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Integrative multi-omics analysis unveils 
stemness-associated molecular subtypes 
in prostate cancer and pan-cancer: prognostic 
and therapeutic significance
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Jie Hao8* 

Abstract 

Background  Prostate cancer (PCA) is the fifth leading cause of cancer-related deaths worldwide, with limited 
treatment options in the advanced stages. The immunosuppressive tumor microenvironment (TME) of PCA results 
in lower sensitivity to immunotherapy. Although molecular subtyping is expected to offer important clues for preci-
sion treatment of PCA, there is currently a shortage of dependable and effective molecular typing methods available 
for clinical practice. Therefore, we aim to propose a novel stemness-based classification approach to guide personal-
ized clinical treatments, including immunotherapy.

Methods  An integrative multi-omics analysis of PCA was performed to evaluate stemness-level heterogenei-
ties. Unsupervised hierarchical clustering was used to classify PCAs based on stemness signature genes. To make 
stemness-based patient classification more clinically applicable, a stemness subtype predictor was jointly developed 
by using four PCA datasets and 76 machine learning algorithms.

Results  We identified stemness signatures of PCA comprising 18 signaling pathways, by which we classified 
PCA samples into three stemness subtypes via unsupervised hierarchical clustering: low stemness (LS), medium 
stemness (MS), and high stemness (HS) subtypes. HS patients are sensitive to androgen deprivation therapy, taxanes, 
and immunotherapy and have the highest stemness, malignancy, tumor mutation load (TMB) levels, worst prognosis, 
and immunosuppression. LS patients are sensitive to platinum-based chemotherapy but resistant to immunotherapy 
and have the lowest stemness, malignancy, and TMB levels, best prognosis, and the highest immune infiltration. MS 
patients represent an intermediate status of stemness, malignancy, and TMB levels with a moderate prognosis. We 
further demonstrated that these three stemness subtypes are conserved across pan-tumor. Additionally, the 9-gene 
stemness subtype predictor we developed has a comparable capability to 18 signaling pathways to make tumor 
diagnosis and to predict tumor recurrence, metastasis, progression, prognosis, and efficacy of different treatments.
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Introduction
Cancer poses a significant threat to human health and 
imposes a substantial burden on the global public health. 
It is the leading cause of death worldwide [1, 2]. Pros-
tate cancer (PCA) is one of the most common malignant 
tumors in men, and its incidence has increased signifi-
cantly in recent years [3, 4]. Despite progress in its treat-
ment, such as surgery, radiotherapy, and chemotherapy, 
the disease remains a challenge, particularly in cases of 
castrate-resistant prostate cancer [5, 6]. Immunotherapy, 
which has achieved excellent therapeutic effects in vari-
ous tumors, is a revolutionary breakthrough in tumor 
treatment [7, 8]. However, immune checkpoint blockade 
therapy (ICB) has limited efficacy in unselected patients 
with PCA, and only a small subgroup of patients may be 
sensitive to ICB [9]. Therefore, determining patient sub-
types that can benefit from immunotherapy is an urgent 
problem to be solved. Several large-scale clinical trials are 
currently ongoing, such as the phase III clinical trials of 
pembrolizumab (KEYNOTE-991) and nivolumab plus 
docetaxel (Checkmate 7DX), to explore the benefits of 
immunotherapy with/without other conventional treat-
ments for PCA patients [10]. In recent years, numerous 
biomarkers that can affect ICB efficiency have been dis-
covered, such as PD-L1, microsatellite instability, tumor 
mutational burden (TMB), and TCR polymorphism [11]. 
However, they are far from being ideal biomarkers for 
PCA [10].

The molecular subtyping of tumors can be used to 
guide the precision diagnosis and treatment of tumor 
patients. Cellular and molecular characteristics of tumors 
have shown potential in precision therapy of PCA, such 
as cancer-associated fibroblasts (CAFs) and their sig-
nature genes [12, 13]. Serum prostate-specific antigen 
(PSA) is the most important marker for PCA; however, 
it has been criticized for its poor specificity [14]. Exist-
ing molecular subtyping methods for PCA were designed 
for specific clinical applications. For example, the PAM50 
method is used to guide androgen deprivation therapy 
[15]; the Decipher method is used to guide radiotherapy 
and surgical treatment [16]. In addition, existing bio-
markers have limited clinical utility and are not suitable 
for guiding ICB treatment [17–19]. There is still lacking 
subtyping methods for PCA, which can effectively and 
systematically characterize patients from various clinical 
points of view, e.g., diagnosis, prognosis, recurrence risk, 

metastasis risk, progression risk, and efficacies of differ-
ent treatments.

Stemness refers to the self-renewal and differentiation 
potential of cells. In almost all human malignant tumors, 
there is a rare subset of cancer cells with stem-like prop-
erties, called “cancer stem/stem-like cells” (CSCs) [20]. 
CSCs are considered the origin cells of tumors and play 
an important role in the recurrence, metastasis, and 
treatment resistance of many tumors, including PCA 
[21–23]. They also affect the effectiveness of immuno-
therapy [24]. Therefore, stemness based subtyping holds 
potential in personalized management of PCA patients.

In this study, we utilized single-cell RNA-seq (scRNA-
seq), bulk RNA-seq, methylation array, and whole exon 
sequencing datasets to systematically assess stemness 
differences among PCA patients. By integrating scRNA-
seq and bulk RNA-seq, we developed a stemness-based 
subtyping model consisting of 18 stemness related gene-
sets that separated PCA samples into three subtypes with 
distinctive clinical and molecular characteristics, func-
tional annotations, prognoses, and treatment responses, 
especially immunotherapy. Furthermore, a subtype 
predictor including 9 stemness related genes was con-
structed which showed great performance in tumor diag-
nosis, predicting ICB and androgen deprivation therapy 
(ADT) response, metastasis, recurrence, progression, and 
prognosis.

Results
Stemness scores are closely correlated with clinical 
and molecular features
Single‑cell and bulk RNA‑seq analyses show a positive 
correlation between stemness and PCA malignancy
The workflow of this study is depicted in Additional 
file 1: Fig. S1 and Methods S1, and all the datasets used 
in this study are presented in Additional file 1: Table S1. 
Prostate epithelial cells were extracted from five PCA 
scRNA-seq datasets [25–29] (Additional file  1: Fig. S2) 
and the cytoTRACE algorithm [30] was used to calculate 
their stemness levels. Consistently, the results showed 
significantly higher cytoTRACE scores in the malignant 
epithelium than in the para-cancerous or benign pros-
tate epithelium (Fig.  1a, Additional file  1: Figs. S3a–c). 
Moreover, among malignant epithelial cells, high-grade 
PCA (Gleason score [GS] > 7) showed significantly higher 

Conclusions  The three stemness subtypes we identified have the potential to be a powerful tool for clinical tumor 
molecular classification in PCA and pan-cancer, and to guide the selection of immunotherapy or other sensitive treat-
ments for tumor patients.

Keywords  Prostate cancer, Stemness subtype, RNA sequencing, Pan‑cancer, Machine learning, Immunotherapy
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stemness scores than low-grade PCA (GS ≤ 7) (Fig.  1b, 
Additional file 1: Fig. S3d).

In parallel, there are stemness indices calculated by the 
one-class logistic regression (OCLR) algorithm based on 
specific stemness probes, including mRNAsi obtained 
from bulk RNA-seq data and mDNAsi, EREG_mDNAsi, 
and DMPsi obtained from DNA methylation data [31]. 
We computed the stemness indices of 553 patients from 
The Cancer Genome Atlas-Prostate Adenocarcinoma 
(TCGA-PRAD). These results further confirmed the 

findings obtained from the scRNA-seq (Fig.  1c, Addi-
tional file  1: Fig. S3e). Likewise, these results were con-
sistently replicated in six other PCA bulk RNA-seq 
datasets [32–36] (Additional file 1: Fig. S3f ).

Stemness scores are significantly associated with PCA 
clinicopathological and molecular features
We divided the patients into two groups based on their 
stemness indices. Kaplan–Meier (K–M) analysis showed 
that the high stemness indices group had remarkably 

Fig. 1  Correlation of stemness levels with clinical, pathological, and molecular features in patients with prostate cancer (PCA). a t-distributed 
stochastic neighbor embedding (t-SNE) plot of malignant and benign epithelial cells from GSE193337 dataset (medium), along with their 
corresponding stemness scores (cytoTRACE, left), and the comparison of these scores between two groups (right). b t-SNE plot of high and low 
grade PCA cells from GSE141445 dataset (medium), along with their corresponding cytoTRACE scores (left), and the comparison of these scores 
between two groups (right). c Comparison of stemness scores (mRNAsi, mDNAsi) between benign and malignant prostate samples, as well 
as between high (Gleason score [GS] > 7) and low (GS < 7) grade PCA samples from TCGA-PRAD. d Kaplan–Meier (K–M) analysis demonstrated 
a correlation between the mRNAsi scores and the prognosis of PCA patients from TCGA-PRAD. OS overall survival, PFI progression-free interval, DFI 
disease-free interval, DSS disease-specific survival. Dashed line: median survival time. Color range: 95% confidence interval (CI)
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poorer overall survival (OS), progression-free interval 
(PFI), disease-free interval (DFI), and disease-specific 
survival (DSS) (Fig.  1d, Additional file  1: Fig. S3g–i). 
Furthermore, we demonstrated the association between 
stemness and worse prognosis on another six PCA data-
sets [32, 33, 37–40] (Additional file 1: Fig. S3j). Based on 
these results, we conclude that stemness is a risk factor 
for the prognosis of PCA.

Additionally, we found that mRNAsi is closely related 
with serum PSA, androgen receptor (AR), tumor purity, 
pathological T stage (pT), as well as somatic copy num-
ber alterations (SCNAs) and TMB (Additional file 1: Fig. 
S3k, l, Remark A). Furthermore, we observed a negative 
correlation between stemness and immune infiltration 
levels (Additional file 1: Fig. S4, Remark B).

Identification of three PCA subtypes based on stemness 
and their association with prognosis
Development of 18 stemness signatures for subtyping
Since there was a significant correlation between 
stemness scores and PCA prognosis, we postulated that 
certain signatures indicating the tumor’s stemness sta-
tus could be utilized for patient classification. There-
fore, we conducted a joint analysis of five scRNA-seq 
[25–29] (75,350 cells) and seven bulk RNA-seq datasets 
[32–36] (1641 samples) to develop these signatures. The 
development process was illustrated in Additional file 1: 
Fig. S5a. We identified 288 genes from the scRNA-seq 
data that showed a significant positive correlation with 
cytoTRACE scores and were significantly overexpressed 
in both tumors (compared to normal samples) and high-
grade PCAs (compared to low-grade PCAs, Fig. 2a, left). 
Additionally, we identified 220 genes from the bulk RNA-
seq data that exhibited a significant positive correlation 
with mRNAsi and were highly expressed in the tumor 
samples (Fig.  2a, right). After applying union, gene set 
enrichment analysis (GSEA), and univariate COX analy-
sis, we identified 18 gene-sets representing risk factors 
(Additional file 1: Fig. S5b) for subsequent stemness sub-
typing, including 160 genes. Among these 18 gene sets, 7 
were metabolic-related, 8 were cell cycle-related, and the 
other 3 were MYC targets, mTORC1 signaling, and cellu-
lar responses to stimuli, all of which are classic oncogenic 

signaling pathways [41, 42] (Additional file  1: Fig.S5c, 
Additional file 2: Data S1).

Identification of three stemness subtypes
Subsequently, based on the ssGSEA scores of these 18 
signatures, we used unsupervised hierarchical cluster-
ing to classify the 553 samples from TCGA-PRAD into 
three subtypes (Fig.  2b, c, Additional file  1: Fig. S6a). 
We defined the group with the highest scores, which 
contained 56 samples (10.1%), as the “High Stemness” 
(HS) subtype, while the group with the lowest scores, 
consisting of 261 samples (47.2%), was named the “Low 
Stemness” (LS) subtype. The medium score group, 
comprising 236 samples (42.7%), was referred to as the 
“Medium Stemness” (MS) subtype, indicating that they 
were in a transitional state with the potential to transform 
into either a high or low stemness status. To validate our 
classification results, we compared the four aforemen-
tioned stemness indices across the three subtypes. Com-
pared to LS, mRNAsi, mDNAsi, EREG_mDNAsi, DMPsi 
scores, and tumor purity were all significantly higher in 
HS and intermediate in MS (Fig. 2d, Additional file 1: Fig. 
S6b).

Significant differences in prognosis among patients 
with three stemness subtypes of PCA
K–M analysis revealed that HS patients had the worst 
PFI, whereas LS patients had the longest PFI (Fig.  2e, 
p = 0.00015), indicating that HS patients may experience 
disease progression earlier after treatment. However, 
there were no significant differences in OS, DFI, or DSS 
among the three subtypes (Additional file  1: Fig. S6c). 
Univariate COX analysis showed that LS and HS were 
protective factors and risk factors for PFI, respectively 
(Fig.  2f ). Moreover, the multivariate COX analysis fur-
ther demonstrated that LS was an independent protec-
tive factor for PFI (Fig. 2g).

Finally, we further validated the stability and univer-
sality of the stemness classification method by using two 
additional algorithms, non-negative matrix factoriza-
tion (NMF) [43] and CensusClusterPlus [44], along with 
seven independent PCA bulk RNA-seq datasets [32, 33, 
37–40, 45] (Additional file 1: Fig. S6d–u, Remark C).

(See figure on next page.)
Fig. 2  Identification of three PCA stemness subtypes based on stemness signatures. a CircosPlot shows 288 stemness marker genes obtained 
from scRNA-seq data that are significantly positively correlated with cytoTRACE and significantly upregulated in both malignant and high-grade 
PCA cells (left), and 220 stemness marker genes derived from bulk RNA-seq data that are significantly positively correlated with mRNAsi 
and significantly upregulated in PCA samples (right). b Unsupervised hierarchical clustering based on the activity scores of the 18 stemness 
signatures classified PCA patients from TCGA-PRAD into three subtypes: low stemness (LS), medium stemness (MS), and high stemness (HS) 
subtypes. c 3D projection of the principal components obtained through PCA analysis. d Levels and trends of stemness score (mRNAsi) within three 
stemness subtypes. e Three stemness subtypes of TCGA-PRAD exhibits distinct PFI outcomes. f, g Univariate (f) and multivariate (g) Cox regression 
analysis of the three stemness subtypes, and clinical and molecular characteristics. *p < 0.05, **p < 0.01, ***P < 0.001, ****p < 0.0001
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Fig. 2  (See legend on previous page.)
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Three stemness subtypes have distinct clinical features, 
mutational events, and functional annotations
Significant differences in certain clinicopathological features
Next, we compared the demographic and 

clinicopathological characteristics of the three stemness 
subtypes in patients with PCA. We found that LS had the 
highest proportion of para-cancerous samples (Fig. 3a, b; 
LS:MS:HS = 18%:1%:2%, p = 6.6e−11). The proportion of 

Fig. 3  Comparison of clinicopathological and molecular features among three PCA stemness subtypes. a Sankey diagram showing sample flow 
for stemness subtype, sample type, and GS. b Comparison of sample type, grade, pT and pN among the three stemness subtypes. c Comparison 
of patient weight, age at diagnosis, GS, PSA, and AR among three stemness subtypes. d Comparison of TMB, fraction genome altered, amplifications, 
deletions, and exon imbalance scores among three stemness subtypes. e–g Oncoplots showing the top 10 mutated genes in LS (e), MS (f) and HS 
(g). h Stacked histograms showing comparisons of somatic copy number alterations (SCNAs), DNA methylation clustering, TP53 mutations 
and CNAs, and PTEN mutations and CNAs among the three stemness subtypes. *p < 0.05, **p < 0.01, ***P < 0.001, ****p < 0.0001
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high-grade PCAs (GS > 7), pT3 and pT4 PCAs, and lymph 
node metastasis (N1) patients gradually increased in the 
LS, MS, and HS subtypes (Fig.  3a and b). There were 
no significant differences in body weights among the 
three subtypes (Fig. 3c). Compared with LS and MS, HS 
patients were older at diagnosis (Fig. 3c), suggesting that 
PCA patients diagnosed at an older age may have a rela-
tively higher stemness status. Moreover, Gleason score, 
PSA, and androgen receptor were all significantly higher 
in HS patients (Fig. 3c), indicating that HS patients with 
the highest malignancy may benefit more from ADT 
treatment.

Significant differences in mutation events
Genome changes are research hotspots; therefore, we 
performed somatic mutation analysis. TMB, fragment 
genomic alteration (FGA), and amplification were all 
significantly higher in the HS subtype (Fig. 3d), suggest-
ing that the HS subtype may be more likely to respond 
to immunotherapy [46]. The deletion was significantly 
higher in the MS subtype than in the LS subtype (Fig. 3d). 
Exon imbalance scores did not differ between stemness 
subtypes (Fig.  3d). Oncoplot revealed that the HS sub-
type had the highest rate of genomic alterations (Fig. 3e–
g, LS:MS:HS = 66.82%:79.83%:92.73%). Although the top 
mutated genes of the three subtypes are similar, there 
are great differences in their mutation rates (Fig.  3e–g). 
We also observed that TP53 and ABCA13 mutations co-
occurred, as did TTN and HERC2 mutations in the HS 
subgroup (Additional file 1: Fig. S7a). Silencing of TP53, 
a tumor suppressor gene, and inactivation of ABCA13, a 
cholesterol transporter protein, may be possible mecha-
nisms contributing to the highly malignant phenotype 
of HS [47, 48]. In the LS subtype, we found a co-muta-
tion of TTN and FAT3 (Additional file 1: Fig. S7b), while 
SPOP and TP53 mutations were mutually exclusive in 
the MS subtype (Additional file 1: Fig. S7c). The propor-
tion of more SCNAs cluster gradually increased in the 
stemness subtypes (Fig.  3h, LS:MS:HS = 16%:38%:72%, 
p = 2.7e−14), while the high methylation cluster 
decreased successively (Fig.  3h, p = 2.6e−8). We also 
investigated the status of mutations and copy number 
alterations (CNAs) in common biomarkers of PCA. We 

found that the proportion of TP53 mutations and CNAs 
(heterozygously deleted [hetloss] + homozygously deleted 
[homdel]) increased progressively in the three subtypes 
(Fig.  3h, p = 0.06 and 0.0098, respectively). Compared 
with LS, the proportion of PTEN mutations was signifi-
cantly higher in MS and HS (p = 0.03), and the propor-
tion of CNAs increased in these three subtypes (Fig. 3h, 
p = 0.0022). Similarly, both the mutations and CNAs of 
CDKN1B and CNAs of RAD51C, FAM175A, CHD1, 
RB1, FANCC, and SPOPL were significantly higher in 
HS than in LS (Additional file 1: Fig. S7d). However, we 
found no significant differences in the mutations and 
CNAs of BRCA1 and BRCA2 between the three subtypes 
(Additional file 1: Fig. S7d). Understanding the mutation 
landscape of the aforementioned stemness subtypes is 
beneficial for uncovering potential mechanisms underly-
ing tumor development, and provides a basis for discov-
ering potential therapeutic targets and biomarkers.

HS enriches oncogenic signaling pathways
Subsequently, we performed gene set variation analysis 
[49] (GSVA), GSEA [50], and ingenuity pathway analy-
sis (IPA) to investigate the functional annotations, sign-
aling pathways, and underlying mechanisms associated 
with the PCA stemness subtypes. As shown in Additional 
file 1: Fig. S8, the LS subtype mainly enriched nonspecific 
pathways. In contrast, HS exhibited enrichment in cell 
cycle-related signaling pathways [51], but IPA showed 
that the activity of these signaling pathways was sup-
pressed. MS-enriched signaling pathways were similar to 
those of HS, but with slightly lower expression levels. See 
Additional file 1: Remark D for more details.

Three stemness subtypes have different treatment 
sensitivity and TIME patterns
Three stemness subtypes retain sensitivity to specific drugs
Given that the three stemness subtypes have unique 
functional pathways, we used the oncoPredict package 
[52] to predict the sensitivity of the three stemness sub-
types to drugs and quantified sensitivity using half-max-
imal inhibitory concentrations (IC50). For the selection 
of conventional drugs, HS and MS subtypes were more 
sensitive to ADT (bicalutamide, abiraterone) (Fig.  4a, 

(See figure on next page.)
Fig. 4  Comparison of drug sensitivities and TIME patterns among three PCA stem subtypes. a–h Comparisons of sensitivities of three stemness 
subtypes to clinically preferred and recommended drugs. i Differences in TME scores among the three stemness subtypes. j Hypergeometric 
tests reveal an association between stemness subtypes and TIME subtypes. k Boxplots showing comparisons of immunocyte abundance 
among the three stemness subtypes. l Correlation heatmap showing the correlation between stemness indices and expression levels of immune 
checkpoint molecules. m Stacked histogram showing differences in responsiveness of the three PCA stemness subtypes to immune-checkpoint 
blockade (ICB) therapy. Evaluated by TIDE algorithm. n Submap analysis reflects the sensitivity of the three PCA stemness subtypes to an-PD-1, 
anti-PD-L1 and anti-CTLA-4 treatments. *p < 0.05, **p < 0.01, ***P < 0.001, ****p < 0.0001
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Fig. 4  (See legend on previous page.)
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Additional file 1: Fig. S9a); for chemotherapy drugs, HS 
was more sensitive to taxanes (paclitaxel, docetaxel) 
(Fig.  4b, Additional file  1: Fig. S9b), etoposide (Fig.  4c), 
and gemcitabine (Fig. 4d), but resistant to mitoxantrone 
(Fig.  4e) and platinum drugs (Fig.  4f ). In terms of rec-
ommended drug selection, HS demonstrated greater 
sensitivity to epidermal growth factor receptor (EGFR) 
inhibitors such as sunitinib (Fig.  4g), sorafenib, and 
imatinib (Additional file  1: Fig. S9c, d), while showing 
lower sensitivity to cabozantinib, afatinib, and erlotinib 
(Additional file  1: Fig. S9e–g). Additionally, HS showed 
increased sensitivity to poly (ADP-ribose) polymerase 
(PARP) inhibitors, including olaparib and talazoparib 
(Fig. 4h, Additional file 1: Fig. S9h), as well as to BI-2536 
(Fig. S9j), histone deacetylase (HDAC) inhibitors (tacedi-
naline) (Additional file 1: Fig. S9k), and TGF-β receptor 
inhibitors (SB-431542) (Additional file 1: Fig. S9l). Con-
versely, MS exhibited greater sensitivity to anti-EGFR 
(cetuximab) (Additional file 1: Fig. S9m) and LS was more 
responsive to cyclin-dependent kinase (CDK) inhibitors 
(AZD5438) (Additional file 1: Fig. S9n).

Three stemness subtypes have distinct TIME patterns 
and immunotherapy responsiveness
As demonstrated above, the stemness scores exhibited 
an inverse correlation with immune infiltration in PCA 
(Additional file 1: Fig. S4). To further investigate the rela-
tionship between stemness subtypes and their response 
to immunotherapy, we examined the TIME patterns. 
Our results indicated that the LS subtype had the highest 
Stromal, Immune, and ESTIMATE scores compared to 
the MS and HS subtypes (Fig. 4i). This indicated that the 
LS subtype had the most abundant immune infiltration. 
Moreover, we observed a significant association between 
the LS subtype and the High.immu subtype, whereas the 
MS subtype was significantly associated with the Low.
immu subtype (Fig. 4j, Additional file 1: Fig. S9o).

We utilized the CIBERSORT algorithm [53] to assess 
immunocyte infiltration levels in the 553 PCA samples. 
Our findings revealed that CD4T, M1 and M2 mac-
rophages had the highest abundance, while mast and 
plasma cells showed the lowest infiltration in HS (Fig. 4k). 
Moreover, Spearman correlation analysis showed a dra-
matically negative correlation between the stemness indi-
ces and the majority of immune checkpoint molecules 
(Fig. 4l), and most molecules were least expressed in HS 
(Additional file  1: Fig. S9p). These differences in TIME 
patterns and immune checkpoint molecule expression 
could potentially affect the efficacy of immunotherapy. 
Therefore, we applied the TIDE algorithm [54] to esti-
mate the response of the patients to immunotherapy. 
The results showed that the proportion of responders in 
the HS was higher than that in the LS and MS subtypes 

(Fig.  4m, Additional file  1: Fig. S9q, p = 0.08). Addition-
ally, the submap analysis [55] revealed that HS was the 
most sensitive to anti-PD-L1 (Fig. 4n).

Construction and validation of stemness subtype predictor
Construction of stemness subtype predictor
To facilitate the clinical application of our findings, we 
developed a stemness subtype predictor with high sensi-
tivity and specificity, using the process outlined in Addi-
tional file 1: Fig. S10a (see Additional file 1: Methods S1 
for details). We performed weighted gene co-expression 
network analysis (WGCNA) [56] (Fig.  5a, Additional 
file  1: Fig. S10b–g), protein–protein interaction (PPI) 
analysis (Fig. 5b), and Venn diagram plotting in sequence, 
and ultimately obtained 9 most critical stemness marker 
genes (Fig. 5c, Additional file 1: Table S2). We observed 
that these genes were significantly overexpressed in 
tumors (compared to normal, Additional file 1: Fig. S10h) 
and high-grade PCAs (compared to low-grade, Addi-
tional file 1: Fig. S10i).

We conducted a literature review on the research sta-
tus of genes in PCA. CDK1 [57], KIF4A [58], TPX2 [59], 
BUB1 [60], and TOP2A [61] have been reported to pro-
mote PCA progression. However, there is a lack of evi-
dence regarding the roles of SKA3, DLGAP5, NCAPG, 
and HMMR in PCAs. We collected 60 PCA samples and 
performed immunohistochemistry (IHC) to verify the 
expression of these four proteins. Our findings showed 
that their expression gradually increased in benign pros-
tate tissues, and in low-grade and high-grade PCAs 
(Fig. 5d).

Predictor can effectively distinguish stemness subtypes
Consistently, 100 MLs and unsupervised hierarchical 
clustering based on the 9-gene stemness subtype predic-
tor showed that our predictor is highly effective in accu-
rately distinguishing the stemness subtypes and can be 
used as an alternative clinically practical marker panel 
instead of the 18 stemness signatures (Additional file  1: 
Fig. S11a–d, Remark E).

Stemness subtype predictor has excellent performance 
in predicting malignancy, recurrence, progression, 
metastasis, and treatment response
Subsequently, we investigated the performance of our 
predictor in distinguishing malignancy and predict-
ing tumor recurrence, progression, metastasis, and 
ADT efficacy. In TCGA-PRAD, GSE21034 [32], and 
GSE70770 [38] datasets, the average area under the 
receiver operating characteristic curves (AUCs) of 
the top 10 MLs for identifying benign and malignant 
tumors were 89.8%, 89.5%, and 89.4%, respectively 
(Additional file 1: Fig. S11e). For the prediction of ADT 
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Fig. 5  Construction and validation of stemness subtype predictor. a Correlation analysis between module eigengenes and stemness subtypes 
of TCGA-PRAD (left). The highest correlation between GS and MM in the pink module. Dots within the pink rectangle were defined as HS hub genes 
(right). b Protein–protein interaction (PPI) network of the 40 genes of Core.Sig, and these proteins were divided into three clusters based on the MCL 
inflation parameter. c Venn diagram identified the nine most critical stemness subtype marker genes that were intersected by 4 datasets and 76 
machine learning algorithms (MLs). d Immunohistochemistry (IHC) staining shows the protein levels of four critical stemness subtype marker 
genes (SKA3, DLGAP5, NCAPG, HMMR) in benign, low-grade, and high grade PCA samples. Representative images are shown. e Histogram shows 
the performances of the 9-gene predictor in distinguishing benign from malignant tumors and predicting androgen deprivation therapy (ADT) 
response, metastasis, biochemical recurrence and progression via 100 MLs. The top 10 MLs with the best performance are exhibited. f K–M analysis 
shows the effect of 9-gene-based stemness-related risk score (SRS) on PFI of PCA patients from TCGA-PRAD. g Multivariate COX analysis showed 
that SRS was the most important independent risk factor for PCA patients
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response, the top 10 MLs had mean AUCs of 88.6%, 
80.5%, and 76.5% in GSE6811 [62], GSE28680 [63], and 
Alumkal_2020 [64], respectively (Fig.  5e, Additional 
file  1: Fig. S11f ). For the prediction of biochemical 
recurrence, the mean AUCs of the top 10 MLs in pros-
tate_dkfz_2018 [37], GSE70770 [38], and GSE21034 
[32] were 78.9%, 74%, and 72.8%, respectively (Fig. 5e, 
Additional file  1: Fig. S11f ). In predicting metastasis, 
the mean AUCs were 89.4% in GSE21034 [32], 74.3% in 
GSE116918 [65] (Fig. 5e), and 66.3% in GSE46691 [66] 
(Additional file 1: Fig. S11f ). The average AUC for the 
prediction of progression was 65.8% (Fig. 5e). Detailed 
data of the above results can be found in Additional 
file 2: Data S2.

Stemness subtype predictor can serve as a prognostic risk 
model
We calculated stemness-related risk scores (SRS) for each 
patient based on the above nine genes. Samples were 
then categorized into high and low SRS groups, and K–M 
analysis showed that the high SRS group had significantly 
worse PFI, OS and DFI than the low SRS group (Fig. 5f, 
Additional file  1: Fig. S11g–i). Univariate COX analysis 
revealed that SRS, Gleason score, pT, pN, and purity were 
the risk factors for PFI (Additional file  1: Figure S11j). 
Multivariate COX analysis further confirmed that SRS 
was the most significant independent prognostic indica-
tor of PCA (Fig.  5g, HR = 2.04, p = 0.005). Furthermore, 
receiver operating characteristic (ROC) analysis demon-
strated that SRS can serve as an effective clinical prog-
nostic biomarker (Additional file  1: Fig. S11k–o). The 
K–M analysis based on another six independent PCA 
datasets [32, 37, 39, 67–69] further validated the above 
results (Additional file 1: Fig. S11p–u, Remark E).

Conserved stemness subtypes in pan‑tumors
Three stemness subtypes with significantly different 
prognoses are prevalent in pan‑tumors
To determine whether our stemness subtypes were con-
served in pan-tumors, we downloaded four pan-tumor 
datasets: TcgaTargetGtex, PCAWG, ICGC, and GSE2109. 
Using the 18 stemness signatures, we consistently classi-
fied the datasets into three stemness subtypes, each with 
significantly different prognoses (Additional file  1: Fig. 
S12a–h). This suggests that stemness subtypes have a 
general commonality in pan-tumors.

Furthermore, we confirmed that the stemness sub-
type predictor can effectively distinguish pan-tumor 
stemness subtypes, and SRS can predict the clinical prog-
nosis of pan-tumor patients (Additional file 1: Fig. S12i–
s, Remark F; Additional file 2: Data S2).

HS patients are more inclined to benefit from immunotherapy
Here, we investigated the correlation between stemness 
subtypes and ICB responsiveness in pan-tumors. We 
collected RNA-seq data from 2641 pretreatment sam-
ples from patients across 36 datasets and 12 tumor 
types who received ICB therapy [70–102]. Figure  6a 
clearly showed that these samples could be classified 
into three subtypes based on 18 stemness signatures. 
Hypergeometric test showed that stemness subtypes 
were significantly correlated with ICB responsiveness 
(Fig.  6b). The response rate increased progressively 
across the three subtypes (Fig.  6c). These results were 
further corroborated by K–M analysis, submap analy-
sis [55], and separate clustering analysis of each cancer 
type (sample size > 50) (Additional file  1: Fig. S13a–g, 
Remark G).

Subsequently, univariate logistic regression analysis 
was performed based on the RNA-seq data of pre-ICB 
treatment samples to evaluate the effect of the three 
stemness subtypes on immunotherapy outcomes. Our 
findings revealed LS as a risk factor and HS as a promot-
ing factor for response (Fig.  6d). Similar observations 
were also made in separate analyses of bladder cancer 
(BLCA), breast cancer (BRCA), non-small cell lung can-
cer (NSCLC), melanoma (SKCM), and head and neck 
squamous cell carcinoma (HNSCC) (Additional file  1: 
Fig. S13h). Nonetheless, the stemness subtypes did not 
significantly affect immunotherapy in clear cell renal cell 
carcinoma (ccRCC) (Additional file  1: Fig. S13h). We 
further compared the stemness subtypes with other ICB 
predictive biomarkers using the IMvigor210 dataset. The 
results showed that the stemness subtype was an effective 
predictor of ICB responsiveness (Additional file  1: Fig. 
S13i–l, Remark G).

Next, we attempted to further explore the effect of 
immunotherapy on stemness. We collected bulk RNA-
seq data of paired samples from the same patients before 
and on/post ICB treatment [80, 82, 86, 93, 96, 98–100, 
102]. Using hierarchical clustering to distinguish these 
samples into three subtypes (Additional file  1: Fig. 
S14a), we found that the proportion of HS decreased 
significantly after ICB therapy, while the proportion of 
LS increased significantly (Additional file  1: Fig. S14b). 
Further distinguishing between responders and non-
responders, we found that most of the HS patients who 
responded to ICB treatment shifted to LS after ICB 
treatment (Fig.  6e, Additional file  1: Fig. S14c), while 
most of the HS patients who were resistant remained 
unchanged after treatment (Fig. 6f, Additional file 1: Fig. 
S14d). These observations were consistent across analy-
ses of HNSCC, esophageal adenocarcinoma (EAC), and 
SKCM (Additional file 1: Fig. S14e–g). We also validated 
our findings using a single-cell dataset of HNSCC, which 
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demonstrated a significant decrease in cytoTRACE 
scores following ICB treatment (Fig. 6g).

Discussion
We applied single-cell and bulk RNA/DNA-seq tech-
nologies to evaluate the stemness status of patients based 
on stemness signatures. This allowed us to subtype the 
patients into three stemness subtypes. Specifically, HS 

patients are sensitive to androgen deprivation ther-
apy, taxanes, and immunotherapy and have the high-
est stemness, malignancy, TMB levels, worst prognosis, 
and immunosuppression. LS patients are sensitive to 
platinum-based chemotherapy but resistant to immuno-
therapy and have the lowest stemness, malignancy, and 
TMB levels, best prognosis, and the highest immune 
infiltration. MS patients represent an intermediate status 

Fig. 6  Interactions between stemness subtypes and ICB treatment in pan-tumors. a Unsupervised hierarchical clustering based on the stemness 
activity scores of the 18 stemness signatures clustered the baseline pan-tumor patients treated with ICB into three subtypes. b Hypergeometric 
test collaborates an association between stemness subtypes of ICB pan-tumors and responsiveness of ICB therapy. c Stacked histogram showing 
differences in responsiveness of the three pan-tumor stemness subtypes to ICB. d Univariate logistic regression shows the effect of the three 
stemness subtypes on ICB efficacy. e, f Sankey diagram showing sample flow for pre-treatment and on/post-treatment of ICB. Separate 
presentation for responders (e) and non-responders (f). g t-SNE plot of pre-treatment and post-treatment tumor cells of head and neck squamous 
cell carcinoma (HNSCC, medium), along with their corresponding cytoTRACE scores (left), and the comparison of these scores between two groups 
(right)
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of stemness, malignancy, and TMB levels with a moder-
ate prognosis. Our 9-gene stemness subtype predictor 
demonstrated high sensitivity and specificity, and could 
be easily used to identify stemness subtypes of patients 
through real-time quantitative PCR or IHC. This simple 
procedure provides a powerful tool for clinical tumor 
typing and treatment selection.

PCSCs have been shown to play a significant role in 
the occurrence, development, treatment resistance, and 
recurrence of PCA [21]. In our study, the HS subgroup 
exhibited a significantly worse prognosis (Fig.  2e), sig-
nificantly higher Gleason score, and expressed the high-
est level of serum PSA (Fig.  3c), indicating the highest 
malignancy in HS patients. It is essential to study the 
signaling pathways and functional annotations associated 
with PCSCs to understand the molecular mechanisms 
of carcinogenesis and to identify potential drug targets. 
Several signaling pathways are closely related to the regu-
lation of PCSCs, such as the PI3K/AKT/mTOR pathway 
and the Wnt/β-catenin pathway [103, 104]. Studies have 
shown that PCSCs have a relatively slow proliferation 
rate compared to ordinary PCA cells and exist in a qui-
escent status [105, 106]. GSVA and GSEA revealed that 
cell cycle-related signaling pathways, including cell cycle 
checkpoints, were enriched in HS (Additional file 1: Fig. 
S8a, b). However, IPA showed that the cell growth, prolif-
eration, and development of HS were significantly inhib-
ited (Additional file 1: Fig. S8e). These results suggested 
that while the signaling pathways and molecules related 
to the cell cycle are upregulated in HS, their proliferative 
activity is suppressed or static. This phenomenon may be 
attributed to the self-renewal and multidirectional dif-
ferentiation ability of PCSCs, such as negative feedback 
regulation after excessive proliferation (enrichment of 
cell cycle checkpoints) and activation disorders of cell 
cycle-related proteins [106–109].

The PCA treatment continues to be a major research 
focus. Radical prostatectomy and radiation therapy, 
with or without ADT, are the standard treatments for 
localized PCA. ADT remains the primary treatment for 
advanced disease [10, 110]. Although many treatments 
initially eradicate cancer cells, cancer often recurs 
owing to the presence of resistant PCSCs [111]. There-
fore, targeting CSCs is critical for preventing tumor 
recurrence. The significance of molecular subtyping in 
tumors lies in its ability to help doctors better under-
stand the biological characteristics, molecular mecha-
nisms, development trends, and treatment responses 
of tumors, and to provide personalized treatment plans 
for patients. Existing molecular subtyping methods for 
PCA include the PAM50 method [18], which is used 
to guide ADT, and the Decipher method [19], which is 
used to guide radiotherapy and surgical treatment. By 

contrast, our stemness subtyping method can be used 
to guide various treatments. We found that different 
stemness subtypes exhibited different sensitivities to 
drugs. HS was more sensitive to ADT (bicalutamide), 
PARP inhibitors (olaparib), EGFR inhibitors (sunitinib 
and sorafenib), immunotherapy, and chemotherapeutic 
drugs such as docetaxel, etoposide, and gemcitabine. 
In contrast, LS was more sensitive to platinum drugs, 
erlotinib, and CDK inhibitors (AZD5438) (Fig. 4, Addi-
tional file  1: Fig. S9). Previously, the effectiveness of 
immunotherapy for PCA has been limited. However, 
with the development of immunology and cutting-edge 
molecular diagnostic tools, immunotherapy is expected 
to become a viable treatment option for PCA [112]. 
Unlike tumors, such as melanoma, bladder cancer, 
and NSCLC, which are highly responsive to immuno-
therapy and characterized by infiltrating lymphocyte 
proliferation, PCA is considered a “cold” tumor with an 
immunosuppressive TME [9, 112]. Although the effec-
tiveness of ICB monotherapy for PCA is limited, com-
bined strategies with other standard treatments (ADT, 
chemotherapy, PARP inhibitors, radium-223, and tyros-
ine kinase inhibitors) have shown some positive effects 
[9]. Overall, these findings underscore the importance 
of molecular subtyping for guiding cancer treatment. 
By tailoring therapies to the specific molecular char-
acteristics of tumors, doctors can improve treatment 
outcomes and help patients achieve the best possible 
outcomes.

The significance of pan-cancer research lies in the 
application of diagnosis and treatment to more tumors 
through cross-tumor similarities [113]. We validated 
the conserved characteristics of the three subtypes in 
pan-tumors and their responsiveness to immunotherapy 
using 28,381 pan-tumor samples and 2641 ICB pretreat-
ment samples. This indicates that our findings have impli-
cations beyond PCA, and can potentially benefit a wider 
range of patients. Furthermore, developing a predictive 
model using multiple MLs and datasets can enhance the 
model’s generalization ability and prevent overfitting or 
underfitting issues, which is an effective way to improve 
the accuracy and robustness of the predictors. We jointly 
developed a 9-gene stemness subtype predictor with high 
sensitivity, specificity, and excellent generalization ability 
using four datasets and 76 machine learning algorithms. 
Significantly, this predictor can be further developed into 
a kit for clinical application. We believe that this predic-
tor has great potential for clinical application, as it offers 
rapid and reliable molecular diagnosis and prognosis for 
patients with PCA and guides personalized treatment 
decisions. Moreover, this predictor can facilitate the 
enrollment of PCA patients into clinical trials for immu-
notherapy or other targeted therapies based on their 
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stemness subtype, and it may also be applicable to other 
cancer types with the same stemness subtypes as PCA.

Although this study yielded valuable insights, it is 
important to acknowledge some of its limitations. First, 
the sample size for our real-world validation was only 60, 
and we did not include any pan-cancer samples. Expand-
ing the sample size and including pan-cancer samples 
for verification in future studies are essential. Second, 
there is a lack of RNA-seq data of PCA treated with ICB. 
Although the pan-tumor ICB treatment cohort vali-
dated the relationship between stemness subtypes and 
immunotherapy responsiveness, further validation is still 
needed for PCA immunotherapy datasets.

Conclusions
In conclusion, tumor molecular typing is of great sig-
nificance for understanding how cancer develops and 
progresses, as well as for guiding clinical treatment and 
the development of new anticancer drugs. By categoriz-
ing PCA patients into three stemness subtypes, we can 
systematically characterize patients from various points 
of view, e.g., stemness, prognosis, clinical pathological 
features, mutation patterns, malignancy degree, immune 
infiltration levels, and efficiencies of different treatments, 
including immunotherapy. This classification method 
is also applicable to pan-tumor analyses. Furthermore, 
the 9-gene stemness subtype predictor we developed is 
expected to be a clinically useful tool for precision oncol-
ogy. Significantly, our method provides a pipeline for the 
development of cancer classification that can be applied 
to various tumors based on different research hotspots.

Methods
Patients and datasets collection
Five PCA scRNA-seq datasets [25–29], 20 PCA bulk 
RNA-seq datasets [32–40, 45, 62–69], four bulk-RNA-
seq datasets of pan-tumors, one ICB-treated bulk RNA-
seq cohort of pan-tumors (consisting of 36 independent 
datasets) [70–102], a pluripotent stem cell (PSC) expres-
sion matrix, and DNA methylation, somatic mutation, 
and copy number alteration data from TCGA-PRAD 
were used in this study. The database used in our study 
included the MSigDB [114] (v2023.1.Hs, http://​www.​
gsea-​msigdb.​org/​gsea/​index.​jsp), and STRING [115] 
(v11.5, https://​cn.​string-​db.​org/). See Additional file  1: 
Methods S1 and Table S1 for more details.

Human samples
After obtaining patient consent and approval from the 
institutional research ethics committee, we collected 
paraffin-embedded tissue sections of prostate cancer and 
benign prostatic hyperplasia (BPH) from the Pathology 
Department of the Shanghai Sixth People’s Hospital.

Stemness analysis
The cytoTRACE (v0.3.3) package [30] was used to cal-
culate cytoTRACE scores for stemness evaluation in 
single-cell RNA-seq data. The OCLR machine learning 
algorithm [31] quantified stemness levels using mRNAsi, 
mDNAsi, EREG_mDNAsi, and DMPsi scores in bulk 
RNA-seq data. Higher scores indicate greater stemness 
levels. In K–M analysis, the surv_cutpoint function in the 
Survminer (v0.4.9) package calculated the optimal cut-
off point to divide patients into high and low stemness 
groups. See Additional file  1: Methods S1 for further 
details.

Clustering analysis
Unsupervised hierarchical clustering was used for clus-
tering analysis based on stemness signatures, imple-
mented using the hclust function. Consensus clustering 
and NMF were employed using the ConsensusCluster-
Plus [44] (v1.58.0) and NMF [43] (v0.24.0) packages. The 
optimal number of clusters was determined using the 
consensus heatmap, cumulative distribution function 
(CDF) curves, and the proportion of ambiguous cluster-
ing algorithm (PAC) [116] (Additional file  1: Fig. S6a). 
See Additional file 1: Methods S1 for further details.

Survival analysis
Survival analysis was conducted using the Survival 
(v3.4.0) and Survminer (v0.4.9) packages. The Kaplan–
Meier method plotted the survival curve, and the log-
rank test compared survival differences between groups. 
The Cox proportional hazards model investigated covari-
ate effects on survival time, calculating the risk ratio and 
confidence interval.

Additionally, the timeROC package (v0.4) was used 
to estimate the time-dependent ROC curve and AUC, 
which allowed us to evaluate the prognostic ability of 
SRS.

Identification of stemness marker genes and developing 
of signatures for stemness classifications
The identification process is illustrated in Additional 
file  1: Fig. S5a. We utilized scRNA-seq data to identify 
stemness marker genes in malignant and high-grade 
PCA epithelial cells, and used bulk RNA-seq and DNA 
methylation data to identify stemness marker genes in 
malignant PCA samples. Our approach involved ana-
lyzing multiple datasets, performing Spearman correla-
tion analysis and DE analysis, and selecting genes that 
were positively correlated with stemness scores and were 
upregulated in malignant and high-grade PCA. We then 
analyzed gene sets on MSigDB [114] with the stemness 
marker genes obtained and identified significant risk 
signaling pathways using univariate COX analysis for 

http://www.gsea-msigdb.org/gsea/index.jsp
http://www.gsea-msigdb.org/gsea/index.jsp
https://cn.string-db.org/
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subsequent stemness classification. See Additional file 1: 
Methods S1 for further details.

Immunohistochemistry (IHC)
Paraffin sections underwent dewaxing, antigen retrieval, 
and serum blocking. They were incubated with primary 
antibodies overnight at 4  °C, secondary antibodies and 
SABC for 30  min at 37  °C. Sections were stained with 
DAB and counterstained with hematoxylin. The primary 
antibodies used were the NCAPG Polyclonal antibody 
(24563-1-AP, Proteintech, Wuhan, China), HMMR-
specific polyclonal antibody (15820-1-AP, Proteintech, 
Wuhan, China), HURP polyclonal antibody (12038-1-AP, 
Abcam, Proteintech, Wuhan, China), and SKA3 antibody 
(SC-390326, Santa, California, USA).

Statistical analysis
Numerical variables were compared using t-tests or 
ANOVA, categorical variables using χ2, Fisher’s exact or 
Kruskal–Wallis tests. Non-normally distributed variables 
were compared using non-parametric tests. Correlations 
were evaluated using Pearson or Spearman tests. Survival 
differences were compared using the log-rank test. Con-
fidence intervals (CIs) were reported as 95% and signifi-
cance was set at P < 0.05. Analyses were performed using 
R (v4.2.1), Python (v3.10), and Origin 2022 software.

More methods and details can be seen in Additional 
file 1: Methods S1.
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