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ABSTRACT: Recent progress in engineering highly promising
biocatalysts has increasingly involved machine learning methods.
These methods leverage existing experimental and simulation data
to aid in the discovery and annotation of promising enzymes, as
well as in suggesting beneficial mutations for improving known
targets. The field of machine learning for protein engineering is
gathering steam, driven by recent success stories and notable
progress in other areas. It already encompasses ambitious tasks
such as understanding and predicting protein structure and
function, catalytic efficiency, enantioselectivity, protein dynamics,
stability, solubility, aggregation, and more. Nonetheless, the field is
still evolving, with many challenges to overcome and questions to
address. In this Perspective, we provide an overview of ongoing trends in this domain, highlight recent case studies, and examine the
current limitations of machine learning-based methods. We emphasize the crucial importance of thorough experimental validation of
emerging models before their use for rational protein design. We present our opinions on the fundamental problems and outline the
potential directions for future research.
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1. INTRODUCTION
Biocatalysis is a promising field that offers diverse possibilities
for creating sustainable and environmentally friendly solutions
in various industries. Its potential stems from its ability to
mimic and harness the power of nature using cells and
enzymes that have evolved over millions of years to perform
specific chemical reactions with high efficiency. This makes it
possible to transform chemical compounds selectively and
efficiently, providing an alternative to traditional chemical
catalysis, which often requires harsh conditions and toxic
chemicals.1 Biocatalysts could therefore be valuable in the
production of fine chemicals, pharmaceuticals, and food
ingredients as well as in the development of sustainable
processes for the production of energy and materials.2 In
addition, biocatalysis is an exciting area of research and
development with great promise for the future because of the
potential to unlock new solutions for diverse challenges by
providing green alternatives to traditional chemical processes,
new energy sources, and tools for improving the overall
efficiency of industrial processes or biological removal of
recalcitrant waste.3−5 It is also a highly interdisciplinary
research area that makes heavy use of advanced experimental
techniques and computational methods.6

Many research fields are undergoing a gradual transition
from near-exclusive reliance on experimental work to hybrid
approaches that incorporate computational simulations and
data-driven methods.7−9 In the past, researchers would

accumulate observations from individual experiments and use
the resulting data to formulate fundamental rules. They then
created simulations based on these rules to better understand
the system under investigation. As computational power has
increased, researchers have been able to shift toward data-
driven methods that rely on machine learning (ML, see the
glossary in Table 1 for terms in bold) algorithms to deduce
rules directly from data.10,11 This transition has made it
possible to efficiently and comprehensively analyze large and
complex data sets that are often generated by high-throughput
technologies. Particularly, very powerful deep learning
algorithms are finding a wide range of applications in life
sciences and will be discussed in great detail in this Perspective.
While experimental science and computational simulations still
play essential roles, the trend toward data-driven methods will
likely continue as technology and data collection methods
evolve further.7

This paradigm shift is illustrated by the exponentially
growing number of scientific articles describing the use of
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machine learning for protein engineering (Figure 1). The trend
toward data-driven methods is expected to continue as

technological advances allow us to accumulate, deposit, and
reuse biological and biochemical data more effectively. This is
being facilitated by initiatives such as the FAIR principles,
which promote the findability, accessibility, interoperability,
and reusability of data, and the European Open Science Cloud,
which is designed to promote best practices in handling data.12

These large-scale initiatives are expected to accelerate the
adoption of data-driven methods by making it easier for
researchers to access, use, and share existing data and ensuring
that these data are of high quality.
This Perspective focuses on the application of machine

learning to protein engineering, which means improving the
properties of biocatalysts by optimizing their sequences and
tertiary structures using molecular biology techniques. Time-
wise, we will primarily cover the period since our previous
review on the same topic, published in 2019.13 As for particular
areas, we will be focusing mainly on the applications regarding
engineering by mutating known proteins rather than designing
proteins de novo. While readers with a particular interest in de
novo design might also find this Perspective helpful, as we
cover many techniques common for various protein design
tasks, for particular details on de novo design, such as deep
generative modeling, we refer to other reviews.14−16 We will
also introduce high-level concepts from machine learning to
familiarize the reader with a broader context and will not cover
in depth technical aspects such as specifics of various neural
network architectures. We refer the readers to several excellent
recent reviews on those topics.10,17−23 We will consider new
methods from a user’s perspective. We find this important
because the methods presented in research papers, while being
exciting and innovative, often have only a limited impact if the
wider community cannot quickly and easily adopt them.
Moreover, we will draw inspiration from other domains, as we
believe that identifying parallels between tasks in different
fields can accelerate the development of more powerful and
practically useful methods. In particular, by examining how
solutions have been developed in other disciplines, we canT
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Figure 1. The trend in the use of machine learning in the literature on
protein engineering. The graph shows the ratio of publications
mentioning “machine learning” and “protein engineering” to all papers
mentioning “protein engineering” in their title, abstract, or keywords,
based on the Scopus database. This trend illustrates the increasing
attention ML is receiving as a generally applicable and useful
technology for protein engineering.
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learn effective ways of making methods and software tools
applicable to a broader range of users.24,25

This paper is organized as follows. Section 2 briefly reviews
the basics of machine learning and underlines the similarities
and differences between data related to proteins and data in
other domains. Section 3 provides a comprehensive review of
machine learning in protein engineering and highlights recent
progress in the field. In section 4, we examine a series of
exciting recent case studies in which machine learning methods
were applied to create new enzyme designs for use in the
laboratory and in practical applications. In section 5, we
identify gaps in the field that remain to be filled. Finally, in
section 6, we investigate what inspiration we can draw from
other disciplines to bring ML-based enzyme design to a new
level.

2. PRINCIPLES OF MACHINE LEARNING
As some of our readers might be unfamiliar with machine
learning (ML), we start with a brief introduction to the topic.
We will cover the basics of ML-based pipelines and vocabulary,
highlight similarities between protein engineering and other
domains from a ML perspective, outline the main traits that
distinguish protein data from other data types regularly used in
ML, and summarize the challenges of performing ML with
protein data.
2.1. Machine Learning Basics. Machine learning is often

seen as a subcategory of artificial intelligence (AI). Its primary
purpose is to learn patterns directly from available data and use
the learned patterns to generate predictions for new data. Its
main difference from other methods for modeling a system’s
behavior, such as quantum mechanical calculations, is that ML
does not rely on hard-coded rules to make predictions. Instead,
ML models are mathematical functions that depend on generic
parameters whose values are obtained (learned) through
optimization using available data and an optimization criterion,
the so-called loss function.

Since the final model is derived from the input data, careful
data collection is vitally important for machine learning. In
particular, any biases, measurement noise, and imbalances
must be recognized and accounted for. Moreover, as ML is
based on mathematical functions, every data point in a data set
typically needs to be represented as a vector of numbers that
are commonly referred to as features. Features may be
obtained by simple encoding of the raw data, e.g., end-to-end
learning and one-hot encoding, but they may also represent
more involved quantities derived from the raw data. For
example, when predicting solubility from a protein sequence,
the features may be simple amino acid counts, propensities of
different residues to form secondary structures, conservation
scores of proteins, or variables representing aggregated
physicochemical properties.26 Choosing informative and
discriminating features that provide relevant information
about the underlying pattern in the data is crucial in ML
because the features are the only data characteristics that the
algorithm will exploit during training and when making
predictions based on future inputs.
Several different categories of ML problems exist. In

supervised learning problems, the goal is to predict a
particular property (known as a label) for each data point
(Figure 2A). For example, if we were seeking to predict protein
solubility, each data point could be labeled “soluble” or
“insoluble” based on experimental results. Data points can have
multiple labels, so a given protein could have the labels
“soluble”, “from a thermophilic organism”, and “globular”.
Labels can form a set of classes or fall within a range of
numerical values, giving rise to two subtypes of supervised
learning problems: classification problems involving labels with
no inherent order (e.g., “soluble” or “insoluble”) and regression
problems involving labels corresponding to numerical values
(e.g., protein yields). In contrast, the goal in unsupervised
learning problems is to identify patterns in unlabeled data.
Unsupervised learning techniques include clustering algorithms
and data compression or projection methods, such as principal

Figure 2. Four main categories of machine learning methods. (a) Supervised learning methods use labels. For example, each protein in a data set
might be labeled “soluble” or “insoluble”, and the model would then aim to find the optimal decision boundary between these two classes in the
feature space. The learned boundary is then used to make predictions about new data for which labels are unavailable. (b) Unsupervised learning
methods typically find patterns, e.g., clusters or groups) in unlabeled data. Examples include clustering enzymes into subfamilies or grouping them
into a dendrogram. (c) Generative models learn the distribution of the training data to generate new instances corresponding to that distribution.
Models of this type include diffusion models, which are trained to denoise synthetically noised inputs. The trained models can then be applied to
random noise on the input to create a sample resembling the training data, e.g., a new protein structure. (d) Self-supervised learning methods
transform an unsupervised problem into a supervised problem, for example, by masking a part of a sequence or structure (red dashed loop) and
then predicting the masked information (red loop). Such proxy tasks enable the model to learn important characteristics of the underlying data and
can lead the model to perform well even on different tasks.
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component analysis (Figure 2B). Semisupervised learning
problems are those where the amount of labeled data is limited
but there is an abundance of unlabeled data available. The
unlabeled data are used to learn a general distribution of the
data, aiding the learning of a supervised model. For example,
all the data can be clustered by an unsupervised algorithm, and
the unlabeled samples can be automatically labeled based on
the labels present in the cluster, leading to the enhancement of
the data set for supervised learning, which can benefit its
performance despite the lower quality of labeling.
The boundary between supervised and unsupervised

machine learning has been blurred by the emergence of
methods that can create labels synthetically. For example, in a
data compression method, the label might be the input itself
and the algorithm may impose constraints (e.g., a bottleneck in
the architecture) that force the model to learn a more compact
way of representing the data and their distribution. The
algorithms that aim to capture the data distribution to generate
new samples belong to a class of ML models called generative
models. The most recent examples of this class include
diffusion models, which have recently been used to generate
protein backbone structures27,28 and predict the binding of a
flexible ligand to a protein29 (Figure 2C). In diffusion models,
synthetic training data are generated by gradually noising true
data (X0) in a stepwise manner to ultimately obtain a
maximally noised sample (XT). The sequences of increasingly
noisy data are then reversed and used to train a model to
denoise each individual step by having the (less noisy) sample
Xt‑1 serve as a “label” for the (more noisy) following sample Xt.
For more details on diffusion generative models and their
applications in bioinformatics, see the recent review.30

Alternatively, we can avoid the need for labels by masking a
part of the input, e.g., a residue in a protein sequence or
structure,31−33 and training a model that will predict the
masked part. In other words, the original data (e.g., the amino
acid that was masked) are treated as the label for the
corresponding data point. Such approaches belong to the
methods of self-supervised learning (Figure 2D) and are
currently attracting considerable attention because of their
great success in large language models; it turns out that this
“self-supervision” approach allows algorithms to learn useful
characteristics of the data, such as grammar and semantics in
the case of natural language models. The following sections
present some applications of self-supervised learning in the
enzymology domain.
In supervised learning, underfitting and overfitting are two

critical concepts that must always be considered. Underfitting
refers to a situation in which either the selected class of models
is insufficient to approximate patterns in the available data, the
regularization is too strong, or the parameters of the training
process such as the duration of the training or the learning
rate were inappropriate. As a result, the model fails to capture
the relationship between the input and output and has a high
training error. Conversely, overfitting happens when a model
has too many degrees of freedom, allowing it to start fitting
noise in the training data during the training process. This
leads to poor generalization and a significant drop in
performance when the model is applied to new inputs. Robust
evaluation of trained models is therefore crucial in machine
learning to obtain feedback on the training process and
develop improved training protocols or model hyperpara-
meters.

The best practice in machine learning is to split the available
data into three disjoint subsets: a training set, a validation set,
and a test set. A model learns the underlying patterns within
the data by fitting its parameters to the training set. The
validation set is provided to the model at certain stages of the
training for basic evaluation, and the results of these
evaluations are used to select the model’s hyperparameters.
Finally, the test set is used to get a realistic estimate of the
model’s performance and is therefore only used once training
has been completed and the final values for the hyper-
parameters have been set. Since the model does not see the
test set during the training process, the model’s performance,
when applied to this “new” data set, should be similar to that
achieved with the test set if the test set accurately represents
the general distribution of the studied data.
The choice of evaluation metric depends on the task at hand.

Classification problems are mainly evaluated based on model
accuracy, i.e., the ratio of correct predictions to the number of
total predictions. Regression problems are typically evaluated
based on the difference between the predicted and ground
truth labels, so popular metrics include measures of the
correlation between these labels as well as the mean squared
error (MSE) and related metrics such as the root-mean-square
error (RMSE). More complex problems often require
customized metrics. For instance, in a protein structure
prediction task, one might use the MSE between the predicted
and actual locations of Cα atoms, which can be expressed
using a fixed coordinate system (global alignment) or in terms
of the local coordinates of each residue (local alignment). Both
metrics indicate how well a predicted structure aligns with the
corresponding actual structure.
2.2. Parallels between Machine Learning Tasks in

Biocatalysis and Those in Other Domains. One of the
strengths of machine learning is its universality, as the
algorithms used for protein engineering tasks are similar to
those used in other domains. Therefore, scientists working
with protein data can reuse and build upon existing solutions
from other fields, such as natural language processing,
computer vision, and network analysis.
Natural language processing (NLP) is a field of computer

science that aims to teach computers how to understand and
handle natural languages. New ML techniques have enabled
great advances in this field in recent years. For instance, a
common task in NLP is to generate semantically and
grammatically correct sentences. In protein engineering, the
strings of amino acids representing primary sequences can be
regarded as words constructed from an alphabet of twenty
letters representing the canonical amino acids. These words
can represent secondary structures or other motifs that can be
combined in meaningful ways to create sentences in the
language of protein structure that correspond to functional
proteins. Another common task in NLP is the assignment of
labels to individual words (e.g., to predict lexical categories or
identify relevant information) or phrases (e.g., for sentiment
analysis). This data structure resembles that of annotated
protein data sets with labels representing protein stability,
binding affinity, specificity, or other characteristics.34 More-
over, the complexities of the relationships between protein
sequence, structure, and function are reminiscent of those in
human languages, prompting researchers to adapt trans-
former-based large language models used in NLP to protein
engineering tasks.35
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Another field of computer science that has benefited greatly
from recent advances in ML is computer vision, and
techniques developed for use in this field have also found
applications in the study of the protein structure. For example,
protein structures can be converted to arrays of voxels (3D
pixels) via the application of a discrete grid. The resulting
representations are similar to those of volumetric 3D images,
enabling the application of ML architectures, such as
convolutional neural networks, that were originally designed
to process image data. These networks learn representations
through convolution and hierarchical aggregation and have
recently been used to predict protein mutation landscapes,31

protein−ligand binding affinity,36 and the interactions of
proteins with water molecules.37 Denoising diffusion proba-
bilistic models are another class of computer vision models
that have been applied in protein structure prediction. They
are trained to denoise existing samples, which allows them to
generate novel samples by morphing random noise. This has
led to major breakthroughs in image generation and the
emergence of the highly successful models, such as DALL-E
238 or Stable Diffusion.39 In protein science, such models have
been used to perform fast protein−ligand binding,29 generate
new small-molecule ligands40 and linkers,41 and perform de
novo design of large proteins.27,28

The parallels between images and protein structures can be
further exploited by adapting techniques developed for video
analysis to predict protein dynamics. For example, a trajectory
generated in a molecular dynamics simulation can be regarded
as a temporal sequence of 3D images. This makes protein
dynamics analysis similar to video processing and implies that
video methods for event detection42 can be applied to
molecular dynamics trajectories to detect events such as the
opening of a tunnel.43 Video processing techniques can thus be
adapted to clarify a protein’s function by analyzing the
movement of individual atoms or groups of atoms within a
protein structure in a manner similar to the movement of
objects or groups of objects in a video. Moreover, there have
been remarkable advances in ML techniques for video
synthesis44−46 that could inspire new methods for capturing
and synthesizing protein dynamics.
Finally, one more domain is relevant to protein engineering:

network analysis, which involves studying the properties and
structures of interconnected elements. Network analysis
techniques have been used successfully to study diverse social
and biological networks, including the development of Covid-
19-related sentiment on social networks47 and protein−protein
interaction networks.48 Interactions between proteins or
between a protein and a ligand can be represented as networks
(graphs) in which nodes correspond to proteins and ligands
while edges correspond to biological relationships between
them. Once such a network has been defined, link prediction
or community detection methods can be applied.49 Alter-
natively, a protein structure can be represented as a network
where nodes correspond to residues or individual atoms and
edges correspond to inter-residue interactions or interatomic
bonds. This makes it possible to use graph-based ML
algorithms for tasks such as predicting protein function,
solubility, or toxicity.50,51 Moreover, data on protein
interactomes and the structures of small molecules have been
used to drive theoretical research on graph-based ML: the best-
established benchmark for graph learning, OGB, includes
multiple biochemical data sets of this type.52

2.3. Challenges of Machine Learning for Protein
Data. As discussed above, there are striking similarities
between protein engineering tasks and other ML domains,
including natural language processing, computer vision, and
network analysis. However, protein data also present unique
challenges related to the representation of proteins, the
construction of labeled data sets, and the establishment of
robust training protocols.
The choice of protein representation is a key step in all

protein-related computational tasks. Proteins can be repre-
sented at different levels of detail, from a discrete and accurate
1D representation of their amino acid sequence to a
continuous and less accurate 3D representation of every
atom position, including or excluding chemical bonds. The
selected representation determines the type and amount of
information available to the computational model and the
range of applicable model architectures.
The go-to representation of a protein sequence is a string

(word) constructed using an alphabet of 20 amino acids
(letters). The length of the string equals the number of
residues, and the nth character encodes the amino acid at the
nth position in the protein sequence. In silico, the amino acids
are typically represented using one-hot encoding. When the
amount of data available for training is not enough for end-to-
end learning, one-hot encoding of sequences can further be
transformed into values corresponding to specific physico-
chemical characteristics of amino acids, e.g., using AA indices.53

These indices provide additional information and interpret-
ability to the pipeline, although they were shown to perform on
par with random vectors for some tasks.54,55 Another strategy
to enrich the protein sequence representation is to include
evolutionary information using a multiple sequence align-
ment (MSA) instead of a single protein sequence. This
evolutionary information is valuable in various tasks, most
notably in structure prediction because the covariance of
different residue positions in the sequence can be related to the
residues’ spatial proximity.56

The options for representing a protein’s structure are more
varied; representations may include all atoms, only selected
chemical elements (e.g., all atoms except hydrogens), or just
key components of residues (e.g., the α-carbons). Moreover,
they may include different types of information about these
atoms and/or residues. Ideally, to enable data-efficient model
training, structural representations should be invariant to
rotation, translation, and reflection. However, straightforward
representations based on the 3D coordinates of the residues
(atoms) lack this property. It is therefore common to represent
protein structure using an inter-residue or interatomic distance
matrix in which each row and column is assigned to a specific
residue (or atom) of the protein and the value of each matrix
entry is equal to the distance between the corresponding
residues (atoms). Such a matrix is necessarily symmetric;
therefore, it is common to take the upper (or lower) triangular
part and convert it into a 1D vector for processing, e.g., by a
neural network. While this representation is rotationally and
translationally invariant, it is also inherently redundant, as its
spatial complexity is quadratic with respect to the number of
residues (atoms).
Graph-based protein representations have recently attracted

considerable attention.57 A graph consists of a set of nodes
linked by a set of edges. The nodes typically represent residues,
atoms, or groups of spatially close atoms, while the edges
usually correspond to chemical bonds, spatial proximity
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(contacts) between the nodes, or both.58 Graph-based protein
representations are very flexible because the definition of the
nodes and edges can be tailored to specific tasks and they can
be made equivariant to rotation, translation, and reflection.59

A convenient definition of the nodes and edges can also
introduce an inductive bias that improves the model
performance. For example, edges corresponding to chemical
bonds can guide a model toward learning chemical knowledge
more rapidly or with less data than would otherwise be needed.
Graph neural network (GNN) architectures have recently
achieved state-of-the-art performance in multiple protein-
related tasks, as exemplified by the DeepFRI60 and HIGH-
PPI61 methods for predicting protein function and protein−
protein interactions, respectively. Special graph-based protein
representations, such as point clouds (no edges) or complete
graphs (a full set of edges), are especially convenient for
processing using powerful transformer models.62,63

A more general approach to protein representation is to
directly learn the representation by a deep learning model, a
direction that is currently on the rise in biology.64 Its aim is to
remove the suboptimality of human-made choices by inferring
the representation parameters from existing data. Furthermore,
it is often possible to learn such a representation through self-
supervised training, i.e., without the need for annotated data.
These representations can be obtained from the sequence data,
e.g., as done by the ESM (“Evolutionary Scale Modeling”)
language models,65−67 as well as from large structural data sets,
e.g., as done by GearNet.68 More and more models combine
both sources of data, e.g., ESM-GearNet.32

Obtaining appropriately labeled data sets can be challenging
when seeking to apply ML in enzyme engineering because
there is often a trade-off between data quality and quantity
when selecting methods for acquiring experimental data. Most
reliable biochemical methods using purpose-built instruments
can only provide data for small numbers of protein variants69

and are thus generally insufficient for representative sampling
of vast mutational spaces. Conversely, high-throughput
methods such as Deep Mutational Scanning (DMS) are
prone to data quality issues69 and face a throughput bottleneck
in the case of enzymes whose screening is considerably slower
than sequencing.70

The process of compiling new data sets from multiple
sources can be complicated by the inconsistency of
conventions in protein research. These inconsistencies include
the differing biases of various experimental tools, the use of
different distributions for data normalization, and inconsistent
definitions of quantities such as stability, solubility, and enzyme
activity. All of these can introduce errors into constructed data
sets, for example, by causing contradictory labels to be applied
to the same protein. Protein data may also contain biases
introduced by the design strategy. For example, alanine tends
to be overrepresented in mutational data due to the widely
used alanine scanning technique.71 It is important to consider
these biases during data set construction and when interpreting
model outputs since the composition of the training set
significantly affects the space of patterns explored by the
model.
A significant amount of protein data has been gathered over

the years. However, much of these data are proprietary and
thus inaccessible to the academic community. In addition,
publicly available data sets are often published in an
unstructured way, which limits their usability. While large
language models such as GPT-3,72 GPT-4,73 or BioGPT74 are

remarkably effective at summarizing text on large scales,
mining relevant data from publications still requires consid-
erable human effort.
Some ML packages, e.g., TorchProtein,75 offer preprocessed

data sets for various protein science tasks, making protein
research more accessible to ML experts from other domains.
Other packages, such as PyPEF76 provide frameworks for the
integration of simpler ML models together with special
encodings derived from the AAindex database of physico-
chemical and biochemical properties of amino acids.53 Despite
this progress, the development of ML models for protein data
requires a certain level of biochemistry domain knowledge to
account for the specifics of protein data absent in other
application areas of ML. These specifics include the evolu-
tionary relationships and structural similarities between
proteins. Models produced without the benefit of such
expertise may lack practical utility due to data handling errors.
One common type of data handling error is data leakage

between data splits. The training, validation, and test sets
should not share the same (or nearly the same) data points
because such overlaps could lead to over estimating the
model’s performance on new data, compromising the model’s
evaluation. In some data sets, all of the data points are distinct
enough that randomly splitting the available data into disjoint
sets is a viable strategy. However, more complex splitting
strategies are often needed when dealing with protein data to
avoid problems such as evolutionary data leakage.77 It may also
be important to consider multiple levels of separation when
dealing with protein data, e.g., consisting of mutations and their
effects. For example, one might want to ensure that the same
substitutions, positions, or proteins do not appear in the
training and test sets. Defining protein similarity is also a
challenging task for which multiple strategies exist. Many of
these strategies involve clustering proteins based on sequence
identity or similarity thresholds and then ensuring that all
members of a given cluster are assigned to the same set when
splitting the data. This strategy is particularly useful for
constructing labeled data sets of protein structures because
such data sets are primarily sourced from large redundant
databases such as PDB78 (see Table S2). However, clustering
in the sequence space can be insufficient in some cases. For
example, distantly related proteins may have very similar active
site geometries even though their sequence homology is low.79

Clustering may thus be performed at the level of the structural
representation instead. While such strategies have only rarely
been used in the past, they may become more common due to
the emergence of new tools for protein structure searching
such as Foldseek.80

3. PROTEIN ENGINEERING TASKS SOLVED BY
MACHINE LEARNING

This section provides a brief overview of the protein
engineering tasks that have already drawn the attention of
machine learning developers. The first of these tasks is
functional annotation, which is important because the
overwhelming majority of sequences in protein databases
remain unannotated and in silico prediction is necessary to
keep pace with the exponentially growing number of deposited
sequences. We will then cover the available labeled data sets
and state-of-the-art ML tools for predicting mutational effects
in proteins, as well as strategies for protein design based on
their predictions. In addition, we will review published
methods for leveraging unlabeled protein sequence and
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structure data sets to help guide protein engineering. Finally,
we conclude with examples showing how ML models of
protein dynamics can facilitate the selection of promising
mutations.
3.1. Functional Annotation of Proteins. Knowledge of

protein functions is fundamental for protein engineering
pipelines. For instance, in protein fitness optimization,
scientists start from a characterized wild-type sequence with
some degree of the desired function.81−83 Likewise, in
biocatalysis, one needs to know the function of enzymes to
assemble a biosynthetic pathway from plausible enzymatic
reactions.84,85

Traditionally, scientists have characterized the functions of
proteins via laborious, time-consuming, and costly wet lab
experiments. However, owing to high-throughput DNA
sequencing, the exponentially growing repertoire of protein
sequences is reaching numbers far beyond the capabilities of
experimental functional annotation; for example, the Big
Fantastic Database (BFD, Table S2) contains 2.5 billion
sequences to date. Functional annotation is particularly
important for enzymes. A broad-level annotation (e.g., enzyme
family) can be achieved relatively easily by sequence homology
and by searching for protein domain motifs, but detailed
annotation of enzyme substrates and products currently
requires experimental characterization. To accelerate this
process, a substantial recent effort has been dedicated to the
development of novel computational methods for functional
annotation.
The developed computational methods heavily rely on data

sets of previously characterized enzymatic functions for
training. For example, information on protein families and
domains is often sourced from the Pfam,86 SUPERFAMILY,87

or CATH88 databases. Enzymatic activity data often come
from databases such as Rhea,89 BRENDA,90 SABIO-RK,91

PathBank,92 ATLAS,93 and MetaNetX.94 The ENZYME
database under the Expasy infrastructure95 provides the
Enzyme Commission (EC) numbers, the most commonly
used nomenclature for enzymatic functions. EC numbers are a
hierarchical classification system categorizing enzymatic
reactions at four levels of detail, with the fourth level being
the most detailed. An EC number groups together proteins
with the same enzymatic activity regardless of the reaction
mechanisms.96 The data from the above-listed databases have
also been post-processed and organized into data sets such as
ECREACT97 or EnzymeMap,98 which should further facilitate
the development of computational models.
The models for enzymatic activity prediction typically use

enzyme amino acid sequences as input, as the goal is to directly
annotate the outputs of high-throughput DNA sequencing.
The incorporation of the structural inputs, facilitated by the
recent breakthroughs in structure prediction,67,99 is still to be
explored more by the community. The outputs of these models
generally fall into three categories based on the resolution of
predictions. First, the most general models predict protein
families and domains. Second, the EC class-predictive models
provide a more detailed estimation of enzymatic activity.
Finally, the most comprehensive picture of enzymatic activity
requires models for predicting an enzyme’s substrates and
corresponding products. Several recent deep learning models
predict protein families and domains.100,101 Although such
models are crucial for studying proteins, they have only a
limited applicability in enzymatic activity prediction, as a single
protein family can combine enzymes catalyzing different

reactions.102 To meet the needs of protein engineering, the
models predicting the EC numbers appear to be more relevant,
as they can capture the catalytic activities.
Over the years, the community attempted to predict EC

numbers using multiple sequence alignment and position-
specific scoring matrices (PSSM) or hidden Markov model
(HMM) profiles,103−105 k-nearest neighbor-based classi-
fiers,104−108 support vector machines (SVM),105,109−112

random forests,113,114 and deep learning.60,115−119 Most
methods approached the prediction of EC numbers as a
classification problem, which led to poor performance on the
under-represented EC categories. The recent deep-learning-
based method119 tackled the EC number prediction via a
contrastive learning approach, training a Siamese neural
network on top of sequence embeddings from a pretrained
protein language model.66 The resulting predictive algorithm,
CLEAN, can better identify enzyme sequences that belong to
any EC category, including underrepresented ones. CLEAN
achieved state-of-the-art performance in EC number prediction
in silico, and it was experimentally validated in vitro using high-
performance liquid chromatography−mass spectrometry
coupled with enzyme kinetic analysis on a set of previously
misannotated halogenase enzyme sequences.
EC class prediction enables downstream applications such as

retrobiosynthesis.85 For instance, planning of biosynthesis has
been tackled by predicting the chemical structure of the
substrate and the required enzyme EC number from the
provided enzymatic product using a transformer-based neural
network.97 Several other published deep learning models
aspired to estimate the substrate of an enzymatic reaction
based on its product.120,121 Such models can be used to
prioritize enzyme selection based on the EC class or the
substrate/product pair. However, the assignment of a specific
enzyme sequence (i.e., not only the EC class) to a desired
reaction remains a challenge for future development.
Recently, the first general models predicting interaction

between individual enzymes and substrates/products were
published.122,123 These DL-based models take pairs of a
protein sequence and a small molecule as inputs and predict
their possible interaction. Unfortunately, none of the general
substrate−enzyme interaction models were validated in wet lab
experiments. Furthermore, in Kroll et al. the authors admit
poor generalization of the model to out-of-sample sub-
strates.123 Moreover, enzyme-family-specific models were
shown to outperform the general models in predicting the
enzyme−substrate interactions.124 To sum up, the practical
applicability of general enzyme−substrate interaction models
has yet to be determined.
3.2. Supervised Learning to Predict the Effects of

Mutations. The ability to predict mutational effects on
various protein properties, such as solubility, stability,
aggregation, function, and enantioselectivity, is another
desirable goal of protein engineering. From the machine
learning perspective, this implies having a model that takes a
reference protein and its variant as the input and predicts the
change in the studied property as the output. Intuitively, this
could be achieved by supervised learning on the labeled data
sets of wild-type proteins first (e.g., to predict a solubility score,
binding energy, or melting temperature of a given protein),
applying the trained model to independently predict labels of
the reference protein and its variant, and then taking the
difference between the two predicted scores. The attractiveness
of this strategy comes from large annotated data sets of wild-
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type proteins available for training. For example, the Protein
Structure Initiative125 generated a massive data set Target-
Track, often used for protein solubility prediction.26 Addition-
ally, the more recent Meltome Atlas of protein stability
obtained by liquid chromatography-tandem mass spectrome-
try126 was used for predicting melting temperatures.127 Our
ongoing effort to predict highly valuable melting temperatures
solely from the protein sequence resulted in the development
of the TmProt software tool (https://loschmidt.chemi.muni.
cz/tmprot/). Large labeled data sets usually provide enough
training data for powerful end-to-end deep learning.34,128,129

Nonetheless, when the training data set does not contain
mutations, a few substitutions will usually result in similar
predicted labels (e.g., solubility scores), in contrast to dramatic
changes often observed in experiments. Therefore, the strategy
of taking the difference between the predicted labels for a
reference protein and its variant typically fails to produce
reliable predictors for mutational effects.130

A more promising route is to use labeled mutational data
sets for training. This strategy has its own limitations, since
such data sets are not only scarce but also sparse in terms of
the extent of the mutational landscape that is probed (the
sequence space grows exponentially with the number of
mutated residues) and biased toward several overrepresented
proteins.13,131 These barriers severely hinder the use of ML,
which relies heavily on the availability of good quality data with
a high coverage of the space of interest. Therefore, additional
data curation and processing, adjustments to training
protocols, and more thorough and critical data evaluations
are typically needed. Such efforts will be a crucial first step in
establishing reliable ML pipelines for predicting mutational
effects.
The most abundant and diverse mutational data come from

general biophysical characterizations that are performed
routinely in most protein engineering studies, including
measurements of protein expressibility, solubility, and stability.
The major challenge when using such data lies in collection
and curation: measurements are scattered across the literature
and often reported ad hoc because they are generally
complementary to a study’s main results.132 This highlights
the importance of establishing and maintaining databases with
protein annotations to facilitate data discoverability and reuse.
For example, we recently released SoluProtMutDB,133 which
currently has almost 33 000 labeled entries concerning
mutational effects on the solubility and expression of over
100 proteins. This database incorporates all of the data points
that were recently used to develop solubility predictors (Table
2), which achieved correct prediction ratios of around 70%.133

Protein stability measurements are another type of widely
available biophysical data that can be used in ML. Protein
stability is typically quantified in terms of the melting
temperature (Tm) or the Gibbs free energy difference between
the folded and unfolded states (ΔΔG). Several protein stability
databases exist, including FireProtDB,158 ThermoMutDB,138

and ProThermDB,135 and their data have often been used to
train ML predictors that have achieved Pearson’s correlations
of up to 0.6 and RMSE values of 1.5 kcal/mol when applied to
independent test sets.159 Interestingly, these numbers have
barely changed over the past decade, indicating that a
qualitative paradigm shift might be needed to advance ML-
based prediction of mutation-induced protein stability
changes.132 It is possible that large new data sets could
provide the necessary boost, and some exciting studies

collecting such data are already appearing: cDNA display
proteolysis was recently used to measure the thermodynamic
stability of around 850 000 single-point and selected double-
point mutants of 354 natural and 188 de novo designed protein
domains between 40 and 72 amino acids in length.140

Changes in catalytic activity upon mutation also attract the
attention of ML researchers. Predicting mutational effects on
enzyme activity is more challenging than predicting protein
stability and solubility due to the enormous diversity of
enzymatic mechanisms. One rich source of such mutational
data is large-scale deep mutational scanning.69 These experi-
ments combine high-throughput screening and sequencing and
typically score protein variants by comparing their abundance
before and after a specific selection is applied. These data sets
provide comprehensive overviews of the local mutational
landscapes of various enzymes and are of significant value for
ML due to their unbiased mutant coverage. Several groups
have already assembled various deep mutational scanning
(DMS) data sets for benchmarking effect predictors,145,160−164

and we expect this trend to continue as more data sets appear.
Notable works of this type include the recently published
activity landscapes of the phosphatase,165 dihydrofolate
reductase,166 DNA polymerase,167 and palmitoylethanolamide
transferase.168

DMS can be applied to a wide range of enzyme functions
due to its high flexibility with respect to selection procedures.
However, its high throughput comes at the cost of limiting the
number of protein targets that can be used in a study; often,
only a single case is examined. The desire to target multiple
enzymes simultaneously motivated the creation of another
notable database of enzyme activity changes: D3DistalMuta-
tion.169 It contains data derived from UniProt annotations
representing over 90 000 mutational effects in 2130 enzymes.
However, its potential in ML has not yet been explored.
Other protein characteristics may also be used as targets for

protein engineering and machine learning. These targets are
often selected based on the enzyme of interest and may include
important functional traits such as substrate specificity,149

enzyme enantioselectivity,170,171 kinetic constants,142−144

temperature sensitivity,172 or temperature optima.147,148 In
addition, several mutational data sets that can be used for ML-
based tools focusing on protein folding rates, binding, and
aggregation have been deposited in the VariBench benchmark
data set.173 Selected recent examples of these tools are listed in
Table 2. An overview of the described databases and data sets
is given in Table S2.
3.3. Approaches to Design Mutations. While tools for

predicting effects of mutations have become increasingly
advanced in recent years, in their simple form, they can only
provide labels for a given substitution. However, the desired
outcome of protein engineering pipelines is to have a list of
promising protein variants for experimental validation. There-
fore, even if a reliable ML-based tool for predicting effects of
substitutions is available, the problem of suggesting promising
hypothetical designs must be addressed. This problem may
become a major bottleneck, since even if the prediction of
single- or multiple-point mutational effects is fast, evaluating all
possible combinations of mutations remains unfeasible.
Therefore, there is a growing need for tools that simulta-
neously predict the effects of mutations and reduce the search
space, which is the focus of this subsection.
A major challenge in the development of such tools is

finding ways to efficiently reduce the space of multipoint
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mutants. In an analysis of nine case studies, Milton and
coauthors found that the effects of half of the multipoint
mutations influencing enzymatic properties could not be
predicted using knowledge of the corresponding single-point
mutations, with the associated complexities resulting from
direct interactions between residues in some cases and long-
range interactions in others.174 This common nonadditive
behavior, which is known as epistasis, has prompted the
development of ML models and combinatorial optimization
algorithms capable of scoring or searching multipoint mutants
by design. Several approaches discussed below have been
proposed to overcome this challenge, more on this topic can
be found in a review.175

One such approach is to produce a library of variants for
screening using reliable physics- and evolution-based tools.
Even a time-consuming preselection of promising hotspots can
drastically reduce the computational time of the downstream
ML scoring and search.176 For example, HotSpot Wizard
3.0177 achieves robust selection of hotspots by using a number
of sequence and structure-based filters to identify mutable
residues for which mutation effects are then quantified using
the well-established Rosetta and FoldX tools. Another example
is the FuncLib web server, which computes promising single-
point active-site mutations using evolutionary conservation
analysis and Rosetta-based stability calculations.178 This tool
exhaustively models each combination of mutants and ranks
them by energy. Evolutionary information can also be captured
by ML-based models179 and used to suggest promising

substitutions, e.g., amino acids with conditional likelihoods
higher than the wild-type.180

Mathematical optimization methods can generate promising
protein sequence candidates in silico by iteratively producing
new designs based on available ML scoring data (Figure 3).
One group of such methods uses the ML predictor as a black-
box oracle to evaluate existing candidates. This evaluation is
then used to approximate the “fitness” of sequences, which is in
turn used to navigate the sequence landscape and generate a
new set of candidates using tools such as evolutionary
algorithms82,181 or simulated annealing.182 However, approx-
imating complex mutational landscapes using oracles repre-
senting estimated, simplifying distributions can harm the
optimization process and prevent the optimal solution from
being found.183 Adaptive sampling of the design space can be
used instead to obtain better results.81 Other alternatives are to
use generative models184 or rely on so-called white-box
optimization, which involves using knowledge of a predictor’s
internal workings to find the optimal solution. For example,
linear regression coefficients can be used to suggest
modifications (mutations) of the input that alter the
corresponding features in the desired direction. White-box
methods are discussed further in the context of explainable AI
in section 6.1.
While in silico optimization methods enable the iterative

generation of promising designs, they rely entirely on the
ability of a predictor to correctly score any given point in a
mutational landscape, which might be an unrealistically strong
assumption. A possible alternative (albeit one that is more

Figure 3. Selected ML strategies for designing new enzyme variants. (a) In silico evolutionary combinatorial search for favorable mutations. A
machine learning predictor is used to iteratively evaluate candidate mutations for some desired property, e.g., stability. The mutated amino acid in
each step is underlined. (b) Generation of favorable mutants. The machine learning tool directly infers the sequence with high property values (e.g.,
stability) from a fitness landscape learned and captured in the weights of the model during the training. (c) An active learning loop: an ML
predictor from (a) or (b) is used to (1) propose enzyme variants that are (2) evaluated experimentally, and the resulting data are used to (3)
update the knowledge database. The ML model is then (4) retrained on the updated knowledge database, and new variants are designed.
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costly and has lower throughput) is to directly incorporate
experimental validation into the optimization loop. This
experimental input can guide search algorithms to more
promising parts of the mutational landscape in a manner that is
akin to directed evolution. While advanced search methods of
this type have previously been used to improve traditional
directed evolution,82,182 they do not fully exploit the potential
of experimentally characterizing intermediate variants. ML-
based active learning methods accelerate directed evolution by
iteratively extracting knowledge from all characterized variants
and selecting the most promising ones.185 By relying on the
new experimental data, only a limited number of training
samples can be expected,186 confining the choice of ML
models to those with a lower number of parameters, such as
multilayer perceptrons (MLP) with as few as two layers.187 A
recent advance in the area of active learning is the development
of GFlowNets,188 networks designed to suggest diverse and
accurate candidates in a machine−expert loop to accelerate
scientific discovery. Studies using such networks have
demonstrated their potential for designing small molecules;189

however, the utility for the design of proteins remains to be
reliably demonstrated.
Powerful design techniques for the exploration of variants of

enzymes and other proteins often rely not only on combining
experimental and in silico techniques but also on combining
multiple in silico approaches and sometimes different ML
techniques. For example, focused training ML-assisted directed
evolution (ftMLDE)186 combines unsupervised and supervised
training approaches by using unsupervised clustering to
construct a training set for supervised classifiers. These
classifiers are then used to select promising mutants with
tools such as CLADE 2.0.190 Similarly, unsupervised learning
on millions of sequences was used to obtain a protein
representation called UniRep,191 which was further tuned in an
unsupervised manner to obtained eUniRep (evotuned
UniRep) for proteins related to the target sequence, leading
to an informative set of features for proteins in general as well
as for the target in particular. Such representation enabled
data-efficient supervised learning of a model for guiding in silico
evolution.192 Alternatively, an unsupervised “probability
density model” has been used to produce an “evolutionary
density score”, a feature that was then used to augment a small
number of labeled data points on which a light model was
trained in a supervised manner. Interestingly, such an approach
was shown to outperform the supervised fine-tuning of the
probability density model pretrained in an unsupervised
manner.193 Another approach194 combines self-supervised
large protein language models with a supervised structure-to-
sequence predictor in a new and more general framework
called LM-design that is claimed to advance the state of the art
in predicting a protein sequence corresponding to a starting
backbone structure, sometimes called “inverse folding”. While
inverse folding does not explicitly search the mutational
landscape, it can be used to identify promising mutations by
inputting an existing protein structure and a partially masked
sequence and using the inverse folding tool to propose amino
acids for the masked parts.
3.4. Leveraging Unlabeled Data Sets to Score

Mutations. Over the past decade, large language models
(LLM) have become popular tools for solving NLP problems
ranging from language translation to sentiment analysis.195

This major paradigm shift was driven by the realization that
even unlabeled data contain useful information: the distribu-

tional hypothesis suggests that the meaning of words can be
deduced by analyzing how often and with what partner words
they appear in various texts.196 Analogously, in biology, we can
regard proteins as sequences based on “the grammar of the
language of life”, which implies that the distribution of amino
acids at specific locations can provide valuable insights that
could be used to help predict the effects of substitutions on
protein function, thereby reducing the reliance on external data
sources.66 For example, Elnaggar et al. showed that the
embeddings generated by a LLM, when used as input features,
can effectively facilitate the development of small supervised
models whose predictive power rivals that of state-of-the-art
methods relying on evolutionary information obtained from
MSAs.197 Additionally, the protein language model ESM-2 was
recently trained on protein sequences from the UniRef
database to predict 15% of masked amino acids in a given
sequence.67 This made it possible to directly leverage sequence
information to greatly improve B-cell epitope prediction198

without a supplementary MSA. The inherent attention
mechanism of ESM-2 can also be used to facilitate protein
structure prediction.67 We provide more examples in Table 3.
Furthermore, the embeddings obtained from the language
models, such as ESM-1b,65 ESM-2,67 ProtT5,197 and
ProtTrans,199 have become a popular way of representing
sequential data, making pretrained ESM models a frequent
subject for transfer learning. The transfer of knowledge from
these models has been tackled by fine-tuning the pretrained
weights,197,200 by training models solely on top of the learned
embeddings (keeping the pretrained weights fixed),197 and also
by introducing adapter modules201 between the trained layers
for parameter-efficient fine-tuning.202 The power of the learned
embeddings can also be witnessed in a completely
unsupervised setting. More specifically, the ESM-1v66 model
was demonstrated to accurately score protein variants by
relying solely on the wild-type amino acid probabilities learned
by the protein language model during pretraining without any
subsequent fine-tuning.
Large deep-learning models are impressively capable of

learning general protein properties. For the cases in which a
detailed understanding of a specific protein or protein family is
required rather than general patterns that hold across different
protein families, sequence-based models that can learn
distributional patterns from a single MSA are available.
MSAs have already proven to be a rich source of evolutionary
information, e.g., for identifying functionally important
conserved regions, insertions, or deletions to clarify the
mechanisms driving sequence divergence.
Analyses of evolutionary data and comparisons of assigned

probabilities for mutant and wild-type sequences have also
shown that ML-based models can predict the effects of
mutations in deep mutational scanning experiments more
accurately than established methods based on evolutionary
data.66 For example, excellent protein structure prediction
performance was achieved by combining MSA inputs with an
advanced transformer architecture.99,210,216 In addition, Xie et
al. used the maximum entropy (MaxEnt) principle to infer
statistical energy from homologous sequences143 and found
that the inferred statistical energy of active site residues
correlated significantly with enzyme activity, whereas that of
residues distant from the active site correlated with protein
stability. Hsu et al. observed that a hybrid linear regression
model combining the evolutionary density score from MSA-
based ML models with labeled one-hot encoded protein

ACS Catalysis pubs.acs.org/acscatalysis Perspective

https://doi.org/10.1021/acscatal.3c02743
ACS Catal. 2023, 13, 13863−13895

13875

pubs.acs.org/acscatalysis?ref=pdf
https://doi.org/10.1021/acscatal.3c02743?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


sequence data sets demonstrated superior performance in a
range of protein fitness prediction tasks, even for the sizes of
the labeled data sets in the range of 48−240 data points.193 A
similar effect for small data sets of 50−250 data points was
reported by Illig et al.217 Ding et al. showed that variational
autoencoders can capture phylogenetic relationships in the
geometry of the latent space of an MSA and further
demonstrated that the free energies of sequences assigned by
the latent model can be used to predict mutation-induced
changes in stability.218 Building on these findings, the
geometric structure of a latent space was recently used to
guide the design of a haloalkane dehalogenase.219 In addition,
by exploring the latent manifold underlying the sequence
information, we can uncover dependencies that may not be
readily apparent in the raw latent space embeddings.220

Despite its advantages, MSAs also have some drawbacks.
First, it can be difficult to create an MSA that contains enough
evolutionarily relevant sequences to establish strong patterns at
key amino acid positions. Second, the creation of an MSA is
often seen as something of a craft rather than a systematic
procedure, and the alignment process can be sensitive to user
choices, including the choice of substitution matrices, gap
penalties, and the number of iterations. Poor choices may
produce an MSA with improperly aligned residues because too
few iterations were performed during the alignment process or
because a significant number of gaps were introduced
(particularly at the beginning and end of the alignment),
necessitating additional preprocessing and trimming of the
MSA to achieve optimal results. Moreover, aligning new
sequences to an MSA can be a challenging task that requires
careful consideration of the alignment parameters and
sequence properties. Despite these challenges, MSAs remain
a powerful source of information for studying the relationships
and evolutionary history of biological sequences.
Recent studies have also explored the opportunities provided

by examining patterns at two contrasting scales within the
protein sequence space: general patterns in the large universe
of protein sequences and local distributions of sequence
patterns in specific protein families. These works have
combined large pretrained models with lightweight, easily
retrainable components for efficient family-specific adaptation.
For example, Sevgen et al. designed ProtT-VAE, a fusion of a
transformer pretrained on 46 million UniRef50 sequences and
an autoencoder that enables fine-tuning on a sequence library
of interest.213 After fine-tuning the model on the phenylalanine
hydroxylase (PAH) sequence family, ProtT-VAE was used to
predict variants with up to 100 mutations, resulting in a 2.5×
increase in catalytic activity over the human wild-type.
Similarly, Luo et al. combined a pretrained language model
with an MSA-specific direct coupling method to capture both
general protein syntax and protein-specific epistasis.214 The
resulting model, ECNet, was used to engineer TEM-1 β-
lactamase variants with improved ampicillin resistance.
The utilization of unlabeled data in a semisupervised setting

has been tried, for example, in the context of secondary
structure prediction for orphan sequences221 or structural
similarity prediction for protein sequences.222 These two
methods employ pseudolabeling or a custom similarity metric
to enable a supervised learning task to profit from large initially
unlabeled data. In some cases, even self-supervised methods
are viewed as semisupervised223 in that they learn powerful
representations from unlabeled data that can then be fine-
tuned using small labeled data sets. However, the difference

from semisupervised methods is that self-supervised methods
build on the established methodology of supervised learning as
they formulate a supervised proxy task using synthetic labels
generated automatically from the large unlabeled data set. Such
self-supervised methods are powering the recent successes of
protein language models, discussed at the beginning of this
section, and appear to be generally more successful than
traditional semisupervised methods.
In parallel to the explosive growth of sequence databases, the

Protein Data Bank reached the landmark value of 200 000
entries in April of 2023, providing a rich source of experimental
structural data for self-supervised learning about protein
structures. A number of deep learning models have been
fitted to large subsets of the PDB data to leverage the natural
diversity of the protein structures. For example, MutCompute
was trained on a nonredundant sample of 19K proteins to
predict artificially masked residues based on the local 3D
environment, enabling the model to successfully capture
phenotypic landscapes associated with protein stability.31

Additionally, Zhang et al. designed multiple general tasks for
the self-supervised pretraining of graph neural networks for
protein structures, leading to improved performance in various
downstream tasks.68 Self-supervised learning on protein
structures has also been used to suggest protein sequences
for specific backbones and generate de novo protein
structures.27,28,207

3.5. Leveraging Protein Dynamics to Compare
Mutations. The preceding sections focus on the analysis of
static data. However, proteins are complex and dynamic
systems, and their conformational changes and motions often
provide key insights into reaction mechanisms that cannot be
obtained by studying static structures alone.224 One way to
capture a protein’s dynamics is by studying its structural
ensembles, which are available from existing protein structure
databases in many cases. It has therefore been suggested that
structure-based ML methods trained on such data, e.g.,
AlphaFold2, could provide insights into protein dynamics.225

Building on this hypothesis, Brotzakis and coauthors proposed
a reweighting procedure using AlphaFold2 predictions and the
FoldingDiff framework27 to generate structural ensembles for
disordered peptides.226 Such procedures could be useful
alternatives to computationally expensive simulations in some
cases. However, they are unlikely to be useful for comparing
structural ensembles of closely related protein variants because
AlphaFold2 predictions, which rely on evolutionary informa-
tion obtained from MSAs, appear to be insensitive to single-
point mutations139 and so may be unable to accurately capture
the often subtle differences between closely related protein
variants.
Another option is to study molecular dynamics (MD)

trajectories. MD data are obtained by performing simulations
that apply physical laws to calculate the future position of every
atom in a protein after a given time step based on its 3D
structure at the current point in time. The resulting trajectories
consist of a series of snapshots capturing the protein
configurations at successive points in time. Because each
snapshot contains the coordinates of all atoms in the simulated
system, the simulation provides a large amount of data, even
for an average-sized protein. Where prior system knowledge is
available, one can use a coarse-grained model to reduce the
system’s dimensionality and potentially capture major motions
of interest.227 In most cases, however, finding so-called
collective variables (CVs) that effectively describe the system’s
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dynamic behavior is not straightforward. It has been suggested
that unsupervised learning methods could help solve the
problem of identifying CVs because they can learn from raw
MD trajectories without making assumptions about the CVs
that are being sought. In general, such methods try to find low-
dimensional representations that are rich enough to
reconstruct the original (or time-shifted) input.228 The
resulting low-dimensional projections can then be used to
build a simplified model of the protein’s dynamics. This is
often done using Markov state models (MSMs), which can
cluster the conformational space of the simulated molecule
into a tractable number of clusters (states). MSMs assume that
the transitions between these states are Markovian, i.e., the
state in the next time step depends only on the current state
regardless of the previous trajectory. This approach was
applied in conjunction with the end-to-end deep learning
model VAMPnet, which was used to find an optimal projection
for the system under study.229 More recently, the CoVAMPnet
framework230 was created by expanding on the VAMPnet
approach to add interpretability capabilities and a method for
MSM alignment that facilitates comparisons of MSMs for two
sets of simulations. If applied to different variants of a given
protein, CoVAMPnet could potentially be used to evaluate the
effects of discriminative mutations on protein dynamics.
However, this application is yet to be explored.
In general, identifying dynamic features associated with

biochemical differences between protein variants is much more
challenging than finding a low-dimensional representation for a
single protein. One way to address this problem was
demonstrated by the DiffNets framework,231 in which
supervised autoencoders were trained on MD trajectories to
identify the most significant differences in pairwise residue
distances between protein variants. Another approach for
comparing dynamical changes in variant trajectories involves
directly analyzing the distribution of low-dimensional projec-
tions of configurations obtained by variational autoencoders. In
this approach, similar spatial configurations tend to cluster in
certain subspaces of the learned low-dimensional space. Such
clustering can be used, for example, to analyze the MD
simulations of catalytic sites in the presence of different
substrates to identify structural differences that drive substrate
preferences.232 Nonetheless, despite those promising studies,
the problem of comparing MD trajectories of different protein
variants in a systematic way remains largely unexplored,
offering an intriguing future direction for machine learning
applications.

4. RECENT SUCCESS STORIES AND LESSONS
LEARNED

While the number of publications on ML for protein
engineering is growing rapidly (Figure 1), only a fraction of
these publications incorporate the experimental validation of
generated predictions as opposed to validation using existing
data. This section highlights several recent publications that do
include experimental validation and clearly demonstrate the
great potential of ML in enzymology. We provide more
examples of such studies in Table S1.
4.1. Sequence-Based Case Studies. Several publications

have showcased recent advances in the use of sequence-based
models, including both models trained on large sequence
databases and models trained on specific enzyme subfamilies.
For example, Russ et al. used a statistical model based on direct
coupling analysis to learn the natural distribution of amino

acids in chorismate mutases and generate 1618 artificial
enzyme sequences. Experimental studies showed that 30% of
these proteins rescued the growth of enzyme-deficient
Escherichia coli in minimal media.233 Ten of them were
characterized in more detail and shown to have expression and
catalytic parameters similar to those of the previously
characterized enzymes. In another case, Repecka et al. used
generative adversarial networks to create artificial malate
dehydrogenases.212 Sixty of the resulting artificial proteins
(which had pairwise sequence identities of 45−98% with
natural enzymes) were tested experimentally, revealing that 13
had catalytic activity comparable to that of natural enzymes.
Another interesting case study was reported by Madani et al.,
who used a large 1.2 billion-parameter language model called
ProGen for the conditional generation of 100 artificial
sequences that were fine-tuned to five distinct lysozyme
families.35 Again, the artificial designs had expression levels and
catalytic efficiencies similar to those of natural lysozymes even
though their sequence identities with the natural proteins were
as low as 31.4% in some cases. In all three studies, the authors
could approach the expression and activity of natural
sequences, but surpassing them by a significant margin still
remains a challenge.
4.2. Structure-Based Case Studies. Designs superior to

wild-type templates could potentially be created by leveraging
structural data. One promising strategy for this purpose is to
use the local structural environment to identify positions
suitable for optimization in wild-type proteins. An insightful
recent study on plastic-degrading enzymes demonstrated the
power of this approach.234 Despite extensive research on
enzymatic PET depolymerization, most known PET-hydro-
lyzing enzymes have poor activity and require high temper-
atures or highly processed substrates to be practically useful.
Traditional protein engineering strategies have improved the
thermostability and catalytic activity of PETase variants under
certain conditions, but these variants still show low activity at
mild temperatures. Lu et al. therefore tried to use structure-
based deep learning to solve this problem.234 For this purpose,
they used the MutCompute31 algorithm, which was trained to
predict masked amino acids based on their local 3D
microenvironment in a crystal structure, to identify the
positions where the predicted probabilities of the wild-type
amino acids were comparatively low, suggesting that some
other amino acids are better “suited” to the corresponding
structural microenvironment. Eight of the top ten suggested
substitutions produced single-point mutants with improved
thermostability and activity. Combinatorial assembly of these
substitutions yielded PETase variants with melting temper-
atures of up to 83.5 °C (and thus greater thermal stability than
any previously reported variant of this enzyme) and up to 38×
the activity of the template enzymes at 50 °C.
MutCompute was also used to improve the thermostability

of the Bst DNA polymerase, with a similar success rate: of the
top 10 substitutions suggested by the network, only two were
discarded for showing little or no activity, while the top five
yielded activities equal or superior to the template.235

Moreover, variants combining these substitutions were more
robust to purification and exhibited even greater thermotol-
erance and thermostability. MutCompute predictions are
orthogonal to force-field calculations and phylogenetic analyses
conducted with the popular automated web tools PROSS236

and FireProt,237 and these predictions can be exploited to
remove destabilizing substitutions from multiple-point mutants

ACS Catalysis pubs.acs.org/acscatalysis Perspective

https://doi.org/10.1021/acscatal.3c02743
ACS Catal. 2023, 13, 13863−13895

13877

https://pubs.acs.org/doi/suppl/10.1021/acscatal.3c02743/suppl_file/cs3c02743_si_001.pdf
pubs.acs.org/acscatalysis?ref=pdf
https://doi.org/10.1021/acscatal.3c02743?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


designed using those tools. This was recently demonstrated by
the successful stabilization of haloalkane dehalogenase
DhaA115 (PDB ID 6SP5238).
An alternative to replacing specific residues to better match

structural patterns in training data is to predict complete
protein sequences corresponding to a given backbone
conformation from scratch. Exemplifying this approach,
Dauparas et al. trained the graph-based neural network
ProteinMPNN on a set of 19 700 high-resolution single-
chain structures from PDB and showed that this algorithm can
rescue previously failed designs by suggesting optimized
protein sequences for given scaffold templates.207 For
experimental validation, the authors targeted proteins that
had been generated by deep network hallucination in a
previous study239 but proved to be mostly insoluble when
expressed in E. coli. Ninety-six designs were processed using
ProteinMPNN, of which 73 were soluble when expressed and
50 had the desired monomeric or oligomeric state. Moreover,
some maintained this state even at 95 °C. This is a promising
result because protein insolubility appears to be a persistent
problem with ML-based generated sequences.240 It will
therefore be interesting to see if more enzyme sequences can
be reengineered for improved solubility in this way.
At Loschmidt Laboratories, we developed the sequence-

based solubility predictor SoluProt26 and integrated it into
EnzymeMiner (ht tps :// loschmidt .chemi .muni .cz/
enzymeminer/), a more general pipeline for discovering
enzymes with a desired catalytic activity that is available as a
fully automated web service. This pipeline was recently used to
mine promising industrially relevant haloalkane dehaloge-
nases241 and fluorinases.242 In both cases, we obtained soluble
and active enzymes with catalytic performance superior to that
of previously characterized wild-type enzymes and engineered
biocatalysts. The broad applicability of the SoluProt and
EnzymeMiner web services is demonstrated by the fact that
they have completed over 30 000 and 3000 jobs, respectively,
in the two years that they have been online. An alternative to
natural sequence mining with EnzymeMiner is to use the deep
neural network ProteinMPNN, which has been applied
successfully in the de novo design of artificial luciferases
based on computationally designed binding pockets.243

Functional constraints have also recently been incorporated
into structure-based generative models including diffusion-
based deep learning methods for functional motif scaffolding.28

4.3. Small-Data-Set-Based Case Studies. The preceding
examples demonstrate the potential of using unlabeled data
sets to suggest novel protein designs. Moreover, in section 3
we discussed strategies that leverage small data sets, for
example, to fine-tune pretrained large models in order to
enable more focused protein engineering. However, ML
models trained using only small data sets with no pretraining
can also be useful in protein engineering pipelines using
simpler algorithms.
Several case studies combining machine learning and

directed evolution have appeared recently. Based on the initial
in silico docking, Büchler et al. chose three critical amino acid
positions in an iron/α-ketoglutarate-dependent halogenase for
full randomization in a library targeted for the use in an
algorithm-aided enzyme engineering strategy.244 After collect-
ing the activity measurements for 504 unique variants, the
authors trained a Gaussian-process-based model to explore in
silico the remaining protein landscape for activity and
selectivity. The subsequent experimental validation revealed

active and selective halogenase variants with over a 90-fold
increase in the apparent kcat and a 300-fold increase in the total
turnover number. A smaller data set of 80 variants of Sortase A
was used by Saito et al. to train an ML model to score all
possible variants for five mutated positions.245 After designing
primer sequences to include the top 50 variants in the second-
round library, the authors observed most of the new variants
showed high expression levels, with several demonstrating
higher enzyme activity than the first-round variants. Reiterating
the workflow, the authors constructed and validated the third-
round library, again leading to a set of improved variants.
Interestingly, the authors tested and stressed the importance of
including poor-performing variants in the training data, and
they still got promising results in the scenario in which the top-
performing variant was excluded from training. Even a smaller
initial library of 20 chimera sequences was used in a different
study by Greenhalgh et al. as a starting point for ten rounds of
sequence optimization of alcohol-forming fatty acyl reductases,
leading to an over twofold increase in fatty alcohol production
compared to the starting sequences.246

In all three case studies above, the authors used a set of
simple sequence-based features such as one-hot encoding of
amino acids, physicochemical properties of the proteins, or
conservation scores. While extracting features from protein
dynamics remains challenging (see section 5.2), a linear model
was recently used to this end to elucidate structure−function
relationships while engineering luciferases.247 This study drew
on an earlier indel (insertions and deletions) mutagenesis
experiment targeting a reconstructed ancestral protein and
aimed to identify the factors responsible for the emergence of
dual dehalogenase and luciferase activities.248 The authors
comprehensively studied the dynamics of different variants and
used partial least-squares regression to identify the strongest
predictors of both activities. This knowledge was then used to
obtain a design with lower product inhibition and highly stable
glow-type bioluminescence.
These examples are notable because while few groups have

the expertise or infrastructure needed for deep learning,
simpler and more accessible ML methods can still be used to
advance traditional protein engineering pipelines. At the same
time, we expect that deep learning tools will gradually become
more accessible and easier to use.

5. MAJOR GAPS IN THE STATE OF THE ART
Despite the exciting applications and promising case studies
discussed above, several significant knowledge gaps remain to
be addressed to take protein engineering to the next level.
First, many protein engineering tasks have yet to benefit from
ML, including predicting the effects of indels and unnatural
amino acids, creating predictors that address several targets
simultaneously, and predicting mutational effects on protein
interactions. Second, molecular dynamics remains isolated
from major advances in the application of ML to protein
engineering; dynamical information is rarely if ever used when
training current state-of-the-art predictors. Third, there is a
pressing need to establish gold standard protein data sets
because such benchmarks have significantly accelerated the
progress of ML in other domains. Finally, the impact of ML-
based tools often remains limited to a narrow circle of method
developers, so there is a need to reach out to the broader
community of biochemists and synthetic biologists. Below we
discuss each of those gaps in more detail.
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5.1. Unexplored Protein Engineering Tasks. One
important objective for the future will be to create single ML
tools that can perform multiple tasks. Multiobjective protein
engineering is a core goal of many ongoing experimental
studies because the introduction of mutations targeting one
property often affects others. For example, stability and
solubility are often negatively correlated and may also need
to be traded off with other properties such as catalytic
activity.249 However, current ML-based predictors typically
target only one property at a time. This limitation could
potentially be overcome by combining predictions from
multiple tools to define a so-called Pareto front, i.e., a set of
solutions in which no one member is better than another with
respect to all objectives.250,251 However, by combining the
separately trained predictors, one misses the opportunity to
train on a larger pool of data sets and potentially capture the
common underlying mechanisms in a unified protocol.
Approaches of this type are rarely used, possibly because
their implementation would require expert knowledge of
multiple types of data and the experimental techniques used to
generate them.
Another major goal is predicting the effects of insertions and

deletions in the amino acid sequence (indels). This area has
been largely unexplored by ML even though indels occur
frequently in nature and can unlock unique functional changes
that substitutions alone cannot achieve.252 Indel engineering is
gaining momentum, however, and experimental studies
focusing on indel mutagenesis are starting to produce
interesting labeled data sets.253,254 Protein evolutionary
information is another potential source of data on indels255

that can be used to explore previously hidden catalytic
activities that could be shifted or promoted.256,257 Indels can
affect not only the structure of the protein system but also its
dynamics.258 Therefore, molecular dynamics simulations may
provide valuable data for clarifying the effects of indels on
protein dynamics and their functional consequences.
The vastness of the combinatorial protein sequence space

can be further extended by introducing unnatural amino acid
(UAA) substitutions. Experimental studies have successfully
incorporated over 150 different UAA substitutions into protein
sequences,259 including multiple point mutants.260 These
substitutions can be used for diverse purposes, ranging from
tailoring the structural, physical, and dynamic properties of
specific sites to introducing new properties by adding carefully
designed UAAs. Such additions can be used to enhance
enzyme activity or elucidate the enzyme reaction mecha-
nisms.261 While there are some emerging ML-based tools for
rational design of UAA sites,262 further research and
development are needed to make this approach widely
applicable in enzyme engineering.
Another area that would benefit from the greater use of ML

is the design of protein−protein and protein−ligand
complexes. Despite recent promising results in the use of
ML to predict the binding sites and protein−ligand
complexes,29,263,264 reliable and practically useful approaches
for designing noncovalent interactions are still missing. For
example, Geng et al. found that the evolution of ΔΔG
predictors for protein−protein interactions had been hindered
by the absence of centralized benchmarking.265 Little progress
has been made in this area, as evidenced by the re-emergence
of similar ML models and the persisting lack of common
evaluation standards.156,266,267 Furthermore, the reliability of

existing models is undermined by a frequent reliance on
supervised ML with limited annotated data.268

Finally, most ML-based predictors represent primary protein
sequences at the level of amino acids. However, synonymous
mutations that do not change the amino acid sequence can still
significantly impact protein expression and function269,270 or
can even relate to particular structural features.271,272

Predictors working on the level of nucleotides or codons
may thus be better tools for protein design and modification,
particularly in areas such as prediction of expression, solubility,
and aggregation. The fact that the 64-letter codon alphabet
serves to encode richer information than the 20-letter amino
acid alphabet can be directly exploited by ML models for
improving performance on a wide range of tasks that are now
being tackled at the protein sequence level.273 While there
have been several studies, e.g., tackling protein expression
optimization,274 melting temperatures, subcellular localization,
solubility or function,273 we believe further research in this area
might provide a strong boost for predicting many essential
protein characteristics but will require rethinking of the
existing data sets at the nucleotide level.
5.2. Learning from Protein Dynamics. Protein dynamics

profoundly influence biological phenomena and properties
ranging from enzyme mechanisms to protein stability and must
therefore be taken into account when designing enzymes.275

The value of analyzing protein ensembles rather than single-
protein structures has been demonstrated in contexts including
predicting thermal stability276 and identifying the long-range
conformational dynamic effect on residues involved in
substrate reorientation277 and reactivity-promoting regions.278

Therefore, tools that can generate dynamic data without
extensive computational or experimental data collection would
be extremely valuable. This has motivated the development of
new methods for generating representative ensembles from
structure279 or sequence data.280

Despite the growing availability of protein dynamics data
from sources such as MD simulations, current methods for
predicting protein properties are mainly based on single
sequences or static structures. This is partly because several
challenges must be overcome when MD results are
incorporated into the training and inference phases of classical
ML pipelines. The first challenge concerns data representation:
predictive models typically work with static structures. One
possible strategy could be to include a limited set of quantities
derived from a trajectory, e.g., the flexibility of structural
elements expressed in terms of their B-factors, in the set of
input features. Another possibility would be to select a subset
of conformations to be used during training. For example, one
might use apo and holo structures or representative
conformations chosen with various clustering methods or
Markov State Modeling. However, the applicability of these
methods to training data sets of multiple proteins has yet to be
explored.
An interesting recent approach that could help with data

processing is “dataset distillation”,281 which builds on research
related to distillation of neural network models.282 In data set
distillation, the goal is to distill a larger data set into a smaller
one of potentially artificial examples so that models trained on
the smaller data set can match the performance of those
trained on the larger one. This process was first demonstrated
in the image recognition domain by distilling the well-known
MNIST data set283 of 60k images into just 10 synthetic images
(one per class); models trained on the distilled data set
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achieved performance closely approaching that of models
trained on the original data set.281 At present, data set
distillation has been most beneficial for models that are
retrained multiple times, such as those used in continual
learning or NN architecture searching. The use of data set
distillation is conditioned on the existence of large data sets
and relevant models that can be trained on those data. So far,
relatively little work has been done on distilling temporal data
such as videos,284 but as soon as data set distillation
demonstrates its utility in the domain of video analysis, we
expect this technology to become applicable to processing of
MD trajectories as well. Data set distillation techniques have
recently been comprehensively reviewed by Yu et al.285 and Lei
et al.286

The lack of training data and benchmarks appears to be
another fundamental barrier to the systematic integration of
MD data into ML-based protein engineering pipelines.
Compiling data sets of MD trajectories presents both technical
and scientific challenges resulting from the inconsistent file
formats due to the use of different simulation packages,287

huge file sizes, and the fact that MD data are rarely published.
Furthermore, MD trajectories can be very sensitive to the
choice of force fields288 and other settings. This high variability
of simulation data makes compiling large, consistent, high-
quality data sets truly challenging. The application of the FAIR
principles289 to the publication of biomolecular simulation
results is thus an important first step toward building relevant
data sets and benchmarks and will encourage further
development of the field by greatly increasing data availability.
The initiative of publishing the MD trajectories is also called
upon by Tiemann et al., who performed an extensive MD data
mining exercise and demonstrated the utility of publicly
accessible data.290 The prioritization of building data sets for
specific proteins or protein families appears to be a reasonable
next step, followed by exploring the possibility of transferring
knowledge between different protein families.291

5.3. Missing Gold-Standard Data Sets. High-quality
data benchmarks are major drivers of progress in ML
research.292 For instance, the remarkable progress in image
classification can largely be attributed to the existence of well-
prepared and maintained benchmarks: an early example was
the MNIST collection of hand-written digits,283,293 which was
later complemented by the PASCAL visual object classification
(VOC) challenge data set of real photographs293 and the
ImageNet data set.294 MNIST enabled the first successes of
deep learning on hand-written digits,295 while the PASCAL
VOC data set and the associated challenge established
standard benchmarking practices in computer vision research,
including the use of a hidden test set. Over the past decade, the
benchmarking of progressively more advanced convolutional
neural networks on ImageNet has produced models with
superhuman classification performance.296 Here it is important
to stress the difference between a data set and a benchmark
data set: to qualify as a benchmark, a data set must satisfy
stringent quality criteria, have well-defined benchmarking tasks
and performance metrics, and have a predefined split into
training and test sets.297 Moreover, the performance of all
models on the MNIST data set is measured in terms of the
percentage of wrong classifications. Such universally accepted
benchmarking criteria enable clear and fair evaluations of the
practical performance of proposed models, eliminate the need
to spend time on data preparation, and introduce an element
of competition into model development.

While such benchmarking practices are standard in tradi-
tional ML domains, they remain far from common in protein
engineering for several reasons. First, the complexity of the
domain presents challenges in collecting data and ensuring
their quality. The quality of ImageNet was guaranteed by
manual verification of each image, which was achieved by
creating a special interactive web site to which any nonexpert
could contribute. The bulk of the annotation of one million
images was done using annotation services, such as Amazon
Mechanical Turk. However, protein data require much more
involved manual curation by domain experts, making such
approaches unusable. Automated curation may be feasible for
some types of data, e.g., MMseqs2 and Foldseek enable fast
deduplication and clustering of sequences80,298 and monomeric
structures.80,298 However, it is extremely difficult for data sets
focusing on the catalytic activity, specificity, enantioselectivity,
or solubility. Large-scale data cleaning also remains challenging
for protein−protein interfaces, which are highly repetitive due
to the redundancy of the PDB.31,299,300

Next, the selection of a suitable ML evaluation metric and
data split may be challenging because of the inherent
interdisciplinarity of protein engineering. The establishment
of benchmark components requires a deep understanding of
the intricacies of biochemistry as well as expertise in ML. For
example, mutational data sets can be split at the level of specific
substitutions, mutation sites, specific proteins, or protein
families while ensuring that no entry in the test set is repeated
in the training data. However, even in a simple setting using
protein sequences, splitting at the protein level becomes
challenging if the data set contains many homologs or protein
variants, and many authors use different sequence identity
cutoffs for clustering data before splitting. Protein structure-
based learning introduces additional complexity into the
process of defining splits. Distinct sequences may have very
similar tertiary structures, necessitating the use of more
advanced geometric or graph-based splitting conditions.
However, such methods are rarely applied, leading to the use
of a wide variety of splits that limits model comparability.156

For example, a widely used data set that was reported to suffer
from improper splitting301 is PDBBind.302 Simple random
splits may result in data leakage, especially when using highly
redundant or nonuniform data sets.77,303,304

The Critical Assessment of Structure Prediction (CASP) is
the best example of a well-established benchmark in protein
science.305 It has been produced and maintained by a
community-driven effort that has been ongoing for almost
three decades, enabled the success of AlphaFold2, and is
continually being extended to new and more complex tasks.99

Despite the existence of several other CASP-inspired bench-
marks such as Critical Assessment of Prediction of Interactions
(CAPRI) and Critical Assessment of Function Annotation
(CAFA),306,307 standard benchmarks for protein design are still
lacking. This problem is attracting attention; for example,
Dallago et al. recently introduced the Fitness Landscape
Inference for Proteins (FLIP) benchmark,303 which addresses
three protein engineering problems by including: (i) an almost
complete mutational landscape (149 361 of 160 000 variants)
of four strongly epistatic residues of the G protein, (ii) the
more diverse and sparsely sampled landscape of the AAV
capsid protein, and (iii) the highly diverse thermostability
landscape of proteins from different domains of life. Similar
benchmarks are also appearing in related disciplines such as
genomics308 and drug discovery.75,309 Calls for defining clear
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criteria for the study of epistasis and residue coevolution
patterns can be found in the literature;175 these criteria could
enable the emergence of new benchmarks. We hope to see
more initiatives creating and supporting benchmarking in the
future, as they could dramatically accelerate progress in ML for
protein design.
5.4. Poor Transfer of Knowledge from Concept to

Application. Even when authors have performed appropriate
independent method validation and convinced readers of the
superiority of their tool, the transfer of knowledge from
published methodologies to new applications seems to be
frustratingly slow. Despite the rapidly growing number of
publications describing applications of ML in protein
engineering, surprisingly few studies have followed up on
published methods and applied them to new protein targets.
The main obstacle to such work appears to be the limited
accessibility of ML methods to researchers without expertise in
computer science, e.g., biochemists. One established scientific
publishing standard for new ML methods is that protocols and
scripts should be included with the submitted manuscript.310

While this improves the peer-review process, potential future
users of such tools are generally less comfortable running such
scripts than reviewers. Therefore, if a new method is available
only as a collection of scripts in a GitHub repository, it is
unlikely to have much impact outside the narrow community
of ML developers.
Creating at least a minimalistic user-friendly interface is thus

vital for making methods widely accessible to users other than
their developers, even though it generally requires additional
work from the developers that is outside the scope of their
research objectives. The explosive growth in the number of
users of ChatGPT 3.5 and later versions has been partially
attributed to its simple dialogue-like interface, which is
accessible even to users without knowledge of ML. Similarly,
the AlphaFold2 release was followed by the dissemination of a
Google Colab notebook,311 allowing it to be used by
researchers in a way that is much more user-friendly than
downloading code from GitHub. In Loschmidt Laboratories,
we have been developing user-friendly tools for over two
decades (https://loschmidt.chemi.muni.cz/portal/), and we
often hear how crucial the ease of use of these tools is to our
users. We ensure this ease of use by making efforts to support
popular input formats (ideally, using file types that a typical
user will have at hand), creating intuitive and well-guided
settings (ideally, with a default setup that will provide
reasonable results in most use cases), and providing
comprehensive and easily understood reporting of results.
We also strongly encourage other developers to invest time
into making their tools accessible to other communities, such
as enzymologists or biochemists. Moreover, it is usually helpful
to contact past or potential users to understand how they see
the method and what functionality they would benefit from in
addition to the method itself. This could include fetching
sequences and structures from databases, submitting multiple
sequences or mutations as a single input, suggesting designs for
experimental validation, or even allowing output graphics to be
easily transferred to a publication.
We also encourage authors to be more open about the

limitations of their tools in publications. When published case
studies use additional steps, e.g., manual fine-tuning, these
should be discussed explicitly in the main text of a publication
or in instructions for using tools. While there is pressure to
present a tool’s performance in the most favorable light, any

cherrypicking will eventually disappoint future users and
undermine the trust in the entire domain. To be successful,
ML requires users and the wider community to trust its
predictions and be convinced that the tools have been assessed
fairly. Consequently, there are active efforts to improve
reporting standards for ML tools in modern biology, and
several clear guidelines have recently appeared to guide authors
in preparing manuscripts dealing with ML.12,310,312 However,
there will be a lag phase before such rules are universally
adopted.

6. FUTURE OPPORTUNITIES
6.1. Trustworthiness and Explainable AI. In many

domains, including medicine and finance, it is vital for ML
systems to be interpretable and explainable to build trust in the
algorithms. Understanding the mechanisms behind making a
prediction can also enable more rigorous verification of a tool
or provide clues for follow-up decision-making. In this context,
an explainable model is one that provides insights into the
reasons for its predictions and decisions, for example, by
showing which parts of the input have the greatest impact on
predictions. Conversely, an interpretable model is one for
which the internal process of making predictions can be readily
understood by humans. This can be achieved by having an
explicit decision pathway in a decision tree or easy-to-grasp
feature weights in a simple linear equation. If ML algorithms
are not mathematically complex, they are often intrinsically
explicable and interpretable. However, interpreting and
explaining their predictions becomes more challenging as the
algorithms become more complicated. This is why models
such as deep neural networks are often described as black
boxes. The field of explainable artificial intelligence (XAI)
seeks to overcome this challenge by creating explanations using
analytics, saliency maps, or words to allow humans to
understand why an ML algorithm makes a certain decision
or prediction.
A range of XAI methods have been proposed in recent

years313,314 (Figure 4) and are discussed in more detail in two
recent comprehensive reviews.313,315 Two simple strategies for
XAI are to use self-explainable white-box methods and to
check how changing inputs affect the outputs of black-box
networks. Feature importance methods are a notable class of
white-box methods that achieve explainability by identifying
essential features based on model parameters such as weights
and coefficients. For example, in a linear regression algorithm,
scientists can determine the importance of each feature based
on the magnitude of the associated coefficients. Propagation-
based approaches are another class of white-box methods that
are often used for similar purposes in deep learning. One of the
recent methods in this class is layer-wise relevance
propagation, which propagates predictions from the output
to the input using propagation rules evaluated at each node of
a neural network.316 As this method relies on simple formulas,
it does not require computationally demanding sampling and is
relatively robust to noise and other artifacts during training.313

For black-box models, explainability and interpretability are
generally achieved by analyzing the input-output behavior. For
example, Shapley values estimate the contribution of each
feature by evaluating its marginal impact on the output.
Unfortunately, this approach requires significant computational
resources and scales poorly with increasing numbers of
features.317 Another strategy is to approximate a black-box
model with a more interpretable analogue. This approach is
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exemplified by the LIME method,318 which mimics the
predictions of any classifier in an interpretable and faithful
manner by locally approximating the decision boundary using a
linear regression or a decision tree. Another black-box method
explains model predictions by perturbing the input data and
analyzing the differences between the actual output and the
output for the perturbed data set. If a particular perturbation of
the input produces large differences in output, the changed
parts of the data set are marked as being essential for
prediction.319

Another approach to incorporating explainability into ML
pipeline is to pursue explainability during the development of
the pipeline rather than when the predictor is released, e.g., by
using transparent neural networks.320 Such neural networks are
designed to be more interpretable and understandable by
humans. Prior knowledge, such as existing biological knowl-
edge and experimental data, can help scientists develop such
models. For example, a convolutional neural network could be
designed to learn filters that correspond to known protein
structural motifs.321 Alternatively, one could use knowledge-

primed neural networks in which nodes correspond to proteins
that are connected based on prior knowledge.322

The ML methods that are increasingly being applied in
protein engineering are often complex and challenging to
interpret. Because wet-lab validation of ML-designed proteins
and enzymes is expensive and time-consuming, it is vital to
reinforce the credibility of AI-assisted protein engineering and
ensure that experimentalists can be confident that the methods
will produce designs with a good chance of success in the lab.
XAI can strengthen credibility by providing insights into the
decision-making processes of ML models in protein engineer-
ing.323 It can also help scientists to improve their algorithms by
revealing mistakes and biases.324 The use of XAI to explain
deep learning networks has therefore recently attracted interest
in areas of drug discovery, chemistry, and protein engineering
including active ligand searching,325 prediction of enzyme EC
numbers,326 and identifying residues that indicate transitions
between active and inactive states in GPCR receptors.327

In protein engineering, explainable AI is primarily applied
for the analysis of predictions from ML models with the aim of
obtaining novel biochemistry knowledge. Namely, Tan et al.
introduced ExplainableFold,328 a concept designed to improve
the understanding of deep learning-based protein structure
prediction models such as AlphaFold by residue deletions and
residue substitutions. Essentially, the core objective of
ExplainableFold is to uncover influential residues responsible
for maintaining or altering a folded protein structure. More
generally, it was also proposed that the application of tools
such as exBERT,329 originally designed for visualizing internal
representations of transformers, could be employed in protein-
trained transformers to highlight relationships among amino
acids.330 Ultimately, the use of explainable AI for protein
design is still in its early phase and we have yet to see its main
applications in protein engineering pipelines.
6.2. Identification of Hidden Biases. ML models can be

biased by the data used in their training, which can reduce
their overall accuracy or cause their performance to vary
substantially across the data input space, e.g., the protein
sequence space or the space of protein structures. In supervised
learning, special attention must be paid to the problem of class
imbalance,331−333 which occurs when there are more training
examples for some classes than for others. In such cases, the
model might overpredict the major classes.334 In unsupervised
learning, these biases might be harder to spot and quantify. For
example, in natural language processing, large self-supervised
language models are typically trained on vast amounts of text
that are often sourced from the Internet without thorough data
curation. If left unchecked, these models can reportedly
generate unjust or oppressive language, which promotes
discrimination, exclusion, and toxicity.335 The risk of
compromising model performance by using biased training
data is as relevant in enzyme engineering as in any other
field.31 However, in contrast to natural languages, it is not
directly apparent what adverse biases could be adopted by
models in enzymology, as there is no quick and simple strategy
to directly validate outputs. Therefore, responsibility and
caution are advised, especially when different sources of data
are combined, e.g., with the data from human genomic
databases, which were reported to be racially biased.336

A typical example of a bias in enzymatic data arises in the
task of predicting mutational stability, where a predictor given
an original and mutated sequence as inputs should report a
single number corresponding to the predicted ΔΔG. In

Figure 4. An overview of explainable AI methods. The figure
illustrates the concepts using the task of predicting protein solubility
from primary structure data as an example. (a) Perturbation methods
check the effect of changes in input data on output; a significant
change in output causes the corresponding input to be marked as
crucial for prediction (darker red colors on the output indicate a
higher difference in prediction and hence higher importance for the
output). Perturbed amino acids in the input are underlined. (b)
Propagation methods use the network structure and move from the
prediction to the input to determine which parts of the input have the
greatest impact on the prediction (here, darker colors indicate greater
impact on the prediction). (c) Transparent networks are designed to
be interpretable, for example, by specific choices of their architecture
or the individual building blocks (e.g., filters in a convolutional
network might be interpreted as specific relevant sequence motifs
identified during training). Here different parts of the network (shown
in different colors) are related to different parts of the input sequence
(illustrated in the same colors).
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general, a random mutation of a natural protein is more likely
to be destabilizing than stabilizing,337 and this bias often
propagates to stability data sets, leading to an issue similar to
the class imbalance problem resulting in the overprediction of
destabilizing mutations. To combat such effects, it has become
standard to exploit the antisymmetry of mutational stability,
which arises from the physical principle described by the
following equation:338 ΔΔG(WT → Mut) = −ΔΔG(Mut →
WT). That is, the change in ΔG upon mutating a residue is
equal to the negative change in ΔG that would be induced by
the hypothetical inverse mutation. This property makes it
possible to augment the training data set by adding artificial
inverse mutations from the mutant sequence (Mut) to the
wild-type sequence (WT) to obtain a balanced data set.
Antisymmetry can also be incorporated by design, ensuring
that the property is enforced even when using an imbalanced
training set.339 Interestingly, efforts to solve the problem of
predicting protein stability changes upon mutation have driven
progress in other sensitivity studies, e.g., the use of reduced
amino acid alphabets to account for bias in the representation
of mutations in the training data,131 structural sensitivity,340 or
the “scaffold bias” of using crystallographic structures instead
of AlphaFold models in ensembles.276 Another task where data
set biases were reported is structure-based virtual screening.
This problem was recently tackled using an ML-based scoring
function in which the authors took care to ensure that feature
importance was consistent with human knowledge; this forced
the model to learn relevant features regardless of the present
biases, leading to better generalizability.341

In many cases, however, even a detailed understanding of
the studied task will not reveal straightforward paths for
uncovering and fixing biases because problems often arise from
intricate interdependencies between data points that research-
ers are unaware of. To combat such issues, the concept of
multicalibration has been proposed.342 The aim of multi-
calibration is to make predictors perform more uniformly
across different data subclasses. However, the complexity of
the proposed approach is linear with respect to the number of
possible subsets of the training data and, thus, exponential with
respect to the number of training samples. To alleviate this
high computational cost, other studies proposed low-degree
multicalibration by drawing on the multicalibration and multi-
accuracy approaches.343,344 These concepts are currently
mainly being studied within the domain of algorithmic
fairness,345 which is largely concerned with ML-based
predictors that process personal data on human individuals.
It is interesting to see if these concepts will be useful in the
context of enzymology, for example, by ensuring that learned
predictors have similar performance for different protein
families.
6.3. Other Promising Methods. One current trend in

machine learning is that models are increasing in size in parallel
with the increasing amount of data on which they are trained.
Models such as ChatGPT and DALL-E38 are shining examples
of this trend. To increase the size of the data sets available for
model training in protein engineering, it may be necessary to
use as much available experimental data as possible, accepting
that experimental data sets will inevitably vary widely in quality
and size. To bridge the gap between small high-quality and
large low-quality data sets, meta-learning appears to be a
promising strategy. In such an approach, nested optimization
could be employed for training on a large set of noisy examples
in the inner loop and a small set of trusted examples in the

outer loop, thus suppressing the impact of the noise in the
larger data set.346

Molecular simulations using MD and quantum mechanical
methods could be another valuable source of data for training
large, data-hungry models. However, these simulations are very
computationally demanding, as demonstrated by Musaelian et
al., who recently used machine-learned potentials in simu-
lations of biomolecules using 5120 A100 GPUs in parallel.347

The hardware requirements of MD using such large data sets
could be met using purpose-built supercomputers such as
Anton 3.348 Advances in quantum computing (QC) technol-
ogy could also make large-scale molecular simulations more
accessible, as well as benefit generative ML tasks349 and
improve the generalizability of models trained on limited
data.350 However, the greatest benefit of QC in enzyme
engineering will likely result from its expected ability to greatly
accelerate quantum and molecular mechanics simula-
tions.351,352

Given the trend toward ever-larger models, it is important to
consider the cost of their training and the CO2 emissions
resulting from the training and inference process.353 This issue
can be addressed by adopting energy-saving ML practices,354

implementing architectural redundancy to bypass lengthy
training processes,355 or obviating the need for large model
training by narrowing problems down to simple linear
combinations of system-relevant physical properties.356 An-
other important recent trend in machine learning involves
lightweight adaptation of large pretrained models to new tasks
using adaptor layers.201,357 These methods change only a small
fraction of the parameters of the large scale pretrained model
for the new task, leaving the vast majority untouched. This
allows large models to be adapted to new tasks at a fraction of
their initial training costs; the time required for adaptation may
be as little as several hours on a single eight-GPU
machine,358,359 eliminating the need for the supercomputer
infrastructure used to train the original model. This
significantly accelerates model adaptation and makes such
training and related research accessible to a wide community of
researchers who may lack supercomputer access.
Another promising area of application for ML is further

automation of enzyme engineering pipelines, for example, by
using reinforcement learning (RL) to select structural or
biophysical motifs that are important for a target property.360

Several recent advances in RL have focused on small molecule
design.361 However, when combined with recent advances in
protein science, RL has also shown promise in the design of
protein complexes362 or peptide binders with high affinities.363

Based on this expansion of its applicability domains, we believe
that RL could be similarly useful in enzyme engineering.
Enabling more user-friendly pipeline interaction, for example,
by creating ChatGPT-like interfaces to simplify the control and
running of experiments, can potentially further contribute to
the automation of the workflows.

7. CONCLUSIONS
We live in exciting times that provide many opportunities to
explore new horizons in enzyme engineering and machine
learning. Many ambitious tasks are already being tackled by
cutting-edge data-driven algorithms and approaches, often
inspired by their spectacular performance in other domains.
The tools created on their basis are already playing integral
roles in studies aiming to discover and improve biocatalysts.
On the other hand, many more goals are still waiting for the
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appearance of suitable data sets and data processing protocols
to be eventually leveraged by machine learning. There are
many challenges ahead, including the creation of reliable and
user-friendly tools for generating promising protein designs by
users with limited ML knowledge, addressing multiple tasks in
one pipeline, incorporating protein dynamics in ML pipelines,
understanding the effects of insertions, deletions, or unnatural
amino acids, increasing the interpretability of the models, and
revealing hidden data biases. One of the most significant
takeaways from the success of machine learning in other
domains, such as natural language processing or computer
vision, is the role of large-scale data collection and curation. As
biochemistry data tend to be more challenging to acquire than,
for example, images or text, developing mechanisms for open
sharing and aggregation of data sets across the entire scientific
community could have game-changing effects. Building and
maintaining community-wide training data sets and bench-
marks, including such ambitious data types as protein
dynamics, could create entirely new ways for designing
proteins that would shape the future of biotechnology.
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(17) Chandra, A.; Tünnermann, L.; Löfstedt, T.; Gratz, R.
Transformer-Based Deep Learning for Predicting Protein Properties
in the Life Sciences. Elife 2023, 12, No. e82819, DOI: 10.7554/
eLife.82819.
(18) Lin, T.; Wang, Y.; Liu, X.; Qiu, X. A Survey of Transformers. AI
Open 2022, 3, 111−132.
(19) Zhang, X.-M.; Liang, L.; Liu, L.; Tang, M.-J. Graph Neural
Networks and Their Current Applications in Bioinformatics. Front.
Genet. 2021, 12, No. 690049.
(20) Bronstein, M. M.; Bruna, J.; Cohen, T.; Velic ̌kovic,́ P.
Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and
Gauges. arXiv [cs.LG] 2021, DOI: 10.48550/arXiv.2104.13478.
(21) Alzubaidi, L.; Zhang, J.; Humaidi, A. J.; Al-Dujaili, A.; Duan, Y.;
Al-Shamma, O.; Santamaría, J.; Fadhel, M. A.; Al-Amidie, M.; Farhan,
L. Review of Deep Learning: Concepts, CNN Architectures,
Challenges, Applications, Future Directions. J Big Data 2021, 8, 53.
(22) Calin, O. Deep Learning Architectures; Springer, 2020.

(23) Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT
Press, 2016.
(24) Bordin, N.; Dallago, C.; Heinzinger, M.; Kim, S.; Littmann, M.;
Rauer, C.; Steinegger, M.; Rost, B.; Orengo, C. Novel Machine
Learning Approaches Revolutionize Protein Knowledge. Trends
Biochem. Sci. 2023, 48 (4), 345−359.
(25) Mowbray, M.; Savage, T.; Wu, C.; Song, Z.; Cho, B. A.; Del
Rio-Chanona, E. A.; Zhang, D. Machine Learning for Biochemical
Engineering: A Review. Biochemical Eng. J. 2021, 172, 108054.
(26) Hon, J.; Marusiak, M.; Martinek, T.; Kunka, A.; Zendulka, J.;
Bednar, D.; Damborsky, J. SoluProt: Prediction of Soluble Protein
Expression in Escherichia Coli. Bioinformatics 2021, 37 (1), 23−28.
(27) Wu, K. E.; Yang, K. K.; van den Berg, R.; Zou, J. Y.; Lu, A. X.;
Amini, A. P. Protein Structure Generation via Folding Diffusion. arXiv
[q-bio.BM] 2022, DOI: 10.48550/arXiv.2209.15611.
(28) Watson, J. L.; Juergens, D.; Bennett, N. R.; Trippe, B. L.; Yim,
J.; Eisenach, H. E.; Ahern, W.; Borst, A. J.; Ragotte, R. J.; Milles, L. F.;
Wicky, B. I. M.; Hanikel, N.; Pellock, S. J.; Courbet, A.; Sheffler, W.;
Wang, J.; Venkatesh, P.; Sappington, I.; Torres, S. V.; Lauko, A.; De
Bortoli, V.; Mathieu, E.; Ovchinnikov, S.; Barzilay, R.; Jaakkola, T. S.;
DiMaio, F.; Baek, M.; Baker, D. De Novo Design of Protein Structure
and Function with RFdiffusion. Nature 2023, 620, 1089.
(29) Corso, G.; Stärk, H.; Jing, B.; Barzilay, R.; Jaakkola, T.
DiffDock: Diffusion Steps, Twists, and Turns for Molecular Docking.
arXiv [q-bio.BM] 2022, DOI: 10.48550/arXiv.2210.01776.
(30) Guo, Z.; Liu, J.; Wang, Y.; Chen, M.; Wang, D.; Xu, D.; Cheng,
J. Diffusion Models in Bioinformatics: A New Wave of Deep Learning
Revolution in Action. arXiv [cs.LG] 2023, DOI: 10.48550/
arXiv.2302.10907.
(31) Shroff, R.; Cole, A. W.; Diaz, D. J.; Morrow, B. R.; Donnell, I.;
Annapareddy, A.; Gollihar, J.; Ellington, A. D.; Thyer, R. Discovery of
Novel Gain-of-Function Mutations Guided by Structure-Based Deep
Learning. ACS Synth. Biol. 2020, 9 (11), 2927−2935.
(32) Zhang, Z.; Xu, M.; Chenthamarakshan, V.; Lozano, A.; Das, P.;
Tang, J. Enhancing Protein Language Models with Structure-Based
Encoder and Pre-Training. arXiv (Quantitative Biology.Quantitative
Methods), March 11, 2023, 2303.06275, ver. 1. DOI: 10.48550/
arXiv.2303.06275
(33) Diaz, D. J.; Gong, C.; Ouyang-Zhang, J.; Loy, J. M.; Wells, J.;
Yang, D.; Ellington, A. D.; Dimakis, A.; Klivans, A. R. Stability Oracle:
A Structure-Based Graph-Transformer for Identifying Stabilizing
Mutat ions . b ioRxiv (Biochemi s t ry) , March 22 , 2023 ,
2023.05.15.540857. DOI: 10.1101/2023.05.15.540857.
(34) Ferruz, N.; Heinzinger, M.; Akdel, M.; Goncearenco, A.; Naef,
L.; Dallago, C. From Sequence to Function through Structure: Deep
Learning for Protein Design. Comput. Struct. Biotechnol. J. 2023, 21,
238−250.
(35) Madani, A.; Krause, B.; Greene, E. R.; Subramanian, S.; Mohr,
B. P.; Holton, J. M.; Olmos, J. L., Jr; Xiong, C.; Sun, Z. Z.; Socher, R.;
Fraser, J. S.; Naik, N. Large Language Models Generate Functional
Protein Sequences across Diverse Families. Nat. Biotechnol. 2023, 41,
1099.
(36) Li, Y.; Rezaei, M. A.; Li, C.; Li, X. DeepAtom: A Framework for
Protein-Ligand Binding Affinity Prediction. In Proceedings of the 2019
IEEE International Conference on Bioinformatics and Biomedicine
(BIBM), San Diego, CA, November 18−21, 2019; IEEE, 2019; pp
303−310.
(37) Park, S.; Seok, C. GalaxyWater-CNN: Prediction of Water
Positions on the Protein Structure by a 3D-Convolutional Neural
Network. J. Chem. Inf. Model. 2022, 62 (13), 3157−3168.
(38) Ramesh, A.; Dhariwal, P.; Nichol, A.; Chu, C.; Chen, M.
Hierarchical Text-Conditional Image Generation with CLIP Latents.
arXiv [cs.CV] 2022, DOI: 10.48550/ARXIV.2204.06125.
(39) Rombach, R.; Blattmann, A.; Lorenz, D.; Esser, P.; Ommer, B.
High-Resolution Image Synthesis with Latent Diffusion Models. arXiv
[cs.CV] 2021, DOI: 10.48550/arXiv.2112.10752.
(40) Schneuing, A.; Du, Y.; Harris, C.; Jamasb, A.; Igashov, I.; Du,
W.; Blundell, T.; Lió, P.; Gomes, C.; Welling, M.; Bronstein, M.;

ACS Catalysis pubs.acs.org/acscatalysis Perspective

https://doi.org/10.1021/acscatal.3c02743
ACS Catal. 2023, 13, 13863−13895

13885

https://doi.org/10.1038/s43586-021-00044-z
https://doi.org/10.1016/j.jclepro.2018.09.244
https://doi.org/10.1016/j.jclepro.2018.09.244
https://doi.org/10.1016/j.ymben.2021.12.006
https://doi.org/10.1016/j.ymben.2021.12.006
https://doi.org/10.1111/1751-7915.13488
https://doi.org/10.1111/1751-7915.13488
https://doi.org/10.1016/j.sbi.2021.01.010
https://doi.org/10.1016/j.sbi.2021.01.010
https://doi.org/10.1038/s41578-023-00540-6
https://doi.org/10.1038/s41524-022-00765-z
https://doi.org/10.1038/s41524-022-00765-z
https://doi.org/10.1039/D2MA00067A
https://doi.org/10.1039/D2MA00067A
https://doi.org/10.1038/s41580-021-00407-0
https://doi.org/10.1038/s41580-021-00407-0
https://doi.org/10.1002/cite.202271102
https://doi.org/10.1002/cite.202271102
https://doi.org/10.1371/journal.pcbi.1010749
https://doi.org/10.1371/journal.pcbi.1010749
https://doi.org/10.1021/acscatal.9b04321?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acscatal.9b04321?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.sbi.2021.11.008
https://doi.org/10.1016/j.sbi.2021.11.008
https://doi.org/10.1093/bib/bbac102
https://doi.org/10.1093/bib/bbac102
https://doi.org/10.1093/bib/bbac102?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1093/bib/bbac102?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.jbc.2021.100558
https://doi.org/10.1016/j.jbc.2021.100558
https://doi.org/10.7554/eLife.82819
https://doi.org/10.7554/eLife.82819
https://doi.org/10.7554/eLife.82819?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.7554/eLife.82819?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.aiopen.2022.10.001
https://doi.org/10.3389/fgene.2021.690049
https://doi.org/10.3389/fgene.2021.690049
https://doi.org/10.48550/arXiv.2104.13478
https://doi.org/10.48550/arXiv.2104.13478
https://doi.org/10.48550/arXiv.2104.13478?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1186/s40537-021-00444-8
https://doi.org/10.1186/s40537-021-00444-8
https://doi.org/10.1016/j.tibs.2022.11.001
https://doi.org/10.1016/j.tibs.2022.11.001
https://doi.org/10.1016/j.bej.2021.108054
https://doi.org/10.1016/j.bej.2021.108054
https://doi.org/10.1093/bioinformatics/btaa1102
https://doi.org/10.1093/bioinformatics/btaa1102
https://doi.org/10.48550/arXiv.2209.15611
https://doi.org/10.48550/arXiv.2209.15611?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1038/s41586-023-06415-8
https://doi.org/10.1038/s41586-023-06415-8
https://doi.org/10.48550/arXiv.2210.01776
https://doi.org/10.48550/arXiv.2210.01776?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.48550/arXiv.2302.10907
https://doi.org/10.48550/arXiv.2302.10907
https://doi.org/10.48550/arXiv.2302.10907?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.48550/arXiv.2302.10907?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acssynbio.0c00345?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acssynbio.0c00345?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acssynbio.0c00345?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.48550/arXiv.2303.06275
https://doi.org/10.48550/arXiv.2303.06275
https://doi.org/10.48550/arXiv.2303.06275?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.48550/arXiv.2303.06275?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1101/2023.05.15.540857
https://doi.org/10.1101/2023.05.15.540857
https://doi.org/10.1101/2023.05.15.540857
https://doi.org/10.1101/2023.05.15.540857?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.csbj.2022.11.014
https://doi.org/10.1016/j.csbj.2022.11.014
https://doi.org/10.1038/s41587-022-01618-2
https://doi.org/10.1038/s41587-022-01618-2
https://doi.org/10.1021/acs.jcim.2c00306?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jcim.2c00306?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jcim.2c00306?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.48550/ARXIV.2204.06125
https://doi.org/10.48550/ARXIV.2204.06125?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.48550/arXiv.2112.10752
https://doi.org/10.48550/arXiv.2112.10752?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
pubs.acs.org/acscatalysis?ref=pdf
https://doi.org/10.1021/acscatal.3c02743?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Correia, B. Structure-Based Drug Design with Equivariant Diffusion
Models. arXiv [q-bio.BM] 2022, DOI: 10.48550/arXiv.2210.13695.
(41) Igashov, I.; Stärk, H.; Vignac, C.; Satorras, V. G.; Frossard, P.;
Welling, M.; Bronstein, M. M.; Correia, B. Equivariant 3D-
Conditional Diffusion Models for Molecular Linker Design. OpenRe-
view, February 1, 2023. https://openreview.net/forum?id=
cnsHSSLnHVV.
(42) Yang, A.; Nagrani, A.; Seo, P. H.; Miech, A.; Pont-Tuset, J.;
Laptev, I.; Sivic, J.; Schmid, C. Vid2Seq: Large-Scale Pretraining of a
Visual Language Model for Dense Video Captioning. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
Vancouver, Canada, June 2022, 2023; Computer Vision Foundation,
2023; pp 10714−10726.
(43) Huang, C.; Wu, Z.; Wen, J.; Xu, Y.; Jiang, Q.; Wang, Y.
Abnormal Event Detection Using Deep Contrastive Learning for
Intelligent Video Surveillance System. IEEE Trans. Ind. Inf. 2022, 18
(8), 5171−5179.
(44) Ho, J.; Chan, W.; Saharia, C.; Whang, J.; Gao, R.; Gritsenko, A.;
Kingma, D. P.; Poole, B.; Norouzi, M.; Fleet, D. J.; Salimans, T.
Imagen Video: High Definition Video Generation with Diffusion
Models. arXiv [cs.CV] 2022, DOI: 10.48550/arXiv.2210.02303.
(45) Villegas, R.; Babaeizadeh, M.; Kindermans, P.-J.; Moraldo, H.;
Zhang, H.; Saffar, M. T.; Castro, S.; Kunze, J.; Erhan, D. Phenaki:
Variable Length Video Generation from Open Domain Textual
Descriptions. The Eleventh International Conference on Learning
Representations, Kigali, Rwanda, May 1−5, 2023; OpenReview,
2023. https://openreview.net/pdf?id=vOEXS39nOF
(46) Singer, U.; Polyak, A.; Hayes, T.; Yin, X.; An, J.; Zhang, S.; Hu,
Q.; Yang, H.; Ashual, O.; Gafni, O.; Parikh, D.; Gupta, S.; Taigman, Y.
Make-A-Video: Text-to-Video Generation without Text-Video Data.
The Eleventh International Conference on Learning Representations,
Kigali, Rwanda, May 1−5, 2023; OpenReview, 2023. https://
openreview.net/pdf?id=nJfylDvgzlq
(47) Hung, M.; Lauren, E.; Hon, E. S.; Birmingham, W. C.; Xu, J.;
Su, S.; Hon, S. D.; Park, J.; Dang, P.; Lipsky, M. S. Social Network
Analysis of COVID-19 Sentiments: Application of Artificial
Intelligence. J. Med. Internet Res. 2020, 22 (8), No. e22590.
(48) Bryant, P.; Pozzati, G.; Elofsson, A. Improved Prediction of
Protein-Protein Interactions Using AlphaFold2. Nat. Commun. 2022,
13, 1265.
(49) Muzio, G.; O’Bray, L.; Borgwardt, K. Biological Network
Analysis with Deep Learning. Brief. Bioinform. 2021, 22 (2), 1515−
1530.
(50) Chen, J.; Zheng, S.; Zhao, H.; Yang, Y. Structure-Aware Protein
Solubility Prediction from Sequence through Graph Convolutional
Network and Predicted Contact Map. J. Cheminform. 2021, 13, 7.
(51) Jiang, J.; Wang, R.; Wei, G.-W. GGL-Tox: Geometric Graph
Learning for Toxicity Prediction. J. Chem. Inf. Model. 2021, 61 (4),
1691−1700.
(52) Hu, W.; Fey, M.; Zitnik, M.; Dong, Y.; Ren, H.; Liu, B.;
Catasta, M.; Leskovec, J.; Larochelle, H.; Ranzato, M.; Hadsell, R.;
Balcan, M. F.; Lin, H. Open Graph Benchmark: Datasets for Machine
Learning on Graphs. Adv. Neural Inf. Process. Syst. 2020, 33, 22118−
22133.
(53) Kawashima, S.; Pokarowski, P.; Pokarowska, M.; Kolinski, A.;
Katayama, T.; Kanehisa, M. AAindex: Amino Acid Index Database,
Progress Report 2008. Nucleic Acids Res. 2007, 36, D202−D205.
(54) ElAbd, H.; Bromberg, Y.; Hoarfrost, A.; Lenz, T.; Franke, A.;
Wendorff, M. Amino Acid Encoding for Deep Learning Applications.
BMC Bioinformatics 2020, 21, 235.
(55) Raimondi, D.; Orlando, G.; Vranken, W. F.; Moreau, Y.
Exploring the Limitations of Biophysical Propensity Scales Coupled
with Machine Learning for Protein Sequence Analysis. Sci. Rep. 2019,
9, 16932.
(56) Kandathil, S. M.; Greener, J. G.; Lau, A. M.; Jones, D. T.
Ultrafast End-to-End Protein Structure Prediction Enables High-
Throughput Exploration of Uncharacterized Proteins. Proc. Natl.
Acad. Sci. U. S. A. 2022, 119 (4), No. e2113348119, DOI: 10.1073/
pnas.2113348119.

(57) Fasoulis, R.; Paliouras, G.; Kavraki, L. E. Graph Representation
Learning for Structural Proteomics. Emerg Top Life Sci 2021, 5 (6),
789−802.
(58) Hermosilla, P.; Schäfer, M.; Lang, M.; Fackelmann, G.;
Vázquez, P. P.; Kozlíková, B.; Krone, M.; Ritschel, T.; Ropinski, T.
Intrinsic-Extrinsic Convolution and Pooling for Learning on 3D
Protein Structures. Ninth International Conference on Learning
Representations, May 3−7, 2021; OpenReview, 2021.
(59) Batzner, S.; Musaelian, A.; Sun, L.; Geiger, M.; Mailoa, J. P.;
Kornbluth, M.; Molinari, N.; Smidt, T. E.; Kozinsky, B. E(3)-
Equivariant Graph Neural Networks for Data-Efficient and Accurate
Interatomic Potentials. Nat. Commun. 2022, 13, 2453.
(60) Gligorijevic,́ V.; Renfrew, P. D.; Kosciolek, T.; Leman, J. K.;
Berenberg, D.; Vatanen, T.; Chandler, C.; Taylor, B. C.; Fisk, I. M.;
Vlamakis, H.; Xavier, R. J.; Knight, R.; Cho, K.; Bonneau, R.
Structure-Based Protein Function Prediction Using Graph Convolu-
tional Networks. Nat. Commun. 2021, 12, 3168.
(61) Gao, Z.; Jiang, C.; Zhang, J.; Jiang, X.; Li, L.; Zhao, P.; Yang,
H.; Huang, Y.; Li, J. Hierarchical Graph Learning for Protein-Protein
Interaction. Nat. Commun. 2023, 14, 1093.
(62) Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.;
Gomez, A. N.; Kaiser, Ł.; Polosukhin, I. Attention Is All You Need.
Adv. Neural Inf. Process. Syst. 2017, 30, 5999.
(63) Fuchs, F.; Worrall, D.; Fischer, V.; Welling, M.; Larochelle, H.;
Ranzato, M.; Hadsell, R.; Balcan, M. F.; Lin, H. SE(3)-Transformers:
3D Roto-Translation Equivariant Attention Networks. Adv. Neural Inf.
Process. Syst. 2020, 33, 1970−1981.
(64) Detlefsen, N. S.; Hauberg, S.; Boomsma, W. Learning
Meaningful Representations of Protein Sequences. Nat. Commun.
2022, 13, 1914.
(65) Rives, A.; Meier, J.; Sercu, T.; Goyal, S.; Lin, Z.; Liu, J.; Guo,
D.; Ott, M.; Zitnick, C. L.; Ma, J.; Fergus, R. Biological Structure and
Function Emerge from Scaling Unsupervised Learning to 250 Million
Protein Sequences. Proc. Natl. Acad. Sci. U. S. A. 2021, 118 (15),
No. e2016239118, DOI: 10.1073/pnas.2016239118.
(66) Meier, J.; Rao, R.; Verkuil, R.; Liu, J.; Sercu, T.; Rives, A.;
Ranzato, M.; Beygelzimer, A.; Dauphin, Y.; Liang, P. S.; Vaughan, J.
W. Language Models Enable Zero-Shot Prediction of the Effects of
Mutations on Protein Function. Adv. Neural Inf. Process. Syst. 2021,
34, 29287−29303.
(67) Lin, Z.; Akin, H.; Rao, R.; Hie, B.; Zhu, Z.; Lu, W.; Smetanin,
N.; Verkuil, R.; Kabeli, O.; Shmueli, Y.; Dos Santos Costa, A.; Fazel-
Zarandi, M.; Sercu, T.; Candido, S.; Rives, A. Evolutionary-Scale
Prediction of Atomic-Level Protein Structure with a Language Model.
Science 2023, 379 (6637), 1123−1130.
(68) Zhang, Z.; Xu, M.; Jamasb, A.; Chenthamarakshan, V.; Lozano,
A.; Das, P.; Tang, J. Protein Representation Learning by Geometric
Structure Pretraining. The Eleventh International Conference on
Learning Representations, Kigali, Rwanda, May 1−5, 2023; OpenRe-
view, 2023. https://openreview.net/pdf?id=to3qCB3tOh9
(69) Fowler, D. M.; Fields, S. Deep Mutational Scanning: A New
Style of Protein Science. Nat. Methods 2014, 11 (8), 801−807.
(70) Vanella, R.; Kovacevic, G.; Doffini, V.; Fernández de Santaella,
J.; Nash, M. A. High-Throughput Screening, next Generation
Sequencing and Machine Learning: Advanced Methods in Enzyme
Engineering. Chem. Commun. 2022, 58 (15), 2455−2467.
(71) Morrison, K. L.; Weiss, G. A. Combinatorial Alanine-Scanning.
Curr. Opin. Chem. Biol. 2001, 5 (3), 302−307.
(72) Brown, T.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J. D.;
Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell, A.
Language Models Are Few-Shot Learners. Adv. Neural Inf. Process.
Syst. 2020, 33, 1877−1901.
(73) OpenAI. GPT-4 Technical Report. arXiv (Computer
Science.Computation and Language), March 27, 2023, 2303.08774.
https://arxiv.org/abs/2303.08774.
(74) Luo, R.; Sun, L.; Xia, Y.; Qin, T.; Zhang, S.; Poon, H.; Liu, T.-
Y. BioGPT: Generative Pre-Trained Transformer for Biomedical Text
Generation and Mining. Brief. Bioinform. 2022, 23 (6), No. bbac409,
DOI: 10.1093/bib/bbac409.

ACS Catalysis pubs.acs.org/acscatalysis Perspective

https://doi.org/10.1021/acscatal.3c02743
ACS Catal. 2023, 13, 13863−13895

13886

https://doi.org/10.48550/arXiv.2210.13695
https://doi.org/10.48550/arXiv.2210.13695
https://doi.org/10.48550/arXiv.2210.13695?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://openreview.net/forum?id=cnsHSSLnHVV
https://openreview.net/forum?id=cnsHSSLnHVV
https://doi.org/10.1109/TII.2021.3122801
https://doi.org/10.1109/TII.2021.3122801
https://doi.org/10.48550/arXiv.2210.02303
https://doi.org/10.48550/arXiv.2210.02303
https://doi.org/10.48550/arXiv.2210.02303?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://openreview.net/pdf?id=vOEXS39nOF
https://openreview.net/pdf?id=nJfylDvgzlq
https://openreview.net/pdf?id=nJfylDvgzlq
https://doi.org/10.2196/22590
https://doi.org/10.2196/22590
https://doi.org/10.2196/22590
https://doi.org/10.1038/s41467-022-28865-w
https://doi.org/10.1038/s41467-022-28865-w
https://doi.org/10.1093/bib/bbaa257
https://doi.org/10.1093/bib/bbaa257
https://doi.org/10.1186/s13321-021-00488-1
https://doi.org/10.1186/s13321-021-00488-1
https://doi.org/10.1186/s13321-021-00488-1
https://doi.org/10.1021/acs.jcim.0c01294?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jcim.0c01294?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1093/nar/gkm998
https://doi.org/10.1093/nar/gkm998
https://doi.org/10.1186/s12859-020-03546-x
https://doi.org/10.1038/s41598-019-53324-w
https://doi.org/10.1038/s41598-019-53324-w
https://doi.org/10.1073/pnas.2113348119
https://doi.org/10.1073/pnas.2113348119
https://doi.org/10.1073/pnas.2113348119?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1073/pnas.2113348119?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1042/ETLS20210225
https://doi.org/10.1042/ETLS20210225
https://doi.org/10.1038/s41467-022-29939-5
https://doi.org/10.1038/s41467-022-29939-5
https://doi.org/10.1038/s41467-022-29939-5
https://doi.org/10.1038/s41467-021-23303-9
https://doi.org/10.1038/s41467-021-23303-9
https://doi.org/10.1038/s41467-023-36736-1
https://doi.org/10.1038/s41467-023-36736-1
https://doi.org/10.1038/s41467-022-29443-w
https://doi.org/10.1038/s41467-022-29443-w
https://doi.org/10.1073/pnas.2016239118
https://doi.org/10.1073/pnas.2016239118
https://doi.org/10.1073/pnas.2016239118
https://doi.org/10.1073/pnas.2016239118?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1126/science.ade2574
https://doi.org/10.1126/science.ade2574
https://openreview.net/pdf?id=to3qCB3tOh9
https://doi.org/10.1038/nmeth.3027
https://doi.org/10.1038/nmeth.3027
https://doi.org/10.1039/D1CC04635G
https://doi.org/10.1039/D1CC04635G
https://doi.org/10.1039/D1CC04635G
https://doi.org/10.1016/S1367-5931(00)00206-4
https://doi.org/10.1093/bib/bbac409
https://doi.org/10.1093/bib/bbac409
https://doi.org/10.1093/bib/bbac409?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
pubs.acs.org/acscatalysis?ref=pdf
https://doi.org/10.1021/acscatal.3c02743?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


(75) Zhu, Z.; Shi, C.; Zhang, Z.; Liu, S.; Xu, M.; Yuan, X.; Zhang, Y.;
Chen, J.; Cai, H.; Lu, J.; Ma, C.; Liu, R.; Xhonneux, L.-P.; Qu, M.;
Tang, J. TorchDrug: A Powerful and Flexible Machine Learning
Platform for Drug Discovery. arXiv [cs.LG] 2022, DOI: 10.48550/
arXiv.2202.08320.
(76) Siedhoff, N. E.; Illig, A.-M.; Schwaneberg, U.; Davari, M. D.
PyPEF-An Integrated Framework for Data-Driven Protein Engineer-
ing. J. Chem. Inf. Model. 2021, 61 (7), 3463−3476.
(77) Draizen, E. J.; Murillo, L. F. R.; Readey, J.; Mura, C.; Bourne, P.
E. Prop3D: A Flexible, Python-Based Platform for Machine Learning
with Protein Structural Properties and Biophysical Data. bioRxiv,
2022, 2022.12.27.522071. DOI: 10.1101/2022.12.27.522071.
(78) Berman, H. M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.
N.; Weissig, H.; Shindyalov, I. N.; Bourne, P. E. The Protein Data
Bank. Nucleic Acids Res. 2000, 28 (1), 235−242.
(79) Chothia, C.; Lesk, A. M. The Relation between the Divergence
of Sequence and Structure in Proteins. EMBO J. 1986, 5 (4), 823−
826.
(80) van Kempen, M.; Kim, S. S.; Tumescheit, C.; Mirdita, M.; Lee,
J.; Gilchrist, C. L. M.; Söding, J.; Steinegger, M. Fast and Accurate
Protein Structure Search with Foldseek. Nat. Biotechnol. 2023,
DOI: 10.1038/s41587-023-01773-0.
(81) Brookes, D.; Park, H.; Listgarten, J. Conditioning by Adaptive
Sampling for Robust Design. In Proceedings of the 36th International
Conference on Machine Learning; Chaudhuri, K., Salakhutdinov, R.,
Eds.; Proceedings of Machine Learning Research, Vol. 97; PMLR,
2019; pp 773−782.
(82) Sinai, S.; Wang, R.; Whatley, A.; Slocum, S.; Locane, E.; Kelsic,
E. D. AdaLead: A Simple and Robust Adaptive Greedy Search
Algorithm for Sequence Design. arXiv (Computer Science.Machine
Learning), October 5, 2020, 2010.02141, ver. 1. DOI: 10.48550/
arXiv.2010.02141
(83) Ren, Z.; Li, J.; Ding, F.; Zhou, Y.; Ma, J.; Peng, J. Proximal
Exploration for Model-Guided Protein Sequence Design. In
Proceedings of the 39th International Conference on Machine Learning;
Chaudhuri, K., Jegelka, S., Song, L., Szepesvari, C., Niu, G., Sabato, S.,
Eds.; Proceedings of Machine Learning Research, Vol. 162; PMLR,
2022; pp 18520−18536.
(84) Lipsh-Sokolik, R.; Khersonsky, O.; Schröder, S. P.; de Boer, C.;
Hoch, S.-Y.; Davies, G. J.; Overkleeft, H. S.; Fleishman, S. J.
Combinatorial Assembly and Design of Enzymes. Science 2023, 379
(6628), 195−201.
(85) Yu, T.; Boob, A. G.; Volk, M. J.; Liu, X.; Cui, H.; Zhao, H.
Machine Learning-Enabled Retrobiosynthesis of Molecules. Nat.
Catal. 2023, 6, 137.
(86) Mistry, J.; Chuguransky, S.; Williams, L.; Qureshi, M.; Salazar,
G. A.; Sonnhammer, E. L. L.; Tosatto, S. C. E.; Paladin, L.; Raj, S.;
Richardson, L. J.; Finn, R. D.; Bateman, A. Pfam: The Protein
Families Database in 2021. Nucleic Acids Res. 2021, 49 (D1), D412−
D419.
(87) Pandurangan, A. P.; Stahlhacke, J.; Oates, M. E.; Smithers, B.;
Gough, J. The SUPERFAMILY 2.0 Database: A Significant Proteome
Update and a New Webserver. Nucleic Acids Res. 2019, 47 (D1),
D490−D494.
(88) Sillitoe, I.; Bordin, N.; Dawson, N.; Waman, V. P.; Ashford, P.;
Scholes, H. M.; Pang, C. S. M.; Woodridge, L.; Rauer, C.; Sen, N.;
Abbasian, M.; Le Cornu, S.; Lam, S. D.; Berka, K.; Varekova, I. H.;
Svobodova, R.; Lees, J.; Orengo, C. A. CATH: Increased Structural
Coverage of Functional Space. Nucleic Acids Res. 2021, 49 (D1),
D266−D273.
(89) Alcántara, R.; Axelsen, K. B.; Morgat, A.; Belda, E.; Coudert, E.;
Bridge, A.; Cao, H.; de Matos, P.; Ennis, M.; Turner, S.; Owen, G.;
Bougueleret, L.; Xenarios, I.; Steinbeck, C. Rhea–a Manually Curated
Resource of Biochemical Reactions. Nucleic Acids Res. 2012, 40,
D754−D760.
(90) Schomburg, I.; Chang, A.; Schomburg, D. BRENDA, Enzyme
Data and Metabolic Information. Nucleic Acids Res. 2002, 30 (1), 47−
49.

(91) Wittig, U.; Rey, M.; Weidemann, A.; Kania, R.; Müller, W.
SABIO-RK: An Updated Resource for Manually Curated Biochemical
Reaction Kinetics. Nucleic Acids Res. 2018, 46 (D1), D656−D660.
(92) Wishart, D. S.; Li, C.; Marcu, A.; Badran, H.; Pon, A.; Budinski,
Z.; Patron, J.; Lipton, D.; Cao, X.; Oler, E.; Li, K.; Paccoud, M.;
Hong, C.; Guo, A. C.; Chan, C.; Wei, W.; Ramirez-Gaona, M.
PathBank: A Comprehensive Pathway Database for Model Organ-
isms. Nucleic Acids Res. 2020, 48 (D1), D470−D478.
(93) Hafner, J.; MohammadiPeyhani, H.; Sveshnikova, A.;
Scheidegger, A.; Hatzimanikatis, V. Updated ATLAS of Biochemistry
with New Metabolites and Improved Enzyme Prediction Power. ACS
Synth. Biol. 2020, 9 (6), 1479−1482.
(94) Ganter, M.; Bernard, T.; Moretti, S.; Stelling, J.; Pagni, M.
Metanetx.org: A Website and Repository for Accessing, Analysing and
Manipulating Metabolic Networks. Bioinformatics 2013, 29 (6), 815−
816.
(95) Bairoch, A. The ENZYME Database in 2000. Nucleic Acids Res.

2000, 28 (1), 304−305.
(96) McDonald, A. G.; Tipton, K. F. Enzyme Nomenclature and
Classification: The State of the Art. FEBS J. 2023, 290 (9), 2214−
2231.
(97) Probst, D.; Manica, M.; Nana Teukam, Y. G.; Castrogiovanni,
A.; Paratore, F.; Laino, T. Biocatalysed Synthesis Planning Using
Data-Driven Learning. Nat. Commun. 2022, 13, 964.
(98) Heid, E.; Probst, D.; Green, W. H.; Madsen, G. K. H.
EnzymeMap: Curation, Validation and Data-Driven Prediction of
Enzymatic Reactions. ChemRxiv 2023, DOI: 10.26434/chemrxiv-
2023-jzw9w.
(99) Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.;
Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.;
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