwestern University, Chicago, IL, USA.

12Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer 
Center, Houston, TX, USA.

13Department of Genetics, Perelman School of Medicine, University of Pennsylvania, 
Philadelphia, PA, USA.

14Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 
USA.

Abstract

Even among genetically identical cancer cells, resistance to therapy frequently emerges from a 

small subset of those cells1-7. Molecular differences in rare individual cells in the initial population 

enable certain cells to become resistant to therapy7-9; however, comparatively little is known about 

the variability in the resistance outcomes. Here we develop and apply FateMap, a framework 

that combines DNA barcoding with single-cell RNA sequencing, to reveal the fates of hundreds 

of thousands of clones exposed to anti-cancer therapies. We show that resistant clones emerging 

from single-cell-derived cancer cells adopt molecularly, morphologically and functionally distinct 

resistant types. These resistant types are largely predetermined by molecular differences between 

cells before drug addition and not by extrinsic factors. Changes in the dose and type of drug can 

switch the resistant type of an initial cell, resulting in the generation and elimination of certain 

resistant types. Samples from patients show evidence for the existence of these resistant types in a 

clinical context. We observed diversity in resistant types across several single-cell-derived cancer 

cell lines and cell types treated with a variety of drugs. The diversity of resistant types as a result 

of the variability in intrinsic cell states may be a generic feature of responses to external cues.
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Individual cells respond to signals and stresses differently, often owing to intrinsic, non-

genetic differences5,6,10-15. Advances in single-cell barcoding have enabled tracking of 

molecular state changes following exposure to signals and stresses over time8,16-27, but less 

attention has been paid to characterizing variability in the outcomes themselves. Typically, 

the implicit assumption is that outcomes are binary: induced or not induced, proliferative 

or non-proliferative, alive or dead. It is possible, however, that there is a far richer set of 

outcomes.

Therapeutic resistance in cancer illustrates the variable responses to stress. Anti-cancer 

drugs kill a majority of cells, but a small, resistant subpopulation often remains, preventing 

cures. Recent studies have identified these subpopulations (marked by slow fluctuations 

in gene expression1-4,7,9,28,29) even within single-cell-derived (clonal) cancer populations. 

Upon drug exposure, clones from these populations survive and proliferate to form resistant 

colonies. Resistant cells are assumed to be relatively uniform in molecular profile and 

behaviour, but it is unclear whether the population’s clonal structure results in variability. 

Although a variety of resistance mechanisms have been documented2,9,30-32 and differences 

in proliferative capacity suggest heterogeneity between resistant clones8,20,22, it is unclear 

whether diverse resistant cell types can arise from a homogeneous initial population. We 

developed FateMap, a framework combining single-cell RNA sequencing (scRNA-seq), 

DNA barcoding and computational analysis, to follow the fates of thousands of individual 

cancer cell clones as they acquire resistance. Even homogeneous cells grown in identical 

conditions gave rise to molecularly and functionally diverse resistant types. These resistant 

types were predetermined by intrinsic differences between the cells before drug exposure. 

Transcriptional and functional diversification of resistant types were consistent across 

different cancers and therapies.

Diverse fates emerge upon drug treatment

We questioned whether the resistant cells that emerged from the treatment of single-cell-

derived cancer cells adopted distinct fates. We focused on BRAFV600E-mutated melanoma, 

where the treatment of single-cell-derived cells with the targeted therapy vemurafenib leads 

to survival of rare (1 in 1,000 or less) cells, which proliferate to form resistant colonies (Fig. 

1a and Supplementary Video 1). We performed scRNA-seq on a mixture of all the resistant 

colonies from a single tissue culture dish, finding that resistant types exhibited extensive 

diversity in their gene expression profiles (Fig. 1b and Supplementary Fig. 1). Some 

resistant cells expressed canonical resistance markers1,3,8 (such as AXL and SERPINE1), 

but several other subpopulations expressed their own distinct sets of marker genes. These 

subpopulations expressed multiple markers reminiscent of particular cell types, including 

smooth muscle (for example, ACTA2, ACTG2 and MYOCD), neural crest (NGFR, S100B 
and GAS7), adhesive (VCAM1, PKDCC and ITGA8), melanocytic (MLANA, SOX10 and 

MITF) or type-1 interferon signalling-enriched (IFIT2, DDX58 and OASL) (Fig. 1b,c and 

Supplementary Fig. 1). Thus, diverse resistant cell types can emerge from single-cell-derived 

cancer cells upon treatment with targeted therapy. Resistant cells were more transcriptionally 

diverse than drug-naive, non-resistant cells33 (Extended Data Fig. 1a-g and Supplementary 

Discussion).
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Resistant cells grow out as separate clones from individual cells amidst the initial drug-naive 

population (Supplementary Video 1). We wanted to know whether all cells of a clone share a 

single resistant type, or they comprise many types (Fig. 1d-f). Within-clone diversity implies 

that resistant cells can switch between types. Between-clone diversity implies that resistant 

clones are transcriptionally stable. To determine both the transcriptional profile and clonal 

origin of each cell simultaneously, we developed FateMap, a method that uses transcribed 

DNA barcodes (encoded in the 3′ untranslated region of the gene encoding GFP) to identify 

clones from thousands of resistant cells at once (Fig. 1d). First, lentiviral barcodes integrate 

into the DNA of therapy-naive cells. With a large barcode library complexity (around 59 

million unique barcodes; Methods) and low MOI, many thousands of cells could be uniquely 

barcoded and enriched by sorting. We exposed barcoded cells to vemurafenib, collected 

resistant populations, performed scRNA-seq and extracted the FateMap clone barcode for 

each cell by selectively amplifying and sequencing the cDNA library in a way that linked the 

clone barcode and cell identifier (Fig. 1e, Supplementary Fig. 2, Supplementary Discussion 

and Methods).

Cells from individual resistant clones fell predominantly within constrained regions of 

transcriptional space, showing that variability was primarily between clones (Fig. 1f,g). 

One large resistant clone was enriched for genes expressed in smooth muscle (ACTA2 
and MYOCD), whereas another, smaller clone was enriched for genes expressed in 

neural crest cells (NGFR and S100B) (Fig. 1g and Supplementary Fig. 3). Other clones 

were enriched for canonical resistance markers (AXL and SERPINE1) (Supplementary 

Fig. 1). Another subpopulation expressed the melanocyte genes SOX10 and MLANA, 

predominantly consisting of single barcoded cells (‘singletons’) that were largely non-

proliferative (Fig. 1g and Supplementary Fig. 3; 98.6% of all clones within clusters 0 

and 3 were singletons). Barcode silencing was minimal and consistent between different 

resistant types (Supplementary Figs. 1 and 2). Occasionally, cells in a clone belonged to 

two non-neighbouring clusters—for example, clusters 15 and 6 for three clones marked by 

VCAM1 and APOE, respectively (Supplementary Fig. 1).

Drug-naive cells also showed transcriptional constraint after 9 days in culture 

(approximately 4 divisions) but over time such cells span the entire transcriptomic space7, 

whereas therapy-resistant clones remained constrained after months in drug (Extended 

Data Fig. 1a-c). To quantify transcriptional homogeneity within a clone, we performed a 

dominant cluster analysis, showing that clones largely consisted of transcriptionally similar 

cells regardless of clustering resolution (Fig. 1h and Supplementary Fig. 3). Other statistical 

metrics27,33,34 supported this conclusion (Supplementary Figs. 3 and 4 and Supplementary 

Discussion).

We corroborated these results by performing multiplex single-molecule RNA fluorescence 

in situ hybridization (RNA FISH) for a subset of genes (ACTA2, NGFR and BGN) that 

belonged to distinct clusters (Fig. 1c and Supplementary Fig. 2) on a large plate containing 

several resistant clones. We verified that the selected markers were expressed only in distinct 

resistant clones (Fig. 1i and Supplementary Fig. 5).
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To show that there was no genetic basis for the observed diversity of resistant types, we 

performed whole-genome sequencing (WGS) on both naive and resistant clones, finding no 

evidence of recurrent driver mutations (Extended Data Fig. 2). We also grew out resistant 

colonies from the original WM989 A6-G3 cell line as well as two subclones, WM989 

A6-G3 A10 and WM989 A6-G3 A11, and performed large-scale single-molecule RNA 

FISH to demonstrate that resistant types emerged with similar frequencies despite having 

different background mutations (Supplementary Fig. 6).

Resistant types are functionally diverse

We next tested whether transcriptionally distinct resistant clones had different phenotypic 

properties. To measure differences in proliferation, we counted the number of cells per clone 

for different resistant types (Fig. 2a,b and Supplementary Fig. 6). Distinct resistant types 

had different proliferative capacities. Some types, such as those marked by ACTA2, AXL 
and VCAM1, formed large colonies (Fig. 2b), whereas those marked by NGFR (cluster 7) 

formed small colonies and singletons (Fig. 2b).

Next, we tested whether different resistant clones exhibited distinct morphologies. We 

performed bright-field imaging of resistant colonies on the plate and identified several 

distinct morphologies (Fig. 2c), including colonies with cells that appeared epithelial (type 

1), cells that grew slower and were more transparent (type 2), cells that grew on top of 

each other (type 3) and elongated cells (type 4). For a subset of the types, we were able 

to isolate the colony and perform multiple cycles of growth and replating in the presence 

of vemurafenib; these colonies retained their morphology (Fig. 2d) (although some colonies 

did not survive the replating process). Furthermore, a systematic longitudinal analysis of 

several dozen isolated and expanded resistant colonies in vemurafenib revealed that colonies 

retain their phenotypes, such as morphology and transcriptional makeup, over 1–2 months 

(Extended Data Fig. 3a-g) (18 for initial time points, 27 for late time points (4-6 weeks), and 

13 paired initial–late time point colonies).

We then tested whether resistant colonies differed in invasive potential using a spheroid 

assay (see Methods). We manually isolated 64 therapy-resistant colonies from multiple 

parallel experiments and expanded them for months. We formed 3D aggregates (spheroids) 

from a subset of resistant colonies with sufficient cell numbers, embedded them in a 

collagen matrix, and measured their invasiveness by measuring the area under the invading 

boundary (red) relative to that of the embedded spheroid core (blue) (Fig. 2e,f). We found 

that different resistant clones had markedly different invasion areas in the collagen matrix 

(Fig. 2e,f) (some colonies were unable to aggregate into spheroids).

We then connected this variation in morphology and invasiveness to specific transcriptional 

profiles (Fig. 2d). We performed bulk RNA-seq of manually isolated colonies with 

known morphology and invasive potential. We identified genes that were differentially 

expressed between morphology types from bulk RNA-seq and used these gene sets to map 

morphologies to single-cell clusters from FateMap (Fig. 2g and Methods). For example, 

we found that the fate type 2 and fate type 3 morphology from Fig. 2c corresponded 

to gene expression signatures most similar to the NGFR-high cluster (cluster 7) and 
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VCAM1-high cluster (cluster 15) (Fig. 2g and Supplementary Table 4). Similarly, several 

differentially expressed genes between slow and fast invading resistant colonies were 

connected to specific transcriptional clusters from FateMap (Extended Data Fig. 3h). The 

fastest invading resistant colonies were enriched for expression of genes that marked cluster 

8, including ACTA2, TAGLN and EDN1. Therefore, gene expression differences between 

clones corresponded to functional differences in proliferation, morphology and invasiveness.

Diverse resistant types occur across cancers

We looked for diversity of resistant types in other cancer cell lines (Supplementary 

Discussion). Another single-cell-derived patient-derived melanoma cell line (BRAFV600E 

WM983B E9-C6) also showed morphological and proliferative differences between resistant 

clones upon vemurafenib treatment (Extended Data Fig. 4a). FateMap revealed many 

of the same transcriptional signatures and proliferative differences seen in WM989 A6-

G3 cells (Extended Data Fig. 4b-f). We performed FateMap analysis on two NRAS-

mutant melanoma lines (NRASQ61K WM3451 P2G7 and NRASQ61K WM3623 P4E7) 

and again found a diversity of types in resistant clones to be a property of melanoma 

cell lines regardless of driver mutation (Extended Data Figs. 4h-l and 5a-e). Furthermore, 

FateMap revealed extensive transcriptional diversity in clones of expanded primary human 

melanocytes (Extended Data Fig. 6) (also observed in ref. 1), suggesting that transcriptional 

diversity may be a general feature of the melanocyte lineage. FateMap applied to the triple 

negative breast cancer line MDA-MB-231-D4 treated with chemotherapy drug paclitaxel7 

also showed resistant clones occupying constrained regions of transcriptional space, albeit 

with less overall heterogeneity than in melanoma (Extended Data Fig. 7).

Resistant types emerge in patients

We questioned whether these resistant types also arose in patients, in which the 

microenvironment (including immune system) and spatial context are factors. We obtained 

tissue samples of tumours from four patients who had relapsed subsequent to treatment with 

targeted therapy. For two of these individuals, we also had matching tumour samples from 

before they underwent therapy. Multiple punch biopsies were taken from the tumour (Fig. 

3a). We used GeoMx spatial transcriptomic profiling, in which multiple regions of interest 

(ROIs) consisting of between 73 and 1,390 cells were selected from within each punch 

biopsy and profiled by RNA-seq (93 regions across all samples; Fig. 3 and Supplementary 

Fig. 7). We found extensive variability in the expression of key resistant type markers 

across resistant tumour patches, suggesting that different areas of the same tumours within 

a patient may harbour different proportions of the resistant types identified by FateMap 

(Fig. 3b). There were multiple examples of adjacent regions from the same resistant tumour 

showing differential expression of markers from different resistant types. For example, 

within a single punch biopsy from patient 163, two regions showed high expression of 

MLANA and SOX10, whereas a third region showed high ACTA2 expression (Fig. 3b). 

Reassuringly, we found many patterns of co-expression (for example, ACTA2 and ACTG2, 

both from the smooth muscle resistant type identified by FateMap), further corroborating 

the existence of coherent resistant types in resistant tumours (Supplementary Fig. 11). We 

found similar pre-existing variability in adjacent regions in patient-matched tumour samples 
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before treatment with targeted therapy, suggesting some degree of pre-existing heterogeneity 

(Fig. 3b, right and Supplementary Fig. 8). To obtain evidence for clonal structure of 

expression heterogeneity in the patient data, we used spatial proximity as an approximation 

of relatedness (Methods and Supplementary Fig. 9), estimating that the degree of imbalance 

required to match that observed was on the order of 20%. Our findings suggested that the 

regions that we captured were somewhat imbalanced but not completely clonal, which was 

expected given the relatively large sizes of the regions (Supplementary Fig. 9). An analysis 

across other datasets showed further concordance with our FateMap results (Supplementary 

Fig. 10). Furthermore, we found heterogeneity in immune infiltration after targeted therapy. 

For example, in a single punch biopsy, one region had high expression of the macrophage 

marker CD68 whereas nearby regions had low expression of CD68 but high levels of CD8A 
(Supplementary Fig. 8). Together, these results provided strong evidence for the existence of 

diverse resistant types in patient samples.

We also searched for resistant types in xenograft models by injecting WM989 A6-G3 

5a335 subcutaneously into mice, applying targeted therapy treatment, collecting the resistant 

tumours and measuring marker expression (Supplementary Fig. 11). Large-scale scans of 

tumour tissue sections showed that markers for the various resistant types were present in 

distinct regions of the tumour sections (Supplementary Figs. 11-13).

Resistant fates predetermined by initial conditions

We questioned whether the transcriptional and phenotypic variability in therapy-resistant 

clones was the result of intrinsic differences in the molecular expression states of cells 

preceding drug exposure. Alternatively, the resistant types may be determined extrinsically

—for instance, by the location and immediate neighbours of cells33. An ‘identical twin’ 

analysis combined with FateMap enabled us to distinguish between these possibilities.

In brief, upon uniquely barcoding cells, we allowed them to divide several times and 

then separated the population into two equal split populations A and B, such that most 

barcoded clones (over 90%) were present in each group as ‘twins’ (Fig. 4a). We then 

applied vemurafenib and performed FateMap on both split populations. If the resistant 

type of a cell were intrinsically determined, then its twin would share the same type 

(assuming that the intrinsic potential has enough memory to be maintained over at least 

a few cell divisions1,3,7,8). Pure barcode sequencing of genomic DNA (gDNA) confirmed 

a strong overlap (significantly larger than random) in barcodes between the populations, 

demonstrating that resistance potential in general was intrinsically determined (Fig. 4b,c) 

(we added specific amounts of known barcoded cells as standards (Methods) to enable 

conversion of sequencing reads to the cell numbers). Mouse xenograft studies showed a 

lower but still statistically significant overlap (Supplementary Fig. 14).

We next tested whether the specific resistant type that a clone adopted was similarly 

predetermined by the initial state of the pre-resistant cell as opposed to external factors. That 

is, whether twins separated into the two split populations (thus randomizing the position 

in the plate and neighbouring cells) adopt similar or distinct transcriptional profiles after 

drug treatment. An initial inspection of the clones superimposed on the UMAP projections 
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suggested that twins surviving therapy largely end up in the same regions of the UMAP (Fig. 

4d and Supplementary Fig. 6g-j) and were more similar than non-twin clones belonging to 

similar type clusters (Fig. 4e).

To compare single-cell transcriptional profiles of clones across split populations, we 

formulated a metric that we called the ‘mixing coefficient’ (Methods), which provides 

a pairwise comparison of transcriptional similarity between any two clones in principal 

component space (notably, it is independent of any particular cluster designation). For 

each pair of clones (twin or non-twin), we measured, for each cell, the number of 

nearby neighbour cells (from the pair of clones) that were either from the same clone 

(self-neighbour) or from the pair clone. The mixing coefficient was the averaged fraction of 

self-neighbours across all cells from the clone pair divided by the averaged fraction of non-

self neighbours. A mixing coefficient of 1 signifies a high degree of shared transcriptional 

similarity between the pair, whereas a mixing coefficient of 0 implies that the two clones 

are transcriptionally separated in the principal component space (see Methods). Non-twin 

clone pairs had low mixing coefficients both within or across the two split populations, 

but twin clone pairs exhibited high mixing coefficients (Fig. 4f-h and Supplementary Fig. 

14). These results show that the adoption of distinct transcriptional and phenotypic types 

was determined by the intrinsic molecular state of the cells preceding drug exposure, and 

environmental factors had little to no effect on the type outcomes. Similar results in primary 

melanocytes and untreated WM989 A6-G3 melanoma cells showed that the intrinsic states 

of these cells persisted despite a change in a cell’s environment (Extended Data Figs. 1h and 

6). Intrinsic predetermination of resistant type also occurred in three other melanoma cell 

lines (WM983B A6-G3, WM3451 P2G7 and WM3623 P4E7) and the breast cancer cell line 

tested earlier (MDA-MB-231-D4) (Extended Data Figs. 4, 5 and 7). The effects were less 

pronounced in the MDA-MB-231-D4 line (Extended Data Fig. 7).

Changing drug dose causes fate switching

Drug resistance depends heavily on the concentration of drug used. We explored how the 

ensemble of resistant types would change if we used a different drug concentration using 

FateMap across two split populations, each treated with a different concentration of drug.

We compared 100 nM vemurafenib to our standard dose of 1 μM (Supplementary Fig. 

15), which led to around 2.5-fold more resistant colonies than the high dose (Fig. 5a and 

Supplementary Videos 1 and 2). Resistant tumours grew comparatively faster in mice treated 

with the low dose (Supplementary Figs. 13a and 15). This increase could have resulted from 

(1) new resistant clones in addition to those that survive high dose, (2) a completely distinct 

set of clones becoming resistant, or (3) the same set of clones from high dose becoming 

resistant, but with additional divisions of those clones (Fig. 5b). FateMap could distinguish 

between these possibilities by splitting the population after barcoding and putting one of the 

set of twins in a low-dose environment and the other in a high-dose environment. gDNA 

barcode sequencing and imaging analysis showed many barcodes arising only at the low 

dose, indicating that additional new clones became resistant in the low-dose environment 

(fold change 2.15 and 2.55, respectively) (Fig. 5a and Supplementary Fig. 15). Barcode 
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overlap between two low-dose arms also showed intrinsic predetermination (Supplementary 

Fig. 15).

We next explored how the diversity of resistant clones changed between low and high 

doses of drug. Despite the extensive change in the frequency of resistance between low and 

high dose, many of the transcriptional types were the same between the two doses (Fig. 

5c-f and Supplementary Fig. 15). However, there were many differences. Particularly, the 

NGFR-high cells (cluster 9) were largely missing from the low dose-resistant population of 

cells. Additionally, although MLANA-high cells (clusters 5,6) were present at both doses, 

they were in non-overlapping clusters (Fig. 5c-f).

We next addressed the fate of the NGFR-high resistant cells at low dose. We collected the 

barcoded clones corresponding to the NGFR-high cells in the high dose (cluster 9) and 

looked for their corresponding twins in the low dose (Fig. 5g), finding 46 such barcodes 

(25.3% of all barcodes in cluster 9) (Fig. 5g). Most of these clones (38 out of 46) adopted 

types within the MLANA-high cluster 6 (fate switch 1) (Fig. 5h). The remaining twins 

appeared to adopt a different, albeit less transcriptionally constrained, type (fate switch 2) 

(Fig. 5h). Several genes were differentially expressed in pairwise comparisons across the 

type switches (149 and 216 genes for switch 1 and 2, respectively) (Supplementary Fig. 15 

and Supplementary Table 8).

Comparing the 38 clones with the remaining 8 of these 46 clones maintained with the 

high dose, we identified 70 genes that were differentially expressed (Supplementary Fig. 

15), suggesting that subtle differences between naive cells that appeared to adopt the same 

NGFR-high type at high dose could lead to more obvious fate differences at low dose.

For the MLANA-high resistant type clusters, the percentage of non-singletons within the 

type increased strongly at low dose (4.66% in high dose to 21.6% in low dose) (Fig. 5f 

and Supplementary Fig. 15), indicating phenotypic differences in the type of resistant cells 

between high and low dose.

Metronomic therapy, in which therapy is given in discontinuous intervals, has been proposed 

as a means by which to decrease therapy-resistant tumour burden with mixed results36,37. 

We measured the number and type of resistant clones in continuous versus discontinuous 

dosing regimens with FateMap (Extended Data Fig. 8). Discontinuous dosing resulted in 

overall higher numbers of resistant cells, both from new clones and increased growth of 

existing clones. Clones that formed the singleton MLANA-high resistant cells in continuous 

dosing grew to larger colony sizes in discontinuous dosing, confirmed by time-lapse imaging 

(Supplementary Fig. 16).

Drug conditions affect ensemble of fates

We explored whether different MAPK inhibitors would have differential effects on resistant 

types (Supplementary Discussion). We performed FateMap on a population split between 

exposure to the BRAFV600E inhibitor vemurafenib (1 μM) and the MEK inhibitor trametinib 

(5 nM). Although many resistant cells from each drug treatment had similar transcriptional 

profiles (Extended Data Fig. 9a,b), we saw a depletion of MLANA-high cells (cluster 
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3) with trametinib compared to vemurafenib (Extended Data Fig. 9a,f). The number of 

singletons was substantially higher with vemurafenib compared to trametinib (Extended 

Data Fig. 9c), confirmed by imaging (Extended Data Fig. 9d,e and Supplementary Videos 

1 and 3). Most of the vemurafenib cluster 3 clones did not have corresponding twins in 

trametinib (Extended Data Fig. 9g), suggesting that those cells were killed by trametinib 

as opposed to being converted to a different resistant type (Extended Data Fig. 9h,i,o). 

The NGFR-high cluster 4 was more populated in cells treated with trametinib compared 

to vemurafenib (Extended Data Fig. 9b,j,k,p,q). Twins of trametinib-treated NGFR-high 

cells adopted either the same type (NGFR-high) or in some cases the MLANA-high 

type in vemurafenib (Extended Data Fig. 9l-n). Additionally, resistant cells from dual 

treatment were transcriptionally indistinguishable from those obtained with trametinib alone 

(Extended Data Fig. 9r,s), suggesting that for the doses tested, trametinib dominated type 

outcomes.

We also tested the inhibition of the histone methyltransferase DOT1L for its effects on 

resistant types. We previously showed that pre-treatment with pinometostat, a DOT1L 

inhibitor, increased resistance35; FateMap applied to pinometostat-pretreated cells showed 

that this increase arose from new clones becoming resistant but adopting largely the same 

types as they did normally (Extended Data Fig. 10 and Supplementary Discussion).

Discussion

FateMap revealed extensive variability in the outcome for cells after an external cue, in this 

case between resistant cancer cells after treatment with targeted therapies. These outcomes 

are largely predetermined by molecular differences in the initial state of cells, some of which 

have been elucidated8. The rich mapping between the initial molecular states of cells and 

their outcome is strongly dependent on the external cue—different doses and drugs dictate 

which cells adopt what types, and hence must be specified as part of the mapping.

A central challenge for the field is to define biologically meaningful ‘clusters’ on the 

basis of which molecular differences are important versus those that are inconsequential 

for relevant biological behaviours. Methods such as ClonoCluster38 that combine clonal 

information with transcriptomics may help resolve such issues.

The two factors underlying cell-type determination in response to a cue are the memory 

of the initial state and the influence of extrinsic factors. Here, memory of the state means 

that twins largely adopted the same types, indicating that type was largely intrinsically 

determined. By contrast, a similar analysis on cardiac differentiation33 revealed that cell 

type was largely determined by extrinsic factors. It is also possible to have short memory 

but intrinsic type determination. Such cases would be difficult to discriminate because twin 

experiments would show little correspondence in the types of twins, even though the state of 

the twins before the cue still largely determines the outcome.

It is unclear how a cell’s resistant type is determined. One view is that cells have fixed 

regulatory programmes that lead to particular outcomes. Another view is that cells adapt 

to stress, leading to a wider range of outcomes, each of which may be determined by 
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both the specific stress and the particular internal state of the cell at that time. Future 

work may reveal the molecular basis of this regulatory rewiring. Here we focused on 

characterizing resistant types of single-cell-derived cancer cells in response to anti-cancer 

therapies. Our work joins a growing literature on genetic and non-genetic sources of cellular 

heterogeneity in cancer. Cell line profiling has shown surprising levels of variability even in 

clonal lines, perhaps reflecting clonal memory7,13,39-41. Notably, this variability can drive a 

number of cancer phenotypes, including therapy resistance1,10, growth39, tumorigenicity42 

and metastasis43. FateMap could reveal a diversity of emergent types in several biological 

processes, including stem cell reprogramming and directed differentiation33,44,45, and 

identify their potential origins.

Methods

Cell lines and culture

WM989 A6-G3 and WM983b E9-C6 melanoma cell lines, first described in ref. 8 and 

provided by the laboratory of M. Herlyn, were derived by twice single-cell bottlenecking 

the WM989 and WM983b melanoma cell lines, respectively. The identities of WM989 

A6-G3 and WM983B E9-C6 were verified8 by DNA STR microsatellite fingerprinting 

at the Wistar Institute. WM989 A6-G3 5a3, first described in ref. 35, was derived by 

single-cell bottlenecking of WM989 A6-G3. MDA-MB-231-D4, first described in ref. 7 

was derived by single-cell bottlenecking of MDA-MB-231 (ATCC HTB-26). The identity 

of MDA-MB-231-D4 was verified7 by ATCC human STR profiling cell line authentication 

services. WM3451 P2G7 and WM3623 P4E7 were derived by single-cell bottlenecking 

WM3451 and WM3623 respectively, both of which were provided by the laboratory of M. 

Herlyn and verified by ATCC human STR profiling cell line authentication services.

FOM 230-1 primary melanocytes were provided by the laboratory of M. Herlyn. In brief, 

they obtained foreskin tissue from the Cooperative Human Tissue Network. The foreskin 

was cut into pieces (approximately 5 mm × 5 mm), transferred into a tube containing 

dispase II, and incubated at 4 °C for 15–18 h. The next day, the epidermis was separated 

from the dermis and the epidermal sheets were minced as small as possible. 0.05% trypsin 

was added, and the minced sheets were incubated at 37 °C for 3–5 min depending on cell 

disaggregation. This mixture was then pipetted up and down vigorously to release single 

cells from the epidermal sheets. The trypsin was neutralized with soybean trypsin inhibitor 

and centrifuged for 5 min at 1,200 rpm at room temperature. The supernatant was aspirated 

to remove any remaining stratum corneum. The cell pellet was then resuspended with 

melanocyte growth medium.

WM989 A6-G3, WM989 A6-G3 5a3, WM983b E9-C6, WM3451 P2G7, and WM3623 

P4E7 melanoma cell lines were cultured in TU2% medium (80% MCDB 153, 10% 

Leibovitz’s L-15, 2% FBS, 2.4mM CaCl2, 50 U ml−1 penicillin and 50 μg ml−1 

streptomycin). MDA-MB-231 cell lines were cultured in DMEM10% (DMEM with 

Glutamax, 10% FBS and 50 U ml−1 penicillin, and 50 μg ml−1 streptomycin). All six cell 

lines were passaged using 0.05% trypsin-EDTA. FOM 230-1 melanocyte cells were cultured 

in Melanocyte Growth Medium (PromoCell, C-24010). Melanocytes were passaged using 
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0.05% trypsin-EDTA and neutralized using soybean trypsin inhibitor (Gibco, 17075-029). 

We periodically perform mycoplasma testing to confirm no contamination.

Flow sorting of barcoded cells

We used 0.05% trypsin-EDTA (Gibco, 25300120) to detach the barcoded cells from the 

plate and subsequently neutralized the trypsin with the corresponding medium depending 

on the cell type (TU2% for WM989, WM983B, WM3451, and WM3623; DMEM + 10% 

FBS for MDA-MB-231; Melanocyte Growth Medium for FOM 230-1). We then pelleted 

the cells, performed a wash with 1× DPBS (Invitrogen, 14190-136), and resuspended them 

again in 1× DPBS. Cells were sorted on a BD FACSJazz machine (BD Biosciences) or 

MoFlo Astrios (Beckman Coulter), gated for positive GFP signal and singlets. Sorted cells 

were then centrifuged to remove the supernatant medium containing PBS, and replated with 

the appropriate cell culture medium. Gating strategies are described in Supplementary Fig. 

17.

Drug treatment experiments

We prepared stock solutions in DMSO of 4 mM vemurafenib (PLX4032, Selleck Chemicals, 

S1267), 10 mM pinometostat (Selleck Chemicals, S7062), 100 μM trametinib (Selleck 

Chemicals, S2673), and 4 mM paclitaxel (Life Technologies, P3456). We prepared small 

aliquots (10-15ul) for each drug and stored them at −20 °C to minimize freeze–thaw cycles. 

For drug treatment experiments, we diluted the stock solutions in culture medium to a final 

concentration of 1 μM and 100 nM for vemurafenib; 4 μM for pinometostat; 5 nM, 10 nM 

and 25 nM for trametinib; and 1 nM for paclitaxel unless otherwise specified.

The dose of vemurafenib (1 μM) was chosen per ref. 1, which was optimized for growth 

arrest without overt cytotoxicity. The doses of trametinib used were 5 nM for WM989 

A6-G3, 10 nM for WM3623 P4E7, and 25 nM for WM3451 P2G7. These doses were also 

chosen based on a dose curve to obtain virtually complete growth arrest.

WM989 A6-G3 and WM983b E9-C6 cells were treated with either vemurafenib or 5 

nM trametinib for 3–4 weeks, and the medium was replaced every 3–4 days. Similarly, 

MDA-MB-231-D4 cells were treated with paclitaxel for 3–4 weeks, and the medium was 

replaced every 3–4 days. WM3623 P4E7 cells were treated with 10 nM trametinib for 

3–4 weeks, and the medium was replaced every 3–4 days. WM3451 P2G7 cells were 

treated with 25 nM trametinib for 3-4 weeks, and the medium was replaced every 3–4 

days. At the end of the treatment, surviving cells were trypsinized, neutralized, washed 

with 1× DPBS, and then either (1) pelleted and stored at −20 °C for gDNA extraction, or 

(2) resuspended in PBS for scRNA-seq experiments. In some cases, cells were also fixed 

for imaging at the end of the treatment. For pinometostat (DOT1L inhibitor) pre-treatment 

(before addition of vemurafenib), WM989 A6-G3 cells were treated for five days, replacing 

medium once at day 3. For continuous–discontinuous dosing experiments, WM989 A6-G3 

cells were barcoded and plated as described above. Both arms of the experiment were treated 

with 1 μM vemurafenib. The continuous dose arm was maintained in 1 μM vemurafenib 

for the entirety of the experiment, while the discontinuous arm was maintained in 1 μM 

vemurafenib for 9 days before being switched to culture medium without 1 μM vemurafenib. 
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The discontinuous arm was then maintained in this drug-free culture medium for 25 days 

before being switched back to culture medium with 1 μM vemurafenib for the final 5 days of 

the experiment.

Quantifying homogeneity within a clone

To estimate the homogeneity in gene expression within a clone, we calculated the 

Spearman’s correlation coefficient, based on the top 500 most variable genes, for each pair 

of samples present in a clone. A group of random cells having the same size as the clone 

were selected as a control. The average correlation coefficient was compared between each 

clone and its paired control, using a Wilcoxon signed rank test (two-sided, paired).

Cell cycle and apoptosis analysis

To test the effect of cell cycle phase on clone size distribution in each cluster, we regressed 

out cell cycle genes. First, the cell cycle phase scores were estimated for each cell using 

the CellCycleScoring function in the Seurat package for the genes involved in G2/M phase 

and S phase31. The cell cycle scores were then regressed out from the gene expression 

using the RegressOut function in the Seurat package. This function models the expression 

levels of each gene based on the cell cycle score. The regressed-out gene expression matrix 

is calculated as the residuals for this model (for each gene), and these values are used 

for downstream analysis such as dimensional reduction. We also calculated scores for 

apoptosis using AUCell46. HALLMARK_APOPTOSIS, and KEGG_APOPTOSIS gene sets 

were obtained from the Molecular Signature DataBase (MSigDB, Broad Institute47).

Bulk RNA-seq

To quantify the phenotypic drift between early and later stages of treatment, we calculated 

the pairwise Euclidean distance for each pair of early and late samples for a colony. The 

Euclidean distance was calculated for the top 500 most variable genes in the dataset. 

As a paired control for each resistant colony, an equal number of random early and late 

samples were selected, and the Euclidean distance between them was measured. The average 

Euclidean distance was compared for true pairs and random pairs to estimate the extent of 

phenotypic drift in the colony. The comparison was statistically tested using a Wilcoxon 

signed rank test.

Clonal genes and clone identification

Differentially expressed genes for each clone (with clone size > 1) were identified using 

FindAllMarkers function. Cut-off of log2(foldchange) >1 and Bonferroni-corrected P value 

< 0.05 were used to identify clonal genes. For identification of clones, a support vector 

machine model was trained and tested on clones having more than 100 cells. Clones were 

sectioned into training and testing groups by randomly sampling 80% samples for the 

training group and classifying the rest as the testing group. The model was trained on 

expression levels of clonal genes. As a control, clone labels were shuffled for the training 

samples, and a support vector machine was trained on the randomized data.
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Patient data analysis

Patient scRNA-seq data from GSE7205631 and patient-derived xenograft model of WM4007 

cells derived from American Joint Committee on Cancer stage IV melanoma male 62-year-

old patient (never treated with any drug or immune therapy prior to surgery or biopsy) 

treated with dabrafenib and trametinib (this study) were analysed to test for differential 

expression of genes identified in cell lines using FateMap. Samples were clustered using 

FindClusters function at a resolution of 0.6 and differentially expressed genes were 

identified for the clusters using FindAllMarkers function. Cut-offs of log2(foldchange) > 

1 and Bonferroni-corrected P value < 0.05 were used to identify cluster genes. The extent 

of overlap in genes between each patient dataset and cell line dataset (FM01) was measured 

and statistically evaluated using a hypergeometric test (Fisher’s Exact Test). The extent of 

overlap was also compared to the extent of overlap when an equal number of genes were 

randomly subsampled from a list of all sequenced genes. Subsampling was repeated 100 

times.

Size distribution of clusters

A Chi-square test of Independence was used to test the null hypothesis that the marker-based 

clusters are independent of colony size. The test was run on a contingency matrix consisting 

of a number of singleton (colony size = 1), small (1< colony size < 4) and large (colony size 

≥ 4) colonies for each marker-based cluster. Pearson residuals were estimated to quantify the 

deviation of colony size distribution from the null hypothesis.

Principal component analysis of drug-resistant and naive WM989 A6-G3 melanoma cells

We used SCTransform to normalize and variance-stabilize the dataset and then performed 

principal component analysis (PCA) using Seurat’s RunPCA command. To get total 

variance for each dataset (that is, both the naive cell dataset and the drug-resistant cell 

dataset), we took the sum of the variance estimates per row of the SCT@scale.data matrix 

(where each row represented a gene). We calculated the eigenvalues by squaring the 

standard deviations per principal component stored by Seurat following PCA generation. 

To calculate the fraction of variance explained per principal component, we divided each of 

our eigenvalues by the total variance, using ggplot2 to plot the fraction of variance explained 

for each of the first 50 principal components. To estimate how much variance could be 

explained by pure chance, we also ran PCA on randomized data.

Cluster and Euclidean distance analysis of drug-resistant and naive WM989 A6-G3 
melanoma cells

To quantify whether the resistant population exhibited greater transcriptional heterogeneity 

as compared to the untreated populations, we measured the Euclidean distance48-50 between 

clusters within each condition. We used scRNA-seq datasets from two untreated samples 

and two resistant samples. To control for cell numbers across datasets, we extracted the 

number of cells in each sample and calculated the minimum cell count of all four datasets. 

Since the number of cells does not vary much between the samples (minimum = 7,262, 

maximum = 8,420), we decided to randomly sample to the minimum of the number of cells, 

7,262, and perform 10 sampling rounds. After subsampling, we applied the Seurat function 
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SCTransform to normalize and stabilize the variance of molecular count data, and calculated 

the principal components. Next, we calculated the neighbourhood overlap ( Jaccard index) 

between every cell based on the first 50 principal components using the Seurat function 

FindNeighbors. We then applied the seurat function FindClusters to identify cell clusters 

based on their SNN. To demonstrate that our results do not depend on the chosen resolution, 

we clustered the cells from a resolution of 0.2 to 1 in steps of 0.1. For each resolution, 

we calculated the Euclidean distance between the identified clusters using the R library 

scperturbR48. The Euclidean distance compares the mean pairwise distance of cells across 

two different identified clusters to the mean pairwise distance of cells within each cluster. 

We used the first 50 principal components to calculate the Euclidean distance between cells. 

After getting the sample resolution combination number of clusters and Euclidean distance, 

we compared the number of clusters for a given resolution and the Euclidean distances for a 

given number of clusters.

WGS and processing of naive and drug-resistant clones

Eight naive clones, one original clone, and sixteen resistant clones were sequenced at 30× 

depth with paired-end Illumina sequencing. FASTQs were pre-processed and aligned to 

hg38 based on GATK4 best practices using an open-source WGS pipeline, Sarek v.3.051. 

Variant calling was performed using the GATK HaplotypeCaller52.

Variant annotation of naive and drug-resistant clones

Variant files were merged and annotated using the OpenCravat tool53. With this tool, the 

functional consequences of variants were predicted using CADD v.1.6.154 where coding 

variants with scaled c-scores >15 were considered deleterious. This c-score cut-off is typical 

for analysis and is recommended by the authors for filtering (https://cadd.gs.washington.edu/

info). Variants analysed were all in protein-coding regions of the genome. Insertion and 

deletion variants for which CADD scores were unavailable were included in the analysis, 

except for those annotated as in-frame. Additionally, variants present in less than 20% of 

reads in a sample were removed from analysis in an effort to filter out variants that arose in 

clonal expansion.

To assess the potential for acquired genetic resistance to therapy, Fisher’s exact test was 

performed on variants that were present in resistance clones, but not untreated clones (p 

< 0.05). Variants in genes implicated in resistance to Vemurafinib from COSMIC (https://

cosmic-blog.sanger.ac.uk/drug-resistance-data-cosmic/) were independently analysed for 

acquired genetic resistance. Variants in known epigenetic modifier genes55 were also 

separately analysed to evaluate heterogeneity. Finally, each clone’s list of CADD > 15 

variants were compared to all other clones for non-random overlap with the hypergeometric 

test (P < 0.05). All gene sets and associated details are provided in Supplementary Table 9.

Clinical cohort

Patient samples from this study were from the enroled clinical trial (NCT02231775) were 

previously described56. In brief, patients aged ≥18 years with histologically proven clinical 

stage III or oligometastatic stage IV BRAFV600E/K melanoma deemed to be resectable 

by multidisciplinary consensus and measurable disease by RECIST 1.1 criteria were 
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enroled. Those randomized to the experimental arm which received 8 weeks of neoadjuvant 

dabrafenib (150 mg orally twice daily) plus trametinib (2 mg orally daily) before surgical 

resection, who failed to achieve a major pathologic response (n = 4). Pathologic responses 

were determined by histopathologic examination of the complete surgical specimen by a 

melanoma pathologist, including SOX10 immunostaining when necessary to confirm the 

presence or absence of viable melanoma cells. These patients were treated at The University 

of Texas MD Anderson Cancer Center and had tumour samples collected and analysed 

under Institutional Review Board (IRB)-approved protocols. Notably, these studies were 

conducted in accordance with the Declaration of Helsinki and approved by The UT MD 

Anderson Cancer Center IRB.

Tumour microarray preparation and digital spatial profiling

Formalin fixed paraffin embedded (FFPE) tumour tissue blocks from four melanoma 

BRAF/MEK inhibitor treated melanoma patients from the above cohort treated were used 

to build a tissue microarray (TMA) block using the ATA-100 Advanced Tissue Arrayer 

(Chemicon International) at The University of Texas MD Anderson Cancer Center. Tissue 

samples included in the TMA were from pre-treatment, on-treatment or surgical resection 

time points. The TMA block included a total of 36 cores each measuring 1 mm in diameter. 

Multi-sampling of the tissue block was performed to account for intra tumoral heterogeneity. 

TMA slides were then assayed using the Nanostring GeoMx DSP and probed with the 

human melanoma morphology kit (Syto13, S100B and CD45) and the human whole 

transcriptome atlas (WTA) on a fee for service basis by Nanostring Technologies performed 

at the University of Texas Southwestern Medical Center. Three ROIs were selected per 

tumour core to capture inter- and intra-tumour heterogeneity.

NGS library preparation and sequencing for GeoMx spatial transcriptomics

GeoMx NGS libraries were prepared per manufacturer’s guidelines. In brief, after collection 

completed, aspirates in the collection plate were dried down at 65 °C for 1 h in thermal 

cycler with open lid and resuspended in 10 μl of nuclease-free water. Four microlitres of 

rehydrated aspirates were mixed with 2 μl of 5×PCR Master Mix and 4 μl of SeqCode 

primers, and PCR amplification was then performed with 18 cycles. The indexed libraries 

were pooled equally and purified twice with 1.2× AMPure XP beads (Beckman Coulter). 

The final libraries were evaluated and quantified using Agilent’s High Sensitivity DNA 

Kit and Invitrogen’s Qubit dsDNA HS assay, respectively. Total sequencing reads per DSP 

collection plate were calculated based on the NanoString DSP Worksheet. The libraries were 

subjected to 38 bp paired-end sequencing (PE38) on an Illumina NovaSeq 6000 system with 

a 100-cycle S1 kit (v1.5).

RNA FISH on cells in plates

We performed single-molecule RNA FISH as previously described57. For the genes used 

in this study, we designed complementary oligonucleotide probe sets using custom probe 

design software (MATLAB) and ordered them with a primary amine group on the 3′ end 

from Biosearch Technologies (Supplementary Table 3 for probe sequences). We then pooled 

each gene’s complementary oligonucleotides and coupled the set to Cy3 (GE Healthcare), 
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Alexa Fluor 594 (Life Technologies) or Atto 647N (ATTO-TEC) N-hydroxysuccinimide 

ester dyes.

The cells were fixed as follows: we aspirated medium from the plates containing cells, 

washed the cells once with 1× DPBS, and then incubated the cells in the fixation buffer 

(3.7% formaldehyde in 1× DPBS) for 10 min at room temperature. We then aspirated the 

fixation buffer, washed samples twice with 1× DPBS, and added 70% ethanol before storing 

samples at 4 °C. For hybridization of RNA FISH probes, we rinsed samples with wash 

buffer (10% formamide in 2× SSC) before adding hybridization buffer (10% formamide 

and 10% dextran sulfate in 2× SSC) with standard concentrations of RNA FISH probes and 

incubating samples overnight with coverslips, in humidified containers at 37 °C. The next 

morning, we performed two 30-min washes at 37 °C with the wash buffer, after which we 

added 2× SSC with 50 ng ml−1 DAPI. We mounted the sample(s) for imaging in 2× SSC.

Immunofluorescence and imaging

For NGFR staining of fixed cells, after fixation and permeabilization, we washed the cells 

for 10 min with 0.1% BSA/PBS, and then stained the cells for 30 min with 1:500 anti-NGFR 

APC-labelled clone ME20.4 (BioLegend, 345107). We washed the cells 5 times with 0.1% 

BSA/PBS and followed with a final wash with PBS for 2 min at room temperature. Fresh 

PBS was added prior to imaging. Wells were imaged either immediately or after storage in 4 

°C overnight. All conditions (wells) were fixed, permeabilized, and stained at the same time 

with identical settings. Wells from the same plate were all imaged consecutively in the same 

imaging session.

For dpERK staining of fixed cells, after fixation and permeabilization, we used primary 

antibodies targeting dpERK (p44/p42 ERK D12.14.4E Cell Signaling, 4370). First, we 

rinsed cells twice for 5 min each time with 5% BSA in PBS (5% BSA-PBS) and then 

incubated in the dark at room temperature for 2 h in 5% BSA-PBS 1:200 dpERK antibodies. 

Next, we washed the cells 5 × 5 min with 5% BSA-PBS and then incubated the cells at room 

temperature for 1 h in 5% BSA-PBS containing 1:500 goat anti-rabbit secondary antibody 

conjugated to Alexa Fluor 594 (Cell Signaling, 8889). After the secondary incubation, we 

washed the cells 5 × 5 min with 5% BSA-PBS containing 50 ng ml−1 DAPI and then 

replaced the wash buffer with fresh PBS and proceeded with imaging consecutively. All 

conditions (wells) were fixed, permeabilized, stained, and imaged at the same time with 

identical settings.

For colony counting via nuclei imaging, the cells were fixed by aspirating medium from the 

plates containing cells, washing the cells once with 1× DPBS, and then incubating the cells 

in the fixation buffer (3.7% formaldehyde in 1× DPBS) for 10 min at room temperature. 

We aspirated the fixation buffer, washed samples twice with 1× DPBS, and added 70% 

ethanol before storing samples at 4 °C. Fixed cells were stained for nuclei by incubation in 

2× SSC containing 50 ng ml−1 DAPI and then imaged each well via a tiling scan at 10× 

magnification.
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Barcode lentivirus library generation and diversity estimation

Barcode libraries were constructed as previously described8, and the protocol is available 

at https://www.protocols.io/view/barcode-plasmid-library-cloning-4hggt3w. In brief, we 

modified the LRG2.1T plasmid (gift from J. Shi) by removing the U6 promoter and single 

guide RNA scaffold. We then inserted a spacer sequence flanked by EcoRV restriction sites 

after the stop codon of GFP, subsequently digesting this vector backbone with EcoRV (NEB) 

and gel purifying the linearized vector. We ordered PAGE-purified ultramer oligonucleotides 

(IDT) containing 100 nucleotides with a repeating WSN pattern (W = A or T, S = G or C, N 

= any) surrounded by 30 nucleotides homologous to the vector insertion site (Supplementary 

Table 1). We subsequently used Gibson assembly followed by column purification to 

combine the linearized vector and barcode oligonucleotide insert. We performed nine 

electroporations of the column-purified plasmid into Endura electrocompetent Escherichia 
coli cells (Lucigen) using a Gene Pulser Xcell (Bio-Rad). We then allowed for their recovery 

before plating serial dilutions and seeding cultures for maxi-preparation. We incubated these 

cultures on a shaker at 225 rpm and 32 °C for 12–14 h, pelleted the resulting cultures 

by centrifugation, and used the EndoFree Plasmid Maxi Kit (Qiagen) to isolate plasmid 

according to the manufacturer’s protocol. Barcode insertion was verified by polymerase 

chain reaction (PCR) on colonies from plated serial dilutions. We pooled the plasmids from 

the 9 separate cultures in equal amounts by weight before packaging into lentivirus.

To estimate the barcode library complexity, we performed three independent transductions 

(see below for details) on WM989 A6-G3 melanoma cell lines, extracted gDNA, sequenced 

the barcodes, and noted the total and overlapping barcodes between pairs of three 

independent transductions. We estimated the barcode library complexity with the equation 

used in mark and capture analysis: k ∕ K = n ∕ N, where k is number of recaptured barcodes 

that were marked, K is number of barcodes captured in the second pool, n is the number of 

barcodes marked in the first pool and N is the estimated barcode library complexity. Using 

this formula, we found the barcode diversity from three transductions to be 48.9, 54.4 and 

63.3 million barcodes (Supplementary Fig. 1).

Lentivirus packaging and transduction

We adapted previously described protocols to package lentivirus8,35. We first grew 

HEK293FT to near confluency (80-95%) in 10-cm plates in DMEM containing 10% FBS 

and 50 U ml−1 penicillin, and 50 μg ml−1 streptomycin, and one day before plasmid 

transfection, we changed the medium in HEK293FT cells to DMEM containing 10% 

FBS without antibiotics. For each 10-cm plate, we added 80 μl of polyethylenimine 

(Polysciences, 23966) to 500 μl of Opti-MEM (Thermo Fisher Scientific, 31985062), 

separately combining 5 μg of VSVG and 7.5 μg of pPAX2 and 7.35 μg of the barcode 

plasmid library in 500 μl of Opti-MEM. We then incubated both solutions separately at room 

temperature for 5 min. We then mixed both solutions together by vortexing and incubated 

the combined plasmid–polyethylenimine solution at room temperature for 15 min. We added 

1.09 ml of the combined plasmid–polyethylenimine solution dropwise to each 10-cm dish. 

After 6–7 h, we aspirated the medium from the cells, washed the cells with 1× DPBS, and 

added fresh TU2% medium. The next morning, we aspirated the medium, and added fresh 

TU2% medium. Approximately 9–11 h later, we transferred the virus-laden medium to an 
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empty, sterile 50-ml tube and stored it at 4 °C, and added fresh TU2% medium to each 

plate. We continued to collect the virus-laden medium every 9–11 h for the next ~30 h in the 

same 50-ml tube, and stored the collected medium at 4 °C. Upon final collection, we filtered 

the virus-laden medium through a 0.45-μm PES filter (MilliporeSigma SE1M003M00) and 

stored 1.5-ml aliquots in cryovials at −80 °C.

To transduce WM989 A6-G3, WM983b E9-C6, WM3451 P2G7, WM3623 P4E7, FOM 

230-1 and MDA-MB-231-D4 cells, we freshly thawed virus-laden medium on ice, added 

it to dissociated cells, and plated ~100,000 cells per well in a 6-well plate with ~3 ml of 

the medium. We then centrifuged the 6-well plate at 1,750 rpm (517g) for 25 min. We 

then incubated the 6-well plate at 37 °C and replaced the medium at ~8 h, washed with 1× 

DPBS, and added fresh medium (TU2% for WM989, WM983B, WM3451 and WM3623; 

Melanocyte Growth Media for FOM 230-1; and DMEM with 10% FBS for MDA-MB-231) 

to each well. After ~24 h, we passaged the cells to 10-cm dishes, at which point we typically 

combined 2 wells by plating them together in a 10-cm dish. For the FateMap experiments 

with WM989 A6-G3 melanoma cells exposed to vemurafenib, we planned to start each split 

with 600,000 barcoded (GFP-positive) cells. The barcoded cells (GFP-positive) were then 

sorted and plated for a total of 4–5 population doublings until treatment with appropriate 

drugs. The time to 4–5 population doubling was 11–12 days for FOM 230–1, 10–11 days 

for WM989, WM3451 and WM3623 6–7 days for WM983B, 5–6 days for MDA-MB-231. 

The volume of the virus-laden medium was decided by the titre performed on each cell line 

and target MOI. For scRNA-seq experiments in particular, we targeted for the MOI to be 

~10–25% to minimize the fraction of cells with multiple unique barcodes. We found it to be 

relatively computationally challenging to differentiate multiple-barcoded cells from doublets 

introduced by gel beads-in-emulsions.

scRNA-seq

We used the 10X Genomics scRNA-seq kit v3 to sequence barcoded cells. We resuspended 

the cells (targeting ~10,000 cells for recovery per sample) in PBS and followed the protocol 

for the Chromium Next GEM Single Cell 3′ Reagent Kits v3.1 as per manufacturer 

directions (10X Genomics). In brief, we generated gel beads-in-emulsion (GEMs) using 

the 10X Chromium system, and subsequently extracted and amplified (11 cycles) barcoded 

cDNA as per post-GEM RT-cleanup instructions. We then used a fraction of this amplified 

cDNA (25%) and proceeded with fragmentation, end-repair, poly A-tailing, adapter ligation, 

and 10X sample indexing per the manufacturer’s protocol. We quantified libraries using the 

High Sensitivity dsDNA kit (Thermo Fisher Q32854) on Qubit 2.0 Fluorometer (Thermo 

Fisher Q32866) and Bioanalyzer 2100 (Agilent G2939BA) analysis prior to sequencing on 

a NextSeq 500 machine (Illumina) using 28 cycles for read 1, 55 cycles for read 2, and 8 

cycles for i7 index. A subset of FateMap sequencing runs (NRAS melanoma samples and 

Metronomic therapy experiments), we used NextSeq 2000 (Illumina) using 26 cycles for 

read 1, 124 cycles for read 2, and 8 cycles for i7 index.

Computational analyses of scRNA-seq expression data

We adapted the cellranger v3.0.2 by 10X Genomics into our custom pipeline to map and 

align the reads from NextSeq sequencing run(s). In brief, we downloaded the bcl counts 

Goyal et al. Page 19

Nature. Author manuscript; available in PMC 2023 November 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and used cellranger mkfastq to demultiplex raw base call files into library-specific FASTQ 

files. We aligned the FASTQ files to the hg19 human reference genome and extracted gene 

expression count matrices using cellranger count, while also filtering and correcting cell 

identifiers and unique molecular identifiers (UMI) with default settings.

We then performed the downstream single-cell expression analysis in Seurat v3. Within 

each experimental sample, we removed genes that were present in less than three 

cells, as well as cells with less than or equal to 200 genes. We also filtered for 

mitochondrial gene fraction which was dependent on the cell type. For non-identically 

treated samples, we integrated them using scanorama58, which may work better 

to integrate non-similar datasets and avoid over-clustering. For samples that were 

exposed to identical treatment, we normalized using SCTransform59 and the samples 

according to the Satija laboratory’s integration workflow (https://satijalab.org/seurat/articles/

integration_introduction.html). Using scanorama on identically treated samples produced 

qualitatively similar results (Supplementary Fig. 6).

For each experiment, we used these integrated datasets to generate data dimensionality 

reductions by PCA and UMAP, using 50 principal components for UMAP generation. For 

a majority of analyses, we worked with the principal component space and normalized 

expression counts. For rare cases where we used Seurat UMAP clusters, we tested a 

range of resolutions with Seurat’s FindClusters command. Our conclusions did not change 

qualitatively when we tested resolutions between 0.4 and 1.2 (Supplementary Fig. 3). Details 

for all FateMap experiments, including total cell numbers and total barcoded cells per 

sample, are provided in Supplementary Table 11.

Bulk sequencing and analysis

We conducted standard bulk paired-end (37:8:8:38) RNA-seq using RNeasy Micro (Qiagen 

74004) for RNA extraction, NEBNext Poly(A) mRNA Magnetic Isolation Module (NEB 

E7490L), NEBNext Ultra II RNA Library Prep Kit for Illumina (NEB E7770L), NEBNext 

Multiplex Oligos for Illumina (Dual Index Primers Set 1) oligonucleotides (NEB E7600S), 

and an Illumina NextSeq 550 75 cycle high-output kit (Illumina 20024906), as previously 

described1,60. Prior to extraction and library preparation, the samples were randomized to 

avoid any experimental and human biases. As previously described, we aligned RNA-seq 

reads to the human genome (hg19) with STAR v2.5.2a and counted uniquely mapping reads 

with HTSeq v0.6.11,60,61 and outputs the count matrix. The counts matrix was used to obtain 

transcripts per million and other normalized values for each gene using custom scripts.

To compare bulk-sequencing data with scRNA-seq datasets, we first extracted differentially 

expressed genes for each scRNA-seq cluster (SNN = 0.6) using the Seurat command 

FindAllMarkers, and filtering for adjusted P value <0.05 and avg_logFC > 1. Similarly, 

we extracted differentially expressed genes for each condition of interest (morphology or 

invasiveness) and filtering for −1.5 < avg_logFC > 1.5. We then calculated the similarity 

score, which represents the normalized fraction of overlap of differentially expressed genes 

for the condition of interest between bulk-sequencing data and each scRNA-seq cluster.
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Expanded resistant colonies morphology categorization

The resistant colonies were manually binned in one of the three categories based on the 

morphology images taken from the Nikon TS2-FL microscope: ‘small’, ‘on top’ and ‘not on 

top’. Those that were difficult to be binned in any category were labelled as ‘uncategorized’. 

Of the three categories, the ‘small’ category was the most easy to identify manually and 

label due to characteristic optical and proliferation (slow growing) properties. The other two 

categories (‘on top’ and ‘not on top’) had further sets of morphological and proliferative 

differences, but were difficult to be parsed into specific categories. Of the 64 resistant 

colonies isolated and expanded across therapy treatments of vemurafenib and trametinib, 

five were uncategorized. The differentially upregulated genes for ‘small’ and ‘on top’ 

are provided in Supplementary Table 4. For category ‘not on top’, only four genes were 

differentially upregulated, thus precluding us from doing further analysis. Some resistant 

colonies did not survive the expansion process.

Nearest neighbour analysis

We developed a quantifiable approach to measure the gene expression relatedness of 

different barcoded clones. For each pair of barcoded clones, we calculated the nearest 

neighbours for each cell in the 50-dimensional principal component space. We then 

classified the neighbours as ‘self’ if the neighbours are from the same barcode clone or 

‘non-self’ if they belong to the other barcode clone. We defined a quantifiable metric, the 

mixing coefficient, as follows:

Mixina coefficient = number of non‐self neighbours
number of self neighbours

A mixing coefficient of 1 would indicate perfect mixing such that each cell has the same 

number of self and non-self neighbours. A mixing coefficient of 0 would indicate that 

there is no mixing and that each cell within a barcoded clone lies far away from the other 

barcoded clone in the principal component space. The higher the mixing coefficient, the 

higher the transcriptional relatedness of the barcoded clones analysed. As the number of 

nearest neighbours depends on the size (number of cells) of a clone, we performed this 

analysis between cells of similar clone size (Supplementary Fig. 14). Within a specified size 

range, we normalized the number of neighbours per barcode clone to account for small size 

differences. The number of neighbours to extract was chosen to be a minimum of 10 or the 

size of the smaller of the two barcode clones.

Barcode recovery from scRNA-seq data

As the barcodes are transcribed, we extracted the barcode information from the amplified 

cDNA from 10X Genomics V3 chemistry protocol (step 2). We ran a PCR side reaction with 

one primer that targets the 3′ UTR of GFP and the other that targets a region introduced by 

the amplification step within the V3 chemistry of 10X genomics (read 1). The two primers 

amplify both the 10X cell-identifying sequence as well as the 100 bp barcode that we 

introduced lentivirally. The number of cycles, typically between 12–15, are decided by the 

Ct value from a quantitative PCR reaction (New England Biolabs M0543) for the specified 

cDNA concentration. The thermal cycler (Veriti 4375305) was set to the following settings: 
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98 °C for 30 s, followed by N cycles of 98 °C for 10 s and then 65 °C for 2 min and, 

finally, 65 °C for 5 min. Upon completion of the PCR reaction, we immediately performed a 

0.7× bead purification (Beckman Coulter B23318) followed by final elution in nuclease-free 

water. Purified libraries were quantified with High Sensitivity dsDNA kit (Thermo Fisher) 

on Qubit Fluorometer (Thermo Fisher), pooled, and sequenced on a NextSeq 500. We 

sequence 26 cycles on read 1 which gives 10X cell-identifying sequence and UMI, 124 

cycles for read 2 which gives the barcode sequence, and 8 cycles for index i7 to demultiplex 

pooled samples. The primers used are provided in Supplementary Table 2.

Experiments in mice

For each experiment, WM989 cells were uniquely barcoded with protocols as described 

above and allowed to divide 4–5 times before splitting the barcoded pool into 5 groups, 

each containing an equal number of cells. We aimed for ~1–1.5 million WM989 cells to be 

injected per mice. All animal experiments were performed in accordance with institutional 

and national guidelines and regulations. The protocols have been approved by the Wistar 

IACUC. WM989 cells in serum-free RPMI 1640 medium (Corning 10-40-CM) were 

mixed in a 1:1 ratio with Growth Factor Reduced Matrigel (Corning 354230), then were 

subcutaneously implanted into the flanks of NSG mice. Once tumours reached about 100 

mm3 per calliper measurement, animals were randomized into treatment groups. Treatment 

consisted of Low Dose 41.7 mg PLX4720 per kg diet (Research Diets D21051202i), or 

High Dose 417 mg PLX4720 per kg diet (Research Diets D21051201i), to which they had 

constant access. PLX4720 is closely related both structurally and biologically to PLX4032, 

which was used for in vitro experiments, and also targets the same molecule and BRAF-

V600E structural configuration. As PLX4720 continues to be the drug used in mouse 

xenograft models and has a similar half-life to PLX403235,62, we used PLX4730 instead of 

PLX4032 for in vivo experiments. Tumour size was measured with calipers every 2–4 days, 

and tumour volumes were calculated according to the equation 0.5× L × W × W , where L
is the longest side and W  is a line perpendicular to L. Mice were euthanized once tumours 

reached 1,500 mm3, and once one mouse reached the endpoint, all mice from the same 

barcode pool were euthanized regardless of tumour size. The tumour tissue was snap frozen 

in liquid N2 for gDNA extraction. We performed five biological replicate experiments. We 

could not extract sufficient gDNA from experiments 3 and 4, and these were excluded from 

barcode split population analysis.

Computational analyses of barcoded single-cell datasets

The barcodes from the side reaction of single-cell cDNA libraries were recovered by 

developing custom shell, R and Python scripts (see Code availability). In brief, we scan 

through each read searching for sequences complementary to the side reaction library 

preparation primers, filtering out reads that lack the GFP barcode sequence, have too 

many repeated nucleotides, or do not meet a phred score cut-off. Since small differences 

in otherwise identical barcodes can be introduced due to sequencing and/or PCR errors, 

we merged highly similar barcode sequences using STARCODE software63, available at 

https://github.com/gui11aume/starcode. For varying lengths of barcodes (30, 40 or 50, see 

the pipeline guide provided) depending on the initial distribution of Levenshtein distance 

of non-merged barcodes, we merged sequences with Levenshtein distance ≤8, summed 
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the counts, and kept only the most abundant barcode sequence. The decision to use a 

Levenshtein distance ≤8 was reached by systematically analysing the difference between 

experimentally observed mean Levenshtein distance with the theoretically provided mean 

Levenshtein distance for a pair of barcodes. We then compared various Levenshtein 

distances and found that a Levenshtein distance ≤8 resulted in the least difference between 

observed and expected mean distances between barcodes. Results from this analysis are 

provided in Supplementary Fig. 2.

For next processing steps and downstream analysis, we first filtered out all barcodes that 

were associated below the minimum cut-off (dependent on sequencing depth) of unique 

molecular identifiers (UMI). We next removed all barcodes where one 10X cell-identifying 

sequence was associated with more than one unique barcode. This could either result from 

multiplets introduced within gel beads-in-emulsions or because of the same cell receiving 

multiple barcodes during lentiviral transduction. After these two filtering steps, we were able 

to recover barcodes associated with 50–60% of single cells, which were then used to do the 

downstream clone-resolved analysis.

Barcode library preparation and sequencing from gDNA

We prepared barcode libraries from gDNA as previously described8. In brief, we isolated 

gDNA from barcoded cells using the QIAmp DNA Mini Kit (Qiagen, 51304) per the 

manufacturer’s protocol. Extracted gDNA was stored as a pellet in −20 °C for days to weeks 

before the next step. We then performed targeted amplification of the barcode using custom 

primers containing Illumina adapter sequences, unique sample indices, variable-length 

staggered bases, and a ‘UMI’ consisting of 6 random nucleotides (NHNNNN). As reported 

in ref. 8, this UMI does not uniquely tag barcode DNA molecules, but nevertheless appeared 

to increase reproducibility and normalize raw read counts. We determined the number of 

amplification cycles (N) by initially performing a separate quantitative PCR and selecting 

the number of cycles needed to achieve one-third of the maximum fluorescence intensity 

for serial dilutions of gDNA. The thermal cycler (Veriti 4375786) was set to the following 

settings: 98 °C for 30 s, followed by N cycles of 98 °C for 10 s and then 65 °C for 40 s and, 

finally, 65 °C for 5 min. Upon completion of the PCR reaction, we immediately performed a 

0.7× bead purification (Beckman Coulter B23318), followed by final elution in nuclease-free 

water. Purified libraries were quantified with a High Sensitivity dsDNA kit (Thermo Fisher) 

on a Qubit Fluorometer (Thermo Fisher), pooled, and sequenced on a NextSeq 500 using 

150 cycles for read 1 and 8 cycles for each index (i5 and i7). The primers used are provided 

in Supplementary Table 6.

Analyses of sequenced barcodes from gDNA

The barcode libraries from gDNA sequencing data were analysed as previously described8, 

with the custom barcode analysis pipeline (see Code availability). In brief, this pipeline 

searches for barcode sequences that satisfy a minimum phred score and a minimum length. 

Note that we count the total number of UMIs as described in ‘Barcode library preparation 

and sequencing from gDNA’. These UMIs do not necessarily tag unique barcode DNA 

molecules, but empirically they slightly improve correlation in barcode abundance among 

replicate libraries8. We also use STARCODE63, available at https://github.com/gui11aume/
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starcode, to merge sequences with Levenshtein distance ≤8 and add the counts across 

collapsed (merged) barcode sequences.

In this current work, we also created two subclones (D8 and F8) of WM989 A6-G3, 

with each clone carrying a unique barcode sequence (Supplementary Table 7). We used 

these two clones as standards to convert sequencing counts into actual cell numbers which 

substantially reduces the PCR and cell number bias across samples. We spiked in a known 

number of cells from each of the two barcoded clones to each cell pellet before gDNA 

extraction and sequencing. We then used linear regression (on (0, 0), (count_F8, cells_F8), 

(count_D8, cells_D8)) to get the conversion factor from read counts of all barcodes to 

their actual cell numbers. We used a minimum cell count and log2 fold change between 

pairs of conditions to annotate clones as condition-dependent or condition-independent. We 

found that changing the cut-off for minimum cell count did not affect our conclusions 

(Supplementary Fig. 15).

Simulation for barcode overlap

We adapted a described previously computational model that simulates all steps of our 

experiments designed to compare barcode overlap in resistant colonie64. The model 

simulates cell seeding and infection. Each cell is represented as an independent object. 

The number of barcoded cells was calculated as

Number of barcoded cells = number of seeded cells × (1 − e‐MOI)

where the MOI was estimated for our barcode lentivirus. Barcodes were represented by 

integer numbers from among 50 million variants of unique barcodes estimated from our 

lentiviral library diversity (see Methods and Supplementary Fig. 1). The subset of barcoded 

cells was assigned barcodes randomly with replacement from this library. The model 

simulates expanding cells prior to addition of the drug. Each cell, regardless of barcode 

status, undergoes a cell division procedure with 4–5 rounds depending on the experimental 

condition. In each round, a given cell will give rise to a number of progeny sharing the 

same barcode based on an estimated distribution of cell division. The model plates cells onto 

separate dishes or splits (total dishes or splits dependent on the experiment) by randomly 

assigning each cell an integer. The model simulates the formation of resistant colonies 

assuming a purely stochastic model of resistance. A defined fraction of cells on each plate 

form resistant colonies based on a resistance efficiency that was calculated as

Resistance efficiency
= number of barcoded resistant colonies after drug course

number of seeded barcoded cells

based on experimental observations. Additionally, each cell forming a resistant colony 

is subject to a probabilistic material loss at different stages of the in silico experiment, 

including cell culture (5% both in vivo and in vitro), gDNA extraction (0% in vitro and 10% 

in vivo mouse), DNA sequencing library preparation (5% both in vivo and in vitro), and (as 

needed) mouse injection (15%) and tumour extraction (15%). The output of the model was 
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the number of barcodes shared between different plates or barcode overlap. This was not 

corrected for cells having more than one lentiviral barcode due to multiple integrations for 

a given MOI. We performed 1,000 and 200 independent simulations for in vitro and in vivo 

experiments, respectively to obtain a distribution of barcode overlap values to determine 

the probability of obtaining our observed barcode overlap from our experiments by random 

chance. This model was written and executed in R.

Tissue sectioning and RNA FISH

We adapted the protocol described previously65. Tumour tissue extracted from mice 

subcutaneously injected with WM989 A6-G3 5a335 was mounted in Tissue-Plus OCT 

compound (Fisher Healthcare), flash-frozen in liquid nitrogen, wrapped in aluminium foil, 

and then stored at −80 °C. Tissues were cryosectioned at 6 or 8 μm using a Leica CM1950 

cryostat within the Center for Musculoskeletal Disorders (PCMD) Histology Core. We 

adhered tissue samples to positively charged Superfrost Plus slides (Fisher Scientific). We 

then washed slides in PBS, fixed them in 4% formaldehyde for 10 min at room temperature, 

then washed them two times in PBS. Fixed slides were stored in 70% ethanol in LockMailer 

microscope slide jars at 4 °C.

For RNA FISH on tissue sections, we placed the slide in the wash buffer (2× SSC, 10% 

formamide) and allowed it to equilibrate for 2–3 min. We then removed slides from the 

wash buffer and dried off the slides with kimwipes. Immediately after drying, we added 

500–1,000 μl of 8% SDS to the tissue section on the slide for 1 min. After 1 min, we turned 

the slide on the side to remove the SDS, transferred the slide to the wash buffer, and kept it 

in the wash buffer for ~2 min. We then tapped down the wash buffer on a kimwipe or paper 

towel, added 50 μl of probe-containing hybridization buffer (10% dextran sulfate, 2× SSC, 

10% formamide) as a drop in centre of tissue sample, and placed a coverslip on top of the 

tissue section. We then placed the slide into a humidifying chamber to prevent the slide from 

drying, and placed the chamber containing slides in a 37 °C incubator overnight. We took 

out the chamber to room temperature the next day and placed the slide with coverslip into 

a wash buffer container and let the coverslip come off. We then transferred the slides to a 

container or LockMailer jar containing wash buffer and incubated for 30 min at 37 °C. We 

removed it from the 37 °C incubator and performed a second incubation with wash buffer 

and DAPI, and put it back into 37 °C for another 30 min. We performed 1 final wash in 

wash buffer, rinsed 2 times in 2× SSC, and added 50–100 μl of 2× SSC to the tissue section. 

We then placed a coverslip on the tissue, sealed it with nail varnish, and let it dry before 

imaging. We used clampFISH data on tissue sections (Supplementary Figs. 12 and 13) from 

another study, and detailed methods on clampFISH protocols are provided in29.

Spheroid assay

We adapted the protocol described previously66. Tissue culture–treated 96-well plates were 

coated with 50 μl 1.5% Difco Agar Noble (Becton Dickinson). Melanoma cells were seeded 

at 3,000 cells per well and allowed to form spheroids over 96 to 120 h. Spheroids were 

collected and embedded using collagen type I (GIBCO, A1048301). The collagen plug was 

prepared as 300 μl mix per layer, and two layers were added into each well (1× Eagle 

Minimum Essential Medium (EMEM; 12-684, Lonza); 10% FCS; 1× l-glutamine; 1.0 mg 
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ml−1 collagen I; NaHCO3 (17-613E, Lonza), diluted in PBS as required). The first layer was 

added to each well and allowed to solidify. After 5 to 10 min, spheroids were mixed with 

the remaining 300 μl mix and added to the well to solidify. Once the plug was solidified, 

medium was added to the well and incubated at 37 °C at 5% CO2 and imaged after 24 h and 

48 h. Spheroid images were acquired on a Nikon Ti2E inverted microscope. Quantitation of 

invasive surface area was performed using NIS Elements Advanced Research software. Of 

the 64 resistant colonies we expanded, only 24 colonies had enough cells to form multiple 

spheroids per colony. Of these 24, 6 did not form spheroids and 2 only had one spheroid 

each. Of the remaining 16 colonies, 8 colonies belonged to resistant colonies emerging 

from trametinib, 3 belonged to 1 μM vemurafenib and 5 belonged to 250 nM vemurafenib. 

The differentially upregulated genes for ‘fast invading’ and ‘slow invading’ are provided in 

Supplementary Table 5.

Imaging

To image RNA FISH and nuclei signal, we used a Nikon TI-E inverted fluorescence 

microscope equipped with a SOLA SE U-nIR light engine (Lumencor), a Hamamatsu 

ORCA-Flash 4.0 V3 sCMOS camera, and 4× Plan-Fluor DL 4XF (Nikon MRH20041/

MRH20045), 10× Plan-Fluor 10×/0.30 (Nikon MRH10101) and 60× Plan-Apo λ 
(MRD01605) objectives. We used the following filter sets to acquire different fluorescence 

channels: 31000v2 (Chroma) for DAPI, 41028 (Chroma) for Atto 488, SP102v1 (Chroma) 

for Cy3, 17 SP104v2 (Chroma) for Atto 647N, and a custom filter set for Alexa 594. We 

tuned the exposure times depending on the dyes used (Cy3, Atto 647N, Alexa 594, and 

DAPI). For large tiled scans, we used a Nikon Perfect Focus system to maintain focus 

across the imaging area. For imaging RNA FISH signals in tissue sections, we acquired 

z-stacks (three positions) at 60× magnification, and used maximum intensity projection to 

visualize the signal. For bright-field imaging of resistant colonies, we used a Nikon Eclipse 

TS2-FL with an Imagingsource DFK 33UX252 camera and 4× Plan-Fluor 4×/0.13 (Nikon 

MRH20041) objective. For time-lapse imaging of the emergence of drug-resistant colonies, 

we used an IncuCyte S3 Live Cell Imaging Analysis System (Sartorius) with a 4× objective 

on WM989 A6-G3 tagged with an mCherry nuclear reporter (H2B–mCherry).

Image processing

For colony counting, all image processing was done blind to the condition (either drug 

type or dose, or with or without DOT1L inhibition). The wells (within the 6-well plates) 

were pseudo-named in a format independent from drug or dose. Nikon-generated nd2 files 

were first parsed using custom MATLAB scripts (rajlabformattools) to convert them from 

nd2 format to tiff format (see Code availability). Images for each well were then stitched 

using custom MATLAB code and the number of cells in each well was counted using 

custom MATLAB code with a Gaussian filter consistent across samples being compared 

(colonycounting_v2). Colonies within each well were manually segmented and MATLAB 

was used to calculate the total number of colonies, cells per colony, and cells outside of 

colonies (see Code availability). The summary average counts for each colony is provided 

in Supplementary Table 10. RNA FISH and clampFISH on tissue sections were quantified 

using a custom built computational pipeline, also used in other previous studies1,29.
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For immunofluorescence, all image processing was done blind to drug conditions; the wells 

were pseudo-named in a format independent from drug or dose. Nikon images were first 

stitched using Nikon Elements software. The channels were split in Fiji and scaled to 

a smaller size compared to their original pixel size prior to placing them in illustrator. 

For the conditions being compared (for example, each well with a different drug dose 

or type), the individual channels were equally adjusted for brightness and contrast across 

each pair of wells for the signal of interest. Raw nd2 files are provided for each imaging 

experiment which contains additional metadata for image settings. For the images taken on 

the bright-field microscope Nikon TS2-FL, the scale bar lengths were calculated by using 

the pixel size given by the manufacturer of the camera. For well images taken on the Nikon 

TI-E inverted fluorescence microscope, the scale bar lengths were calculated using Nikon 

Elements software to add a line of a specific length to the images.

Estimation of survival fraction in MDA-MB-231-D4

We estimated the frequency of drug resistance in MDA-MB-231-D4 by computing the 

fraction of surviving barcoded colonies upon treatment with paclitaxel as compared to the 

total number of uniquely barcoded cells in the initial population. From two separate split 

population experiments, we obtained the frequency to be 1:956 and 1:1,303 (see Data 

availability and Code availability for the script).

Vemurafenib-resistant colony isolation and expansion

WM989 A6-G3 cells were treated with 1 μM vemurafenib (PLX4032, Selleck Chemicals, 

S1267) for four weeks to allow resistant colonies to form and expand. Plates with resistant 

colonies were scanned under a tissue culture microscope to identify colonies that were 

physically distant from other colonies or singletons. The distant colonies were imaged with a 

4× objective, physically isolated, and dissociated via treatment with 0.05% trypsin for 5–10 

min as some colonies took longer to detach than others. Colony suspensions were plated 

in 12-well plates containing 1 ml of TU2% medium containing 1 μM vemurafenib, and 

the medium was changed the following day to remove residual trypsin. Isolated resistant 

colonies were closely monitored for growth daily, and the 1 μM vemurafenib containing 

medium was changed every 3–5 days. Isolated resistant colonies were expanded into 10-cm 

and then 15-cm plates when cells reached 70–80% confluence. When expanding from 

12-well plates to 10-cm plates, 75,000 cells were collected for RNA-seq. When cells reached 

70–80% confluence in 15-cm plates, 75,000 cells were collected for a later time point of 

RNA-seq.

Silencing plate cell culture, imaging and analysis

Drug-naive WM989 A6-G3s were transduced with unique barcodes as described above. 

Cells were plated in 6-well plates at a density of 100,000 cells per well. One plate was 

fixed in formaldehyde after 24 h using a protocol described above and the second plate 

was treated with medium containing 1 μM PLX after 24 h. This drug treatment was 

continued for three weeks which was enough time for resistant colonies to form. This 

second plate containing resistant populations was fixed in formaldehyde. Wells were imaged 

on a Nikon TI-E inverted fluorescence microscope equipped with a SOLA SE U-nIR light 

engine (Lumencor), a Hamamatsu ORCA-Flash 4.0 V3 sCMOS camera, and 10× Plan-Fluor 
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10×/0.30 (Nikon MRH10101). Images were analysed using the custom Raj Lab image 

processing software NimbusImage via the CellPose tool67. Average intensity for each of the 

cells was calculated also using NimbusImage.

WGS cell culture, isolation and expansion

WM989 A6-G3 cells that were frozen as a backup from the original experiments were 

thawed and passaged three times before bottle-necking. Cells were trypsinized, centrifuged 

and resuspended to a concentration of either 0.5 cells per 200 μl, 1 cell per 200 μl, or 2 

cells per 200 μl. One full 96-well plate was used for each dilution. Plates were imaged on 

an Incucyte S3 24 h after the cells were plated. The plates were scanned again two days 

after the first scan and seven days after the second scan. Any wells that did not definitively 

have a single cell in the first scan were excluded from the experiment. Once clones had 

reached ~90% confluency in the 96-well plate, they were scaled up to a 24 well plate. This 

process was repeated to 12-well, 6-well and 10-cm plates. Ultimately, 8 unique clones were 

generated for WGS.

NRAS cell line drug treatment and imaging

WM3451 P2G7 and WM3623 P4E7 cell lines were imaged during drug treatment to track 

morphological changes and colony formation. Cells were plated in 10-cm dishes at a density 

of 300,000 cells per dish. Medium was changed 15 h after plating for medium containing 

10 nM trametinib (WM3623 P4E7) or 25 nM trametinib (WM3451 P2G7). Medium was 

changed and bright-field images were taken of the cells every 3–4 days, and this was 

continued for 5 weeks.

Patient sample GeoMx analysis

Segments for spatial sequencing were drawn based on manual inspection of S100B and 

CD45 staining using the NanoString GeoMx DSP software and sequenced as per the 

GeoMx protocol. Sequencing data was processed and subjected to quality control using 

the manufacturer’s proprietary software. Quality control analysis was performed using the 

manufacturer’s suggested default values except where otherwise noted. In brief, segments 

with fewer than 1,000 reads, less than 80% aligned reads and less than 50% sequencing 

saturation were excluded from further analysis. Biological probes were excluded from the 

target count calculation if the ratio of the geometric mean of the probe in all segments to the 

geometric mean of the probe in the target was less than or equal to 0.1 or if the probe failed 

the Grubbs outlier test in 20% or more of samples. Finally, we kept targets that exceeded a 

threshold (higher of limit of quantification or count of two) in at least 5% of samples. The 

filtered target counts were exported to R and counts were normalized using the Trimmed 

means of M values method. Count per million values for selected genes based on in vitro 

resistant fate types were then plotted for each segment.

GeoMx variable gene overlap with FateMap resistant fate type markers

The unsupervised cell clusters in the FM01 dataset were annotated with the resistant cell 

fate types shown in Fig. 1. The data was subset to include only cells that had a resistant fate 

type label, and the Seurat command FindAllMarkers with the options ‘only.pos =TRUE’ was 
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run on the resulting subset dataset. The filter p_val_adj < 0.05 was applied to the resulting 

marker list, and the top 100 marker genes for each of the five resistant fate types were 

chosen as the top 500 markers. The coefficient of variation for each gene across patient 

and sample type (pre-treatment or resistant) was calculated for each gene in the GeoMx 

data. The GeoMx data was then subset to include only genes expressed in the WM989 cells 

used in the FM01 experiment. Box plots were generated in R comparing the coefficients of 

variation of the top 500 FateMap markers to all other genes. P  values were computed using 

the two-sided, unpaired Wilcoxon test.

Resistant fate type GeoMx uneven partitioning analysis

The unsupervised cell clusters in the FM01 dataset were annotated with the resistant cell 

fate types shown in Fig. 1 and the object was subset to include only those cells. The 

Seurat command AverageExpression with options “return.seurat = F, assays = ‘SCT’, 

slot = ‘counts’” was used to generate a gene signature matrix for each resistant fate 

type for downstream deconvolution. The SCT-normalized counts were transformed into 

log-transformed counts per million values via the trimmed means of M method to match 

the GeoMx data. The following process was then repeated once per patient. Two ROIs 

on the same plug were chosen. We calculated a weighted mean of their transcriptomes 

using the number of nuclei from the GeoMx metadata. The gene signature matrix and the 

original and average ROI transcriptomes were then subset to only include genes common 

to all datasets and in common with FM01 differentially expressed genes. This was done to 

improve deconvolution by removing noisy, uninformative genes. The original and average 

ROI transcriptomes were deconvoluted using non-negative least squares deconvolution to 

yield resistant fate type cell proportions. These proportions were multiplied by the number 

of nuclei to give an estimated number of cells in each ROI and the ‘combined’ ROI with the 

mean transcriptome. An observed Euclidean distance between the two original ROIs is then 

calculated by reversing the deconvolution on each of the two original ROIs.

From the estimated cell numbers, two analyses are performed. The first analysis generates a 

null distribution of euclidean distances in which cells from the combined ROI are binomially 

distributed to two ROIs and the deconvolution is reversed to re-generate transcriptomes and 

calculate the euclidean distance between them. This sampling is done 10,000 times, and 

the null distribution is compared to the observed distance and the probability of a sampling 

a distance greater than the observed is calculated. Second, the estimated cell numbers 

in the combined ROI are partitioned in groups of 10 into either ROI 1 or ROI 2 in all 

possible combinations that add up to the true number of cells in each ROI ±2%. For each 

partition, the deconvolution is reversed and the euclidean distance is calculated between 

the transcriptomes. For each partition, we also calculate the mean absolute deviation away 

from 50:50 (equal partitioning) for all cell fate types. We compare whether the calculated 

euclidean distance is at least as large as the observed distance between the original ROIs, 

and find the mean absolute deviation away from 50:50 for the 25th percentile of distances at 

least as large as the observed distance.
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RNA FISH of resistant colonies derived from WM989 A6-G3 and two clonal lines

WM989 A6-G3 and two subclones thereof, WM989 A6-G3 A10 and WM989 A6-G3 A11, 

were used to generate vemurafenib-resistant colonies. Cells were plated in glass-bottom 6-

well plates and medium was changed 18 h after plating for medium with 1 μM vemurafenib 

(PLX4032, Selleck Chemicals, S1267). Medium was changed every 3–4 days. WM989 

A6-G3 A10 and WM989 A6-G3 A11 plates were fixed after 4 weeks of drug treatment 

and the WM989 A6-G3 plate was fixed after 5 weeks of drug treatment. Cells were fixed, 

hybridized with FISH probes, and imaged as described above.

Estimation of number of cell divisions

Cell culture was initiated at 25% confluency and cells were allowed to divide until they 

reached 75 to 80% confluency. The WM989 A6-G3 cells were passaged a total of 10 times, 

and each passage followed similar confluency at initial (immediately after passage n) and 

final (immediately before passage n + 1) time points. To estimate the number of divisions, 

we assume all cells at a given time point can divide to form two daughter cells.

0.25N × 2n = 0.75N
N × 2n = 3N
n = log23
n = 1.58

where N is the number of cells at 100% confluency and n is the number of divisions cells 

undergo when cultured from 25% confluency upto 75% confluency. Therefore, cells divide 

approximately one to two times during a passage. For ten passages, we can estimate the 

dynamics to be equivalent to the population expanding threefold ten times:

N × 2n′
= 310N

2n′
= 310

n′ = log2310

n′ = 15.85

where n′ is the number of division cells undergo when cultured from 25% confluency up 

to 75% confluency through 10 passages. Therefore, the cells underwent approximately 16 

divisions over the 10 passages for WM989 A6-G3 between initial clonal isolation and 

our analysis. A similar calculation for the A10 and A11 subclones, which underwent 12 

passages, yielded an estimate of 19 divisions.

Phenotypic volume and Shannon’s equitability Index

To estimate the transcriptional variability of cells within a clone or within a cluster, 

phenotypic volume was estimated as described27. The log of phenotypic volume was 

quantified as the sum of all non-zero eigenvalues for the singular value decomposition of 

the covariance matrix for gene expression. The covariance matrix was calculated for the 

scaled gene expression matrix for differentially expressed genes identified by FateMap. As a 

randomized control, barcodes or cluster numbers for cells were shuffled and the phenotypic 

volume was re-calculated. Normalized phenotypic volume was estimated as the difference 

Goyal et al. Page 30

Nature. Author manuscript; available in PMC 2023 November 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



between the phenotypic volume for a clone or a cluster and its paired random control divided 

by the phenotypic volume for the paired random control.

To quantify the distribution of each clone across the UMAP clusters, Shannon’s equitability 

index was quantified for each clone and a paired random control (created by shuffling 

barcodes). Shannon’s equitability index was calculated as

H = − Σpi × ln(pi) ∕ ln(S)

where H is Shannon’s equitability index, pi is the probability of finding cells in the ith 

cluster and S is the number of clusters. Shannon’s equitability index ranges from 0 to 1. A 

value of 1 indicates that the cells in a clone are evenly spread across all clusters. A value of 0 

indicates that all cells in a clone are present in a single cluster.

Extended Data

Extended Data Fig. 1 ∣. FateMap reveals between-clone fate type diversity in treatment-naive 
cells, albeit to a lesser degree compared to resistant cells.
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a. (left) UMAP of all barcoded treatment-naive cells. Total 16,432 cells (8,420 split A 

and 8,012 cells in split B) are colored by clusters determined using Seurat’s FindClusters 

command at a resolution of 0.6 (i.e. “Seurat clusters, resolution = 0.6”). (right) On 

the UMAP, we recolored each cell by its expression for a select subset of genes that 

were identified as differentially expressed in drug resistant cells via the Seurat pipeline 

(Cell counts available in Supplementary Table 11). b. Five representative examples 

demonstrate that a clone (cells sharing the same barcode) is constrained largely in a 

specific transcriptional cluster such that cells within a clone are more transcriptionally 

similar to each other than cells in other clones. c. Average pairwise correlation between cells 

within a clone was estimated based on the expression levels of the top 500 most variable 

genes. Each point represents the average value for Spearman’s correlation coefficient for 

all possible pairs of cells within a clone. For each clone, a paired control was created 

by randomly sampling an equivalent number of cells from the entire population. Higher 

average correlation coefficient in clones indicates higher transcriptional similarity among 

cells within a clone, as compared to cells that are not clones. Wilcoxon signed rank 

exact test (paired, two-sided) was used to compare the difference in average correlation 

coefficient. d. Fraction of variance explained by the experimental data and randomized data 

for the top 50 principal components (PCs). The number of PCs needed to explain the actual 

variance in data (indicated by the dotted line) is a measure of the degrees of freedom of 

variability of a given dataset. There was an increase (see Extended Data Fig. 1e for statistical 

testing) in the number of PCs needed to explain the variance in data from resistant cells (43 

PCs) as compared to naive (30 PCs) and primed cells (23 PCs), suggesting that there is an 

increase in overall variability in samples when cells transition to becoming drug resistant. 

Primed cells were identified as cells where at least 40% of pre-resistant markers identified in 

(Emert et al. 2021) are higher than their average expression level. e. Average number of PCs 

needed to explain the variance in resistant, naive and pre-resistant cells. Error bars represent 

standard deviation over 100 simulations of randomized data. Mann-Whitney U-Test was 

used to estimate a p-value for pairwise difference in means. f. Comparison of Euclidean 

distances between clusters across resistant and naive populations of melanoma cells for 

varying numbers of clusters. We used the first 50 principal components to calculate the 

Euclidean distance between cells across clusters. We used Wilcoxon signed rank exact test 

(paired, two-sided) for statistical comparisons. g. Comparison between resistant and naive 

populations for total number of clusters, given fixed number of cells and shared nearest 

neighbor (snn) resolution. We used Wilcoxon signed rank exact test (paired, two-sided) 

for statistical comparisons of average number of clusters across resolutions. h. UMAPs of 

representative twin clones (sharing the same barcode) across the two splits A and B. The 

twins largely end up with the same transcriptional fate. This observation suggests that cells 

have similar transcriptional states prior to drug treatment.
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Extended Data Fig. 2 ∣. Whole genome sequencing of treatment-naive and drug resistant fate 
type clones.
a. We performed a pairwise hypergeometric test for variants in all clones to determine 

statistical significance of variant overlap between clones. This was calculated with the 

following parameters (M = all CADD > 15 variants, n = # Variants in Sample 1, N = 

# Variants in Sample 2, X = # Variants in intersection of Samples 1 & 2). P-values are 

plotted on the heatmap where the p-value represents the probability of observing at least as 

large an overlap as observed if the two clones in fact had independently randomly selected 

variants from the full list of CADD > 15 variants. P-values below 0.05 represent two 

clones that are not genetically independent. b. Heatmap of genes with deleterious variants 

(CADD > 15) that were present with allele frequencies between 25% and 75% in both naive 

and resistant clones, colored by their CADD deleteriousness score. For genes that include 

multiple, unique variants, the variants were collapsed into one row, where the variant with 

the highest CADD score was plotted for that sample. The curated gene set represents the 

lack of variation in (Shaffer et al. 2017; Garman et al. 2017). Differentially expressed genes 

from the FateMap dataset show eight genes with variation. c. The expression patterns of the 

eight genes from the DEG list from FateMap with heterogeneously present genetic variants, 

visualized on UMAP (Cell counts available in Supplementary Table 11). d. To evaluate for 

acquired genetic resistance to therapy in the resistant clones, we next plotted variants on a 
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heatmap (colored by their CADD deleteriousness score) if there was a significant difference 

in the allele frequencies of variants between naive and resistant clones by Fisher’s exact 

test (P < 0.05). Variants were only included if they were not present in any naive clones. 

The curated gene set represents the lack of acquired variants in genes from [2017 paper 

genes], [FateMap DEG], [Clone Genes], [Top 500 most Variable Genes], [Known Epigenetic 

Modifiers]. The [“all variants with CAAD > 15”] includes all variants with CADD c-scores 

over 15. e. We analyzed 143 genes classified as epigenetic modifiers for deleterious variants 

(CADD > 15) within naive clones. The chart shows the number of genes with variants in a 

subset of naive clones (2 genes) and in all naive clones (10 genes). f. Heatmap of deleterious 

variants in epigenetic modifier genes, colored by their CADD deleteriousness score.

Extended Data Fig. 3 ∣. Isolation, longitudinal profiling and functional mapping of drug resistant 
clones.
a. Schematic for longitudinal tracking and profiling of drug resistant colonies. Colonies were 

isolated, expanded and maintained over 4 to 6 weeks. Paired initial and late samples were 

sequenced at a bulk-level. b. Paired initial and late samples display minimal phenotypic drift 

in principal component (PC) space for top 500 most variable genes. Insets show brightfield 

images of representative samples. c. Euclidean distance (in PC1 and PC2) measured between 

paired initial and late samples and equivalent number of random initial-late pairs of samples. 
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Lower Euclidean distance in true pairs as compared to random pairs implies that paired 

initial and late samples are transcriptionally more similar (closer in PC space) than any pair 

of initial and late samples. d. Scree plot depicting cumulative variance explained by PCs. 

Dotted line represents that most of the variance can be explained by the first 25 PCs alone. 

e. Euclidean distance (in first 25 PCs) measured between paired initial and late samples 

and equivalent number of random initial-late pairs of samples. Lower Euclidean distance 

in true pairs as compared to random pairs implies that paired initial and late samples are 

transcriptionally more similar (closer in PC space) than any pair of initial and late samples. 

f. Euclidean distance measured between paired early and late samples and equivalent 

number of random initial-late pairs of samples. Euclidean distance was measured in PC1 

and PC2 space for top 200, 500 and 1000 variable genes. g. Euclidean distance measured 

between paired initial and late samples and equivalent number of random initial-late pairs of 

samples. Euclidean distance was measured in the PC space created by the first 25 PCs for 

top 200, 500 and 1000 variable genes. h. Mapping of invasiveness onto the single-cell RNA 

sequencing dataset from FateMap by comparing genes differentially expressed between the 

two slowest and the two fastest invading resistant colonies (UMAP colored for similarity 

score). The slowest invading colonies have a high similarity score for cluster 15 (and to 

some extent 4 and 6), while the fastest invading colonies have a high similarity score for 

cluster 8 (and to some extent 1).
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Extended Data Fig. 4 ∣. FateMap on BRAF and NRAS mutant melanoma cell lines reveals 
between-clone fate type diversity.
a. (left) For another single-cell derived melanoma cell line WM983B E9-C6, we traced 

representative resistant cells in Adobe Illustrator and created cartoon schematics based 

on visual inspection of orientation and density. (right) Brightfield images of resistant 

colonies exhibiting different types of morphologies. b. We applied the Uniform Manifold 

Approximation and Projection (UMAP) algorithm within Seurat to the first 50 principal 

components to visualize differences in gene expression. Cells are colored by clusters 

determined using Seurat’s FindClusters command at a resolution of 0.5 (i.e. “Seurat clusters, 

resolution = 0.5”) (13,869 and 11,249 total cells respectively for split A and B). c. On 

the UMAP, we recolored each cell by its expression for a select subset of genes that were 

identified as differentially expressed via the Seurat pipeline and marked different clusters. 

MLANA, which marks melanocytes, is found largely in clusters 1,3, and 5; IFIT2, which 

marks type-1 interferon signaling, is found largely in cluster 4; NGFR, which marks neural 

crest cells, is found largely in cluster 2 and 4; AXL, which is a canonical resistance marker, 

is found largely in cluster 5 and 7. d. Six examples to demonstrate that a clone (cells sharing 

the same barcode) is constrained largely in a specific transcriptional cluster such that cells 

within a clone are more transcriptionally similar to each other than cells in other clones. 

Some clones are larger in size than others, and some exist as singletons, meaning they 
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survive vemurafenib treatment but do not necessarily divide while exposed to the drug. e. 

We quantified the preference for a specific cluster across all barcode clones (clone size>4). 

Specifically, we calculated the fraction of dominant clusters for each clone and found it to 

be significantly higher (Wilcoxon test, two-sided, unpaired, p-value = 1.49e-15) than that 

for randomly selected cells. The analysis plotted here is for a cluster resolution of 0.5. 

f. Painting of singletons and colonies onto the UMAP demonstrated that singletons and 

colonies belonged to distinct regions and clusters. g. UMAPs of representative twin clones 

(sharing the same barcode) across the two splits A and B. The twins largely end up with 

the same transcriptional fate type, invariant of the clone size. This observation suggests 

that cells are predestined for distinct resistant fate types upon exposure to vemurafenib. 

h. NRAS mutant cell line WM3623 treated with three different doses of trametinib (10 

nM, 20 nM, and 40 nM). Representative brightfield images after 2.5 and 5 weeks of drug 

treatment are shown for each dose. i. (left) UMAP of all barcoded 3623 cell line cells treated 

with Trametinib. 6,397 cells are colored by clusters determined using Seurat’s FindClusters 

command at a resolution of 0.6 (i.e. “Seurat clusters, resolution = 0.6”). (right) On the 

UMAP, we recolored each cell by its expression for a select subset of genes that were 

identified as differentially expressed in drug resistant cells via the Seurat pipeline. j. On 

the UMAP, we recolored each cell by its expression for a select subset of genes that 

were identified as differentially expressed in drug resistant cells via the Seurat pipeline. 

k. Five representative examples demonstrate that a clone (cells sharing the same barcode) 

is constrained largely in a specific transcriptional cluster such that cells within a clone 

are more transcriptionally similar to each other than cells in other clones. l. UMAPs of 

representative twin clones (sharing the same barcode) across the two splits A (6,397 cells) 

and B (7,538 cells). The twins largely end up with the same transcriptional fate type. 

This observation suggests that drug resistant cells are derived from the same clones having 

similar transcriptional states and are constrained in the gene expression space. One of the 

clones appears to be a dominant clone and gives rise to a large fraction of sequenced cells.

Goyal et al. Page 37

Nature. Author manuscript; available in PMC 2023 November 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Extended Data Fig. 5 ∣. FateMap on an NRAS mutant melanoma cell line reveals between-clone 
fate type diversity.
a. NRAS mutant cell line WM3451 treated with three different doses of trametinib (20 

nM, 40 nM, and 50 nM). Representative brightfield images after 2.5 and 5 weeks of drug 

treatment are shown for each dose. b. (left) UMAP of all barcoded 3451 cells treated 

with Trametinib. 5,789 cells are colored by clusters determined using Seurat’s FindClusters 

command at a resolution of 0.6 (i.e. “Seurat clusters, resolution = 0.6”). (right) On the 

UMAP, we recolored each cell by its expression for a select subset of genes that were 

identified as differentially expressed in drug resistant cells via the Seurat pipeline. c. 

Five representative examples demonstrate that a clone (cells sharing the same barcode) 

is constrained largely in a specific transcriptional cluster such that cells within a clone 

are more transcriptionally similar to each other than cells in other clones. d. Average 

pairwise correlation between cells within a clone was estimated based on the expression 

levels of the top 500 most variable genes. Each point represents the average value for 

Spearman’s correlation coefficient for all possible pairs of cells within a clone. For each 

clone, a paired control was created by randomly sampling an equivalent number of cells 

from the whole population. Higher average correlation coefficient in clones indicates higher 

transcriptional similarity among cells within a clone, as compared to cells that are not 

clones. Wilcoxon signed rank test (paired, two-sided) was used to compare the difference 
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in average correlation coefficient. e. UMAP of all barcoded WM3451 P2G7 cells treated 

with Trametinib. Cells are colored by whether they are a singleton (i.e. clone size = 1). f. 

UMAPs of representative twin clones (sharing the same barcode) across the two splits A 

(5,789 cells) and B (7,473 cells). The twins largely end up with the same transcriptional fate 

type. This observation suggests that drug resistant cells are derived from the same clones 

having similar transcriptional states and are constrained in the gene expression space.

Extended Data Fig. 6 ∣. FateMap on treatment-naive primary human melanocytes reveals 
between-clone diversity.
a. (left) UMAP of all barcoded naive primary melanocyte cells. Cells are colored by 

clusters determined using Seurat’s FindClusters command (“Seurat clusters, resolution = 

0.6”). (right) On the UMAP, we recolored each cell by its expression for a select subset of 

genes that were identified as differentially expressed in drug resistant cells via the Seurat 

pipeline. b. Six representative examples demonstrate that a clone is constrained largely in 

a specific transcriptional cluster such that cells within a clone are more transcriptionally 

similar to each other than cells in other clones. c. Average pairwise correlation between cells 

within a clone was estimated based on the expression levels of the top 500 most variable 

genes. Each point represents the average value for Spearman’s correlation coefficient for 

all possible pairs of cells within a clone. For each clone, a paired control was created 
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by randomly sampling an equivalent number of cells from the whole population. Higher 

average correlation coefficient in clones indicates higher transcriptional similarity among 

cells within a clone, as compared to cells that are not clones. Wilcoxon signed rank test 

(paired, two-sided) was used to compare the difference in average correlation coefficient. d. 

UMAP of all barcoded naive primary melanocyte cells. 2,868 cells are colored by whether 

they are a singleton (i.e. clone size = 1). Cluster 10 is enriched for singletons and displays 

high expression of S100B, a marker identified to be associated with single cell colonies 

by FateMap. e. UMAPs of representative twin clones (sharing the same barcode) across 

the two splits A (2,868 cells) and B (3,333 cells). The twins largely end up with the same 

transcriptional fate type. This observation suggests that primary melanocyte cells derived 

from the same clone have similar transcriptional states and are constrained in the gene 

expression space.

Extended Data Fig. 7 ∣. FateMap on a triple negative breast cancer cell line reveals between-clone 
fate type diversity.
a. Nuclei scans (DAPI-stained) of resistant colonies emerging from treatment of the 

single-cell derived triple negative breast cancer cell line MDA-MB-231-D4 with 1nM 

paclitaxel. b. For the MDA-MB-231-D4 cell line, we traced representative resistant cells 

in Adobe Illustrator and created cartoon schematics based on visual inspection of orientation 
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and density. c. Brightfield images of resistant colonies exhibiting different types of 

morphologies. d. We applied the Uniform Manifold Approximation and Projection (UMAP) 

algorithm within Seurat to the first 50 principal components to visualize differences in 

gene expression. 6,535 cells are colored by clusters determined using Seurat’s FindClusters 

command (“Seurat clusters, resolution = 0.5”). e. We observed silencing of the transcribed 

barcodes in a subset of colonies, as revealed by epifluorescence imaging of the GFP signal. 

The colony on the left is strongly expressing a GFP signal while the colony on the right has 

a very dim GFP signal. f. Cells with assigned barcodes were evenly distributed throughout 

the UMAP with no clear bias for any specific resistant fate types. g. Four examples from 

split A (6,535 cells) demonstrate that a clone is constrained largely in specific UMAP 

regions such that cells within a clone are more transcriptionally similar to each other 

than cells in other clones. h. Four examples from split B (8,745 cells) demonstrate that a 

clone is constrained largely in specific UMAP regions such that cells within a clone are 

more transcriptionally similar to each other than cells in other clones. i. We quantified the 

preference for a specific cluster across all barcode clones (clone size>4). Specifically, we 

calculated the fraction of dominant clusters for each clone and found it to be significantly 

higher (Wilcoxon, unpaired, two-sided) than that for randomly selected cells. The analysis 

plotted here is for a cluster resolution of 0.5. j. We found that our UMAP had superclusters 

defined by cell cycle (S, G1, G2M). Of the 3,720 clonal DEGs, 63 are cell cycle genes. We 

therefore regressed out cell cycle genes and the cell-cycle-genes-regressed data with UMAP. 

k. We quantified the preference for a specific cluster across all barcode clones after cell 

cycle regression (clone size>4). Specifically, we calculated the fraction of dominant clusters 

for each clone and found it to be significantly higher (Wilcoxon, unpaired, two-sided) than 

that for randomly selected cells. The analysis plotted here is for a cluster resolution of 

0.5. l. UMAPs of representative twin clones across the two splits A and B. The twins 

largely end up with the same transcriptional fate type, invariant of the clone size. This 

observation suggests that cells are predestined for distinct resistant fate types upon exposure 

to chemotherapy drug paclitaxel.
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Extended Data Fig. 8 ∣. FateMap reveals differences in clonal fate type outcomes between 
continuous and discontinuous therapy.
a. Schematic of the experimental design where we exposed single-cell-derived WM989 

A6-G3 melanoma cells to continuous and discontinuous doses of targeted therapy drug 

vemurafenib. b. UMAP of all barcoded cells. 17,634 cells are colored by clusters determined 

using Seurat’s FindClusters command (“Seurat clusters, resolution = 0.6”). c. Pellet 

morphology for continuous (7,238 cells) and discontinuous (10,396 cells) treatment cells. 

Cells derived from discontinuous dosage have a larger and darker (more pigmented) pellet. 

This suggests that during discontinuous dosage, melanocytic cells (which are pigmented 

in nature) proliferate. d. On the UMAP, we recolored each cell by its expression for a 

select subset of genes that were identified as differentially expressed in drug resistant 

cells via the Seurat pipeline. e. UMAP of all barcoded cells. Cells are colored by type of 

dosage. f. UMAPs of representative twin clones (sharing the same barcode) that arise during 

discontinuous drug treatment. The twins largely end up with the same transcriptional fate 

type and have varying proliferative capacities. g. In discontinuous dosage, 68% of clones 

having high MLANA expression (log2 Expression > 2, in at least 50% of cells in a given 

clone) are proliferative (i.e. have clone size > 1). In continuous dosage, only 20% of clones 

having high MLANA expression are proliferative. h. (left) Total number of cells analyzed 

consisted of 60.5% discontinuous dosage samples and 39.5% continuous dosage samples. 

Goyal et al. Page 42

Nature. Author manuscript; available in PMC 2023 November 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(right) The number of unique barcodes (i.e. resistant clones) displays a 3.6 fold increase 

in discontinuous dosage sample as compared to the continuous dosage sample. i. UMAPs 

of representative twin clones across the two splits of continuous and discontinuous dosing. 

Some twins end up in the similar transcriptional fate type while others tend to switch fate 

type.

Extended Data Fig. 9 ∣. Changing the therapy type to trametinib eliminates an additional 
resistant fate type present in the vemurafenib treatment.
a. UMAP where the resistant cells are colored by the associated therapy drug type, with 

dark blue representing vemurafenib (9,457 cells) and light blue representing trametinib 

(8,569 cells). Arrows represent UMAP regions that are present only in vemurafenib or 

trametinib. b. UMAP is split by each drug type, with colors representing clusters determined 

using Seurat’s FindClusters command(“Seurat clusters, resolution = 0.5”). Arrows represent 

UMAP regions that are present only in vemurafenib or trametinib. c. Painting of singletons 

and colonies onto the UMAP, colored by the condition, demonstrated that singletons largely 

belong to vemurafenib and are present predominantly in the MLANA-high cluster. Colonies 

are dispersed more across the UMAP with no particular region enriched for either condition 

except for the NGFR-high cluster. d. Imaging of nuclei (DAPI-stained) of resistant colonies 

emerging from treatment of WM989 A6-G3 cells to either vemurafenib or trametinib. The 
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number of singletons in trametinib treated cells appear to be much less than those treated 

with vemurafenib, consistent with the sequencing data from FateMap. e. Quantification of 

the total number of colonies and singletons from each drug type of imaging data across 

biological replicates. This analysis demonstrated that while the total number of colonies are 

similar across the two drug types, there is a relative increase (~2.45-fold; n = 3 biological 

replicates) in the number of singletons in the case of vemurafenib. Error bars represent 

standard error of the mean. f. UMAPs are recolored for each cell by its expression for 

gene MLANA, which is a marker for cluster 3 relatively enriched in vemurafenib (as 

shown with arrows in A and B). g. A pie chart to demonstrate that of all the clones 

(barcodes) present in vemurafenib-treated split in cluster 3, only 4.8% were also present in 

the trametinib-treated split. h. A cumulative density contour plot capturing the types of fate 

switches that the MLANA-high cluster 3 clones from the vemurafenib-treated split adopt in 

the trametinib-treated split. i. Three representative examples of UMAP regions where twins 

from the MLANA-high cluster 3 in the vemurafenib-treated split adopt in the trametinib-

treated split. j. UMAPs are recolored for each cell by its expression for gene NGFR, which 

is a marker for cluster 4 relatively enriched in trametinib (as shown with arrows in A 

and B). k. Composition of clones of different sizes within NGFR-high cluster 4 for both 

trametinib- and vemurafenib-treated splits. l. A pie chart to demonstrate that of all the clones 

(barcodes) present in the trametinib-treated split in cluster 4, 20.7% were also present in the 

vemurafenib-treated split. m. A cumulative density contour plot capturing the types of fate 

switches that the NGFR-high cluster 4 clones from the vemurafenib-treated split adopt in 

the trametinib-treated split. n. Two representative examples of UMAP regions where twins 

from the NGFR-high cluster 4 in trametinib-treated split adopt in the vemurafenib-treated 

split. o. UMAP for combined vemurafenib and trametinib treatment conditions recolored 

for each cell by its expression of the gene VCAM1, which is enriched in cluster 6. p. 

Painting of singletons and colonies onto the UMAP for the NGFR-high cluster 4, colored 

by the condition, showing a relative enrichment of cells from trametinib as compared to 

vemurafenib. This panel also demonstrates that both singletons and colonies occupy cluster 

4 from each of the two conditions. q. We performed antibody stainings for NGFR on 

colonies emerging from treatment of the same number of starting melanoma cells with 

either vemurafenib or trametinib. Consistent with FateMap, we found an increased number 

of NGFR-positive resistant cells in trametinib treated cells as compared to the vemurafenib 

treatment. r. UMAP split by each drug condition (trametinib (8,569 cells) or vemurafenib 

and trametinib (7,023 cells)), with colors representing clusters determined using Seurat’s 

FindClusters command at a resolution of 0.5 (i.e. “Seurat clusters, resolution = 0.5”). s. 

UMAP recolored for combined resistant cells from trametinib (light blue) and vemurafenib 

and trametinib (dark blue). The cells from two conditions are interspersed into each other on 

the UMAP.
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Extended Data Fig. 10 ∣. Inhibition of histone methyltransferase DOT1L results in the emergence 
of additional resistant proliferative clones and a reduction in singletons.
a. For each barcode identified by sequencing, we plotted its abundance in corresponding 

splits A (DMSO control) and B (DOT1L inhibition). Those present in both control and 

DOT1L splits are colored in dark blue, and those present only in either A (control) and B 

(DOT1L) are colored in cyan. Those present in both (dark blue; 171) exhibited a strong 

correlation, suggesting that their ability to survive and become resistant is invariant of drug 

dose. For those present only in either (cyan), we found them to be much more abundant 

in DOT1L (B, 43 barcodes) than DMSO control (A, 7 barcodes), suggesting that new 

barcodes, otherwise unable to survive in the control condition, become drug-resistant in the 

DOT1L inhibited condition. A total of one biological replicate. b. (left) Combined resistant 

cells in the control (9,343 cells) and DOT1L (7,044 cells) conditions obtained from UMAP 

applied to the first 50 principal components. Cells are colored by clusters determined using 

Seurat’s FindClusters command(“Seurat clusters, resolution = 0.8”). (right) UMAP is split 

by each condition. c. UMAP where the resistant cells are colored by the associated condition 

(control vs DOT1L). The arrow represents the UMAP region present predominantly in the 

control region and missing from the DOT1L-associated UMAP region. d. Quantification 

of singletons and colonies showed that while the number of resistant colonies is higher in 

DOT1L, it is accompanied by a reduced number of singletons cells compared to control. e. 

Painting of singletons and colonies onto the UMAP, colored by the condition, demonstrated 

that singletons largely belong to the control condition and are present predominantly in 
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cluster 2 (MLANA-high). Colonies are dispersed more across the UMAP with no particular 

region enriched for either condition. f. Imaging of the nuclei (DAPI-stained) of resistant 

colonies emerging from vemurafenib treatment of WM989 A6-G3 cells, either for control or 

cells lacking DOT1L. g. Quantification of the total number of colonies and singletons from 

each fate type across n = 3 biological replicates demonstrated a relative increase (3.65-fold; 

n = 3 biological replicates) in total colonies and reduction in total singletons in the DOT1L 

and control conditions, respectively. Error bars represent standard error of the mean. h. 

UMAP is recolored for each cell by its expression for the gene MLANA, a marker for 

cluster 2, which is relatively enriched in control (as shown with an arrow). i. A pie chart 

to demonstrate that of all the clones (barcodes) present in the control condition split, only 

3.1% were also present in the DOT1L inhibitor pretreatment split. j. Two representative 

examples of UMAP regions where twins from the MLANA-high cluster in the control 

condition go in the DOT1L condition. A cumulative density contour plot capturing the 

types of fate switches that MLANA-high cluster clones from control adopt in the DOT1L 

inhibitor-pretreated condition. k. A cumulative density contour plot capturing the types of 

fate switches that the MLANA-high cluster 2 clones from the control condition split adopt 

in the DOT1L inhibitor pretreatment split. l. Distribution of cells across clusters for control 

(top) and DOT1L inhibitor-pretreated (bottom) conditions for clone size>2.
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Fig. 1: FateMap reveals that between-clone fate type diversity arises from a single cell upon 
therapy treatment.
a, Schcmatic of single-cell-derived WM989 A6-G3 melanoma cells exposed to the targeted 

therapy drug vemurafenib, which formed resistant colonies in 3–4 weeks. Colonies 

were mixed together and single-cell sequenced. b, Uniform manifold approximation and 

projection (UMAP) applied to the first 50 principal components to visualize gene expression 

differences. The 8,212 cells are coloured by clusters determined using the FindClusters 

command: “Seurat clusters, resolution - 0.6*. n = 1 of 2 biological replicates. c, Cells on 

the UMAP recoloured by the expression of a subset of differentially expressed genes. Genes 

with similar UMAP expression profiles are listed below each panel. ACTA2 is found largely 

in Seurat cluster 8; IFIT2 is found largely in cluster 12; VCAM1 is found largely in cluster 

15; NGFR is found largely in cluster 7; and MLANA is found largely in clusters 0 and 3. 

d, Schematic of FateMap labelling of cells with unique DNA barcodes before vemurafenib 

exposure. WM989 A6-G3 cells were transduced with the FateMap barcode library at a 

multiplicity of infection (MOI) of approximately 0.15. WPRE, woodchuck hepatitis virus 

post-transcriptional regulatory element; EFS, elongation factor 1α short. e, Barcodcd cells 

from d were exposed to vemurafenib for 3–4 weeks and resultant colonies were analysed by 

scRNA-seq and barcode sequencing. f, Testing whether resistant cells sharing a barcode (a 

resistant clone) are more transcriptionally similar to each other than other clones. g, Clones, 
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irrespective of their size, are largely constrained in specific clusters. h, Quantification of 

preference for specific clusters across all clones (clone size > 4; representative clones 

in yellow). Wilcoxon test (unpaired, two sided), P < 2.2 × 10−16. SNN, shared nearest 

neighbour. i, RNA FISH of genes marking resistant types. Consistent with FatcMap, we 

found resistant colonies that were selectively positive for each of the three markers tested, 

and others that were negative for all of these markers.
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Fig. 2: Differences in gene expression between clones correspond to differences in morphology, 
proliferation and invasiveness.
a, Classification of colonies as singletons, small colonies or large colonies. Clusters 

exhibited different proliferative capacities. b, Colony size distributions for each fate type. 

Unpaired, two-sided Mann–Whitney U test; intervals based on P value thresholds. ****P 
< 0.0001, ***P < 0.001, **P < 0.01, *P < 0.05. n = 1 of 2 biological replicates. c, 

Left, schematics based on visual inspection of morphology, orientation and density. Right, 

bright-field images of resistant colonies exhibiting different morphologies. d, Schematic of 

isolation and expansion of vemurafenib-resistant or trametinib-resistant colonies, a subset of 

which were then analysed by bulk RNA sequencing (RNA-seq), categorized for morphology 

and measured for invasiveness. e, Resistant cells were seeded at 3,000 cells per well, allowed 

to form spheroids over 96–120 h and then embedded in a collagen matrix. Red and cyan 

mark the invading and core boundary, respectively. RC, resistant colony. f, Invasiveness of 

resistant colonies emerging from treatment with trametinib was quantified by computing the 

ratio of the area enclosing the red and cyan boundaries as shown in e. Each dot represents 

one spheroid. g, Mapping of morphology onto the FateMap data by comparing genes 

differentially expressed from morphology to resistant colonies. Similarity score on UMAP 

represents the degree of overlap of differentially expressed genes between bulk-sequencing 

data and each cluster. Resistant colony fate type 2 maps predominantly to cluster 7, whereas 
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fate type 3 maps to cluster 15. Singletons, as identified by imaging for the SOX10 gene, map 

to clusters 0 and 3.
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Fig. 3: Resistant fate types emerge following targeted therapy in patients as evidenced by spatial 
transcriptomic profiling.
a, Overview of all 29 punch biopsies from four patients that were sequenced using the 

GeoMx Digital Spatial Profiler (DSP) system for spatial transcriptomics. A total of 93 ROIs 

were selected for sequencing based on visual inspection of DNA (SYTO 13, blue), CD45 

(red) and S100B (green) staining. Two patient samples were coupled with matched pre-

treatment biopsies (marked untreated). b, Dot plots of counts per million (cpm)-transformed 

data for selected markers of resistant fate types as identified from in vitro FateMap. Each 

dot is a single ROI coloured by that region’s qualitative S100B staining level, faceted by 

the punch biopsy of each region. Specific punch biopsies highlighting nearby regions with 

different expression profiles are highlighted for two patients, both before and after treatment.
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Fig. 4: Cells are predestined for distinct resistant fates upon exposure to therapy.
a, Schematic of FateMap twin experimental designs. We transduced WM989 A6-G3 cells 

(MOI ≈ 0.15) with the FateMap barcode library. After 3–4 cell divisions, we sorted the 

barcoded population, split the cells (into A and B), treated each with vemurafenib and 

performed scRNA-seq and barcode sequencing on the colonies (Supplementary Table 11). 

b, Unique barcode abundance is identified by gDNA sequencing in splits A and B. Those 

present in both splits are dark blue (87), and those present in only one (14 each) are cyan. 

n = 1 of 2 biological replicates. c, Top, Venn diagram of the overlap between barcode 

clones present in both splits (dark blue) compared with those present only in either A or 

B (cyan). Bottom, comparison of the observed overlap between the shared barcodes (twins) 

surviving across splits with random survival chance (simulated 1,000 times). d, UMAPs 

of representative twin clones (sharing the same barcode) across the two splits A (8,212 

cells) and B (7,262 cells). The resistant twins largely end up with the same transcriptional 

fate type, invariant of the clone size. e, Large clones superimposed on the UMAP, with 

each colour representing a unique resistant clone, f, Mixing coefficient is used to calculate 

the pairwise transcriptional relatedness of clones (see Methods). Higher mixing coefficient 

corresponds to higher transcriptional relatedness of clones (perfect mixing, 1; no mixing, 

0). Representative example UMAPs are provided. g, Mixing coefficient for twin clones 

across splits A and B is presented with representative examples on the UMAP. h, Box plots 

showing cumulative mixing coefficients between clones within splits A (133) and B (102) 

(grey), non-twin clones across A and B (66) (grey), and twin clones (12) (blue). Unpaired, 

two-sided Wilcoxon test; P value for non-twin compared with twin clones is 4.513 × 10−8.
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Fig. 5: Changing the therapeutic dose results in stereotypic resistant fate type switching and 
altered transcriptional profiles.
a, Left, resistant colonies emerging from treatment of 25,000 WM989 A6-G3 cells with two 

vemurafenib doses (1 μM and 100 nM). Right, total colonies from each dose across n = 3 

biological replicates; error bars represent s.e.m. b, Schematic of FateMap twin experimental 

designs for different vemurafenib doses. We transduced WM989 A6-G3 cells with the 

barcode library. After 3–4 cell divisions, we sorted the barcoded population, divided it 

into splits A and B, treated each with vemurafenib and performed FateMap. We list three 

possible outcomes (cell counts are available in Supplementary Table 11). c, Combined 

low-dose (13,400 cells) and high-dose (9,457 cells) resistant cells obtained from UMAP 

applied to the first 50 principal components. Cells are coloured by clusters determined using 

Seurat’s FindClusters command. d, UMAP with resistant cells coloured by dose. Arrows 

represent regions present at only one of the doses. e, The UMAP in d is split accoring 

to dose, with colours representing clusters determined in c. Arrows represent clusters that 

are present at only one dose. f, UMAPs recoloured according to expression of NGFR and 

MLANA, markers for clusters that are enriched in one of the two doses. g, Left, UMAP 

cluster coloured for cluster 9 (high for NGFR). Right, pie chart showing that 25.3% of the 

NGFR-high clones present in high dose were also detected in the low dose. h, Left and 

centre, representative examples of where twins from the NGFR-high cluster following high 

dose are located following low dose. Fate type switch 1 twins (38 out of 46) had similar fate 

types, as did fate type switch 2 twins (8 out of 46). Right, cumulative density contour plot of 

fate type switches from high dose to low dose.
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