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ABSTRACT: The MSstats R-Bioconductor family of packages is widely used for statistical analyses
of quantitative bottom-up mass spectrometry-based proteomic experiments to detect differentially
abundant proteins. It is applicable to a variety of experimental designs and data acquisition strategies
and is compatible with many data processing tools used to identify and quantify spectral features. In
the face of ever-increasing complexities of experiments and data processing strategies, the core
package of the family, with the same name MSstats, has undergone a series of substantial updates. Its
new version MSstats v4.0 improves the usability, versatility, and accuracy of statistical methodology,
and the usage of computational resources. New converters integrate the output of upstream
processing tools directly with MSstats, requiring less manual work by the user. The package’s
statistical models have been updated to a more robust workflow. Finally, MSstats’ code has been
substantially refactored to improve memory use and computation speed. Here we detail these
updates, highlighting methodological differences between the new and old versions. An empirical
comparison of MSstats v4.0 to its previous implementations, as well as to the packages MSqRob and
DEqMS, on controlled mixtures and biological experiments demonstrated a stronger performance and better usability of MSstats v4.0
as compared to existing methods.
KEYWORDS: Bioinformatics, Quantitative proteomics, Mass spectrometry, Statistical modeling, Statistical inference

■ INTRODUCTION
Technological advances in bottom up liquid chromatography
coupled with high-resolution tandem mass spectrometry (LC-
MS/MS) have facilitated the quantification of changes in
protein abundance across many conditions.1 The experiments
have increasingly complex experimental designs differing in
number and type of conditions (group comparisons or
repeated measures), and number and type of replicates
(biological replicates, technical replicates, fractionation).2,3

Additionally, numerous versions of chromatography-based
acquisition methods, such as Data-Dependent Acquisition
(DDA), Selected Reaction Monitoring (SRM), and Data-
Independent Acquisition (DIA), now offer effective and
complementary strategies for relative protein quantification
with high accuracy and high throughput.4 The experiments
generate mass spectra, with features corresponding to peptide
ions for DDA, peptide transitions for SRM, and peptide ions
and fragment ions for DIA.

Regardless of the experimental aims and design, software
tools are required to identify and quantify proteins in the
resulting MS spectra. A variety of computational spectral
processing tools, such as MaxQuant,5 Skyline,6 and Spec-
tronaut,7 extract, identify, and quantify features from the
acquired spectra.8 These tools are developed by different

groups, optimized for different instruments and workflows, and
make different decisions when feature identification or
quantification are challenging. For example, the tools differ
in strategies for quantifying feature intensities in individual LC-
MS runs, e.g., peak area or peak height at apex. They also differ
in reporting the intensity of the monoisotopic peak, the sum of
multiple isotopic peaks, or relying on more advanced
procedures. Moreover, the tools make different choices for
reporting outlying or missing values, which occur in the
presence of truncated or overlapped peaks, or when the
abundance of an analyte is below the limit of detection.

The complexities of the experimental designs, data
acquisitions and data processing create major challenges for
the downstream statistical analyses, and may lead to
inconsistent or erroneous results.9 To accommodate these
new challenges, methods for statistical analyses and their
implementations must grow in parallel. Statistical methods
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must be both versatile enough to reflect various scientific
questions and experimental designs, and robust enough to not
overfit to a particular experiment, experimental design, or data
processing tool. Implementations must utilize memory-efficient
and time-efficient data structures and algorithms that scale to
large data sets.10

A variety of statistical methods for detecting differentially
abundant proteins have been developed to address these
challenges. We loosely classify the existing methods into two
groups: two-step and feature-based. Two-step methods first
summarize the intensities of all the features of a protein in a
run, and then subject the summaries to statistical modeling. In
contrast, feature-based methods take as input quantified
features, and specify a full statistical model at the feature
level directly.11,12 For example, MSqRob13,14 includes function-
alities for both a feature-based workflow, as well as
summarization functionality for a two-step workflow. The
package utilizes a linear mixed effects model to detect
differential proteins and includes functionality to apply
empirical Bayes variance estimation.15 Meanwhile, DEqMS16

takes as input protein-level summaries, reported by a data
processing tool such as MaxQuant, and leverages the methods
in the Limma R package17−19 to moderate protein variance’s
through grouping proteins by their number of features in order
to identify differentially abundant proteins. Other packages of
note include proDA,20 a two-step method which focuses on
missing data and implements a probabilistic dropout based
model to combine missing and observed values, pmartR,21

another two-step method which focuses on the quality control,
preprocessing of MS data, and Analysis of Variance-
(ANOVA)22 for statistical analysis, and DAPAR,23 which
implements a two-step method in a graphical user interface.
Other packages, such as QFeatures24 and msImpute,25 focus on
the first step of the two-step workflow, implementing
functionalities for missing value imputation, and data
preprocessing.

Although software tools implementing many methods exist,
their functionalities often have limitations. First, the methods
do not easily integrate with upstream spectral processing tools.
The outputs of these tools typically need to be manually
converted into the correct format before it can be used for the
statistical analyses. Only a subset of implementations include
functionality for data processing such as feature filtering,
normalization, and missing value imputation, leaving the user
to rely on other resources such as the QFeatures, or implement
the steps on their own. The latter solution is particularly
undesirable, as custom data processing leads to irreproducible
results. Beyond data processing, while all the workflows
provide functionalities for group comparison, their ability to
distinguish biological and technical replicates is not always
clear. This is undesirable for complex experimental designs,
such as time-course and paired designs, where each replicate is
measured in multiple conditions. Additionally, some of the
methods require users to manually specify the model that fits
their data. These methodological aspects challenge users with
no statistical background, and can result in incorrectly specified
models. Finally, not every implementation is optimized in
terms of runtime and computational memory requirement for
large data sets.

Here, we introduce MSstats version 4.0 (v4.0), a statistical
methodology and core package in the family of R/
Bioconductor packages designed for statistical analysis of
experiments with chromatography-based quantification. Com-

pared to the previous versions of MSstats, MSstats v4.0 includes
a series of methodological and technical improvements.
Specifically, compared to MSstats v2.0, MSstats v3.0 includes
substantial methodological improvements. These include
updates to upstream data processing, such as missing value
imputation, and switching from a feature-based to two-step
modeling method. MSstats v4.0 implements the same statistical
models as MSstats v3.0, but with a substantially refactored code
that improves both the processing speed and memory use.
While MSstats has undergone many methodological and
technical improvements in recent years, there has not been a
comprehensive review of the package and methods since
MSstats v2.0.

Additionally, since its original publication, MSstats has
expanded into a broad family of R/Bioconductor packages and
methods. MSstats v4.0 is now designed for label-free
acquisition and detection of relative changes in protein
abundance, while other packages in the family address different
types of experimental designs and biological objectives.
Specifically, MSstatsTMT26 is designed for experiments
acquired via tandem mass tag (TMT) labeling. MSstatsPTM27

focuses on experiments studying post-translational modifica-
tions (PTMs). Finally, MSstatsShiny28 is an R-shiny based
graphical user interface (GUI), which makes the MSstats
methods accessible to users without programming background.
While MSstats v4.0 itself is not directly designed for these
specific use-cases, it serves as a backend for many. MSstatsTMT
directly applies the summarization methods in MSstats v4.0 to
each TMT mixture. MSstatsPTM utilizes the models in MSstats
v4.0, while adding a statistical correction to remove
confounding with the unmodified protein. MSstats v4.0 is at
the core of all packages in the MSstats package family and the
methods are leveraged without any input required by the user.

MSstats v4.0 includes direct converters for popular data
processing tools. Converters for label-free DDA experiments
include MaxQuant,5 Fragpipe,29 Skyline,6 OpenMS,30 Pro-
teome Discoverer (Thermo Scientific), and Progenesis QI
(Nonlinear Dynamics/Waters). SRM spectra can be quantified
by Skyline, and MultiQuant (Sciex). DIA spectra can be
processed by Skyline, Spectronaut7 (Biognosys), DIA-
Umpire,31 OpenSWATH,32 and DIA-NN.33 After conversion,
MSstats v4.0 includes multiple options for upstream data
processing, including feature filtering and missing value
imputation, providing users flexibility in preparing their data
for modeling. MSstats v4.0 implements a two-step modeling
method, first summarizing the feature intensities, and then
fitting a linear mixed effects model to the summarized data.
MSstats automatically adjusts the linear mixed effects model to
fit the specific experimental design, greatly easing implementa-
tion complexity. Finally, MSstats v4.0 leverages several
computational strategies to improve memory use and
computation speed, including moving high-resource functions
to the C++ programming language, and implementing a new
workflow for larger-than-memory input files.

Here we empirically compared MSstats v4.0/v3.0 to MSstats
v2.0 to MSqRob, and DEqMS on three controlled mixtures and
two biological experiments. We demonstrated that the two-
step statistical methodology is more versatile, being applicable
to time-course and paired designs, as well as more accurate
compared to the models in MSstats v2.0. MSstats v4.0
outperformed existing methods, while being easier to imple-
ment by users with limited statistical background. Finally, we
contrasted the computational resource usage between MSstats
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v2.0, v3.0, and v4.0 to highlight recent technological
improvements. The package is open source and is available
on Bioconductor and Github.

■ EXPERIMENTAL PROCEDURES

Data Overview and Availability
Table 1 summarizes the data sets included in this manuscript.
Three controlled mixtures were obtained by spiking proteins in
known concentrations into a complex background or by
diluting the same parent mixture. They covered a broad range
of known fold changes between conditions and represent two
DDA and one DIA data acquisition strategy. Two biological
investigations demonstrated the applicability of the proposed
approach across different experimental designs and acquisition
strategies. The true composition of the biological experiments
were unknown and the statistical methods could only be
evaluated in terms of the differences between the outputs of
MSqRob, DEqMS, MSstats v2.0, and MSstats v4.0. Finally, two
simulated out of memory data sets were generated to illustrate
the functionalities of MSstatsBig.

Details of data processing, software versions, R scripts with
MSstats analyses, and result of statistical analyses for all data
sets are available in MassIVE.quant (with direct links available
in Table 1).
Data Set 1: Controlled Mixture−DDA−MaxQuant9

The experiment was conducted as part of the 2015 study of the
Proteome Informatics Research Group (iPRG) of the
Association of the Biomedical Resource Facilities (ABRF).
Six proteins were spiked into samples with S. cerevisiae
proteome as the background. Four proteins were spiked with
four different concentrations, forming a Latin Square design.
Two more proteins were spiked in another four different
concentrations in the same four biological samples. The
concentrations are summarized in Table 2. Data from four
mixtures were acquired in DDA mode with triplicate MS runs,
resulting in 12 MS runs in total. Raw data were processed with
MaxQuant.
Data Set 2: Controlled Mixture−DIA−Spectronaut34

This study prepared two hybrid proteome samples, A and B,
consisting of tryptic digests of human, S. cerevisiae, and E. coli
proteomes. The proteomes were mixed in defined proportions,
to yield expected peptide and protein ratios (A/B) of 1:1 for
human, 2:1 for S. cerevisiae and 1:4 for E. coli proteins. Data
from two mixtures were acquired in DIA mode with triplicate
MS runs, resulting in 6 MS runs, and processed with
Spectronaut. This manuscript used the raw files acquired on

TripleTOF 6600, Iteration 2, with SWATH window number
64.
Data Set 3: Controlled Mixture−DDA−Skyline35

Thirty proteins were prepared at 1.5 pmol/μL in three
different subsets of 10 proteins each (Table 3). Proteins from
these subsets were spiked into a 15 μg E. coli background in
different amounts of five mixtures. The final amount of each
protein in each mixture was either 100, 200, or 400 fmol/μg of
E. coli background, indicated as 1, 2, and 4 in Table 4. Data
from the mixtures were acquired in DDA mode with triplicate
MS runs, resulting in 15 MS runs in total. Raw data were
processed with Skyline.
Data Set 4: Mouse−DDA−MaxQuant36

This experiment investigated Ataxin-2 (ATXN2) deficiency
through Atxn2-knockout (Atxn2-KO) mice. Liver samples
were taken from six wild type (WT) and six Atxn2-KO mice in
a balanced paired design. Data were acquired in DDA mode
with 1 technical replicate and processed with MaxQuant.
Details on the specific instrument and instrument settings are
available in the original publication.36 We evaluated the ability
of the statistical methods to correctly estimate the fold change
and identify differentially abundant proteins between con-
ditions.
Data Set 5: S. cerevisiae−DIA−Skyline37

Cells of S. cerevisiae were cultured in biological triplicates, and
sampled at six time points (0 min (T0), 15 min(T1), 30 min
(T2), 60 min (T3), 90 min (T4), 120 min (T5)) after osmotic
stress. Data were acquired in SWATH/DIA mode, and
processed using Skyline. The analysis used additional
information from 8 technical replicate MS runs on the same
samples, and limited the analyses to peptides that were
detected in at least 4 runs and CV less than 20% in these 8
runs. In this manuscript we compared five time points relative
to T0 (T1 vs T0, T2 vs T0, T3 vs T0, T4 vs T0, T5 vs T0).

Table 1. Experimental Data Sets in this Manuscripta

Experimental Design Data Availability

Data Set Type
No. of

Conditions
No. of Bio.
Replicates

No. of Tech.
Replicates

(MassIVE.quant or R
Package)

1: Controlled Mixture−DDA−MaxQuant9 Group 4 1 3 RMSV000000249.2
2: Controlled Mixture−DIA−Spectronaut34 Group 2 1 3 RMSV000000250.2
3: Controlled Mixture−DDA−Skyline35 Group 5 1 3 RMSV000000261.1
4: Mouse−DDA−MaxQuant36 Paired 2 6 2 RMSV000000292.1
5: S. cerevisiae−DIA−Skyline37 Time course 6 3 1 RMSV000000251.1
a“Data Set” is the code name of the data set. “Type” is the type of experimental design (group comparison, paired, or time course. “No. of
Conditions” states the number of conditions in the data set. “No. of Bio. Replicates” states the number of biological replicates per condition. “No.
of Tech. Replicates” states the number of technical replicates per biological replicate. More details about experimental design and data processing
steps for each data sets are available in next section, as listed in “Details in” column. The details of the experimental design, the raw data, the
reports, the analysis scripts, the intermediate data processing output files including quantification, testing results are available in MassIVE.quant.

Table 2. DDA:Choi207 Protein IDs and Concentrations of
Spike-in Proteins
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The true changes in protein abundance were unknown. We
evaluated the ability of the statistical methods to identify
differentially abundant proteins between conditions.
Simulated Out-of-Memory Data
To illustrate the performance of MSstatsBig, we generated two
out-of-memory data sets based on Data set 2: Controlled
Mixture−DIA−Spectronaut. The first data set was created by
replicating the Controlled Mixture 15 times, and the second
was created by by replicating it 30 times. The 15 copy data set
was 17.3 GB in size, while the 30 copy was 34.6 GB.

■ BACKGROUND ON EXISTING STATISTICAL
METHODS FOR DIFFERENTIAL ANALYSIS OF
MS-BASED PROTEOMICS

Statistical Methods with Bioconductor Implementation
In this section we provide additional details on MSqRob
(implemented in the msqrob2 package on Bioconductor) and
DEqMS. These two packages are closest to the scope of
MSstats in that they (1) are designed for quantitative
proteomic experiments with chromatography-based quantifi-
cation (i.e., DDA, DIA or SRM data acquisitions), (2) have
open-source implementations, (3) are compatible with multi-
ple data processing tools, and (4) are easily installed and used
via Bioconductor. Figure 1 overviews the functionalities of
these packages, and additional details are given below.
MSqRob. The MSqRob13,14 analysis workflow is docu-

mented in the package vignette. The workflow takes as input
manually converted feature level data in a custom format. Once
in the required format, the data is input into the read-
QFeatures() function from the QFeatures24 packages. The
vignette suggests multiple preprocessing steps using both
functions from the QFeatures package and manual implemen-
tations. The package includes methods for dealing with missing
values, both converting censored values (such as 0) to NA, as
well as missing value imputation. The package vignette itself
does not mention missing value imputation, however the
impute() function from QFeatures can be used to perform one

of 13 imputation methods. Finally, MSqRob utilizes the
normalize() function from QFeatures for normalization, which
gives users a wide variety of options to choose from.

After data preprocessing, MSqRob includes summarization
functionality (via QFeatures). The package does not require
summarization, and provides the option for differential analysis
using the individual protein features or summarized intensities.
Multiple summarization strategies are available, including
Tukey’s median polish,38 robust regression summarization, or
simply taking the mean, median, or sum of the protein features.
Finally, the package performs differential analysis using a linear
mixed effects model (msqrob() function). The users must
specify the correct model for their data, and this requires
potentially nontrivial statistical expertise. Multiple options exist
for estimating the parameters of the models, including ridge
penalty, M-estimation, and Empirical Bayes. Once the model is
fit, contrast-based analysis is used for group comparison.
Finally, the package itself does not include plotting
functionalities, although the vignette leverages plotting
functions from the Limma package for manually created plots.
DEqMS. The DEqMS16 analysis workflow is described in

the package vignette. The package provides functionality for
both label-free and tandem mass tag (TMT) labeled
workflows. The package does not include any direct converters
for spectral processing tools and requires manual conversion
by the user. For data preprocessing, the package includes a
normalization function (equalMedianNormalization()) which
implements median normalization. Beyond normalization,
there are no other data preprocessing options implemented
in the package, although the vignette does suggest a few
manual prepossessing steps. For summarization, the package
includes the summarization function medianSummary(). The
summarization function requires the user to select a reference
column, which is used to calculate the relative peptide ratios.
In the function example, this reference column is a reference
channel in a TMT experiment. There was no example of using
this function for label-free experiments.

For modeling, DEqMS implements a version of Limma
which leverages feature counts for variance moderation. The
model takes as input run-level summaries for each protein,
grouped into an individual column per MS run. The model is
implemented as a 4 step workflow. The first 3 steps follow the
classic Limma modeling workflow. This includes fitting a linear
model, contrast based group comparison, and variance
moderation. After the Limma model is fit, DEqMS groups
proteins with the same number of features together, and
individually moderates the variance of the feature-groupings

Table 3. SwissProt Accession Numbers of Proteins Spiked into the E. coli Background in Data Set 3: Controlled Mixture−
DDA−Skyline

Subset 1 Subset 2 Subset 3

Accession Number Molecular Weight Accession Number Molecular Weight Accession Number Molecular Weight

P02701 16 P00915 29 Q3SX14 81
P00711 16 P02787 77 P00563 43
Q29443 78 P02663 24 P02769 69
Q29550 62 P01008 53 Q58D62 48
P0CG53 8 P00921 29 P00698 15
P68082 17 P05307 57 P00004 12
P00432 60 P61769 14 P00711 14
P02754 20 P02662 24 P00442 33
P24627 78 P01012 45 P01133 134
P80025 81 P02666 25 P02753 23

Table 4. Data Set 3: Controlled Mixture−DDA−Skyline
Relative Protein Concentrations
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together. In this way, proteins with low features do not have
their variances artificially reduced by proteins with high
features, and vice versa. DEqMS includes two plotting
functions (VarianceBoxplot() and VarianceScatterplot()) to
visualize the results of the feature grouping variance

moderation. Other plots of the results must be manually
created.
Previously Published Version of MSstats

Figure 1 details the implementation of MSstats v2.0. MSstats
v2.0 supported DDA, DIA, and SRM acquisitions, however it

Figure 1. Functionality and workflow comparison between MSstats v4.0, MSstats v2.0, MSqRob, and DEqMS. function [function] indicates the
corresponding function name in MSstats, MSqRob, or DEqMS. N/A indicates functionality that was not available.
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did not support more complex designs, including those with
technical replicates, fractionation, time course, and paired
designs. Similarly to other existing methods, MSstats v2.0 did
not include any tool-specific converters. The users had to
manually convert their data set into the required format, which
was a challenge for users without an in depth knowledge of the
MSstats formatting and advanced computational skills. In terms
of data preprocessing, MSstats v2.0 included limited options
and functionalities. The dataProcess() function gave users the
option to either log2 or log10 transform peak intensities, and
four options for data normalization (equalizing medians across
runs, quantile normalization, peptide or protein standard
normalization, or not performing normalization). There were
no options for missing value imputation, feature filtering, or
feature summarization.

MSstats v2.0s groupComparison() function implemented a
linear mixed-effects model for differential analysis. The model
was feature-based, taking as input quantified features, and
specifying a full statistical model at the feature level. This
resulted in high computational complexity and issues of
numeric stability of the model fit in some cases.Additionally,
while MSstats v2.0 implemented a mixed-effects model, it
required the user to manually specify the fixed and random
effects. This was a challenging step for users with limited
statistical background. Finally, after modeling was performed,
MSstats v2.0 implemented functionality for future experiment
planning, including power and sample size calculations in the
designSampleSize() function.

■ RESULTS

Statistical Methods and Implementations in MSstats v4.0

Adaptive Converters Statistically Interpret and
Format the Outputs of Data Processing Tools. MSstats
v4.0 takes as input the log2-intensities of peaks obtained by
data processing tools, step 1 of Figure 2, (as opposed to ratios
of peak intensities between the groups), to facilitate statistical
modeling.39 Since spectral processing tools differ in both
analytical strategies and output formats, MSstats v4.0 employs
tool-specific converters (Step 2 of Figure 2), which ensure that
the output of the tools is interpreted and formatted correctly.

Converters in MSstats v4.0 follow a consistent workflow
implemented in the Bioconductor package MSstatsConvert.40

First, raw data from the tools are reshaped into long format,
with columns denoting protein ID, peptide sequence,
precursor charge, fragment ion and product charge, informa-
tion about labeling, run ID, and intensity value. Each run is
then annotated with labels for condition and biological
replicate using the information provided in the accompanying
“annotation” file. The “annotation” file maps run names to the
experimental design, and must be created manually by the user.
Details on how to create this file and example “annotation” files
for different experimental designs can be found in Supporting
Information Section 1. This minimum set of columns
constitutes the MSstats format. Whenever applicable, the user
can add information about the ID of technical run and fraction,

Figure 2. MSstats v4.0 workflow and place in the bottom up LC-MS/MS proteomics analysis pipeline MSstats takes as input the output of spectral
processing tools used for identification and quantification and an annotation file matching MS runs to experimental metadata, such as conditions
and biological replicates. Tool-specific converters perform data filtering and aggregation. Next the data is transformed onto the log2 scale and
normalized. Finally, statistical modeling and inference is performed, with optional plotting to view the results.
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along with optional columns for use with filtering. This step of
the workflow is tool-specific.

The following steps are generic and can be applied to any
data set in the described format. They consist of filtering (for
example by Q-values or removing contaminants), handling
isotopic peaks, removing features with few measurements
across runs, removing shared peptides (i.e., peptides assigned
to more than one protein by the spectral processing tool),
aggregating features with duplicated measurements in a run,
optional filtering of proteins identified by a single feature, and
adding annotation. These operations are implemented by the
MSstatsPreprocess() function in MSstatsConvert package. The
next step of the workflow selects or aggregates fractionated
runs and creates balanced design, with one row in the data
table for every run for each feature, even if the intensity value is
missing. These operations are performed by the MSstatsBa-
lancedDesign() function from MSstatsConvert package.

The MSstatsConvert package enables creation of new
converters consistent with the intended MSstats workflow.
With this package, users can create converters for yet
unsupported tools (including custom workflows) using the
same logic as in MSstats converters with minimal coding, as the
only tool-specific step is the reshaping of raw data.

Figure 3 visualizes feature intensities from two data sets in
the Experimental Procedures section: Data Set 1: Controlled
Mixture−DDA−MaxQuant and Data Set 2: Controlled
Mixture−DIA−Spectronaut. Since spectral processing tools
differ in their approaches to reporting missing values, the
number of 0 and “NA” values varied across tools. Data set 1
quantified by MaxQuant reported no small intensities and no
0s, but a large amount of “NA” values. Meanwhile Data set 2
quantified by Spectronaut reported a large amount of 0s but no
“NA” values. MaxQuant reports missing values as “NA”, while
Spectronaut reports them as 0. The converters in MSstats v4.0
automatically interpret the missing values, while taking into
account the details of the upstream spectral processing tool,
and perform time-consuming (and potentially error-prone)
data-preprocessing for the user. Beyond missing values, Data
set 2 (DIA) had more peaks than Data set 1 (DDA). The
distributions of log2-intensities of the peaks, for example the

medians of log2-intensities, were different for both data sets
and tools. These differences are not necessarily problematic for
peptide and fragment ions that fall in the linear regime of the
dynamic range, as similar conclusions regarding changes in
protein abundance can be reached from different intensity
values. However, they do have important implications for low-
abundant analytes.

To maximize the between-tools consistency of the analysis
for low-abundant analytes MSstats v4.0 learns, separately for
each experiment and tool, a threshold for “high-confidence”
log2-intensities (Step 4 of Figure 2). The threshold is a tuning
parameter, defined as the 0.1th percentile of the log2-intensities
in the linear regime of the dynamic range, and estimated as
follows. Define qp the pth percentile of all the log2-intensities
that exceed 0. In particular, the median is q50, the 25th
percentile is q25, and the 75th percentile is q75 (dotted lines in
Figure 3). MSstats v4.0 estimates q̂0.1 as

q q q q0.1 25 99.9 75= [ ] (1)

(dashed lines in Figure 3). The estimation assumes a
symmetric distribution of the log2-intensities in the linear
regime of the dynamic range, and uses q̂99.9 − q̂75 to learn the
deviation q̂25 − q̂0.1.

MSstats v4.0 views all “NA” and all the values below q̂0.1 as
censored, i.e., unreliable or missing due to the low abundance
of the underlying analyte, with two exceptions. The first
exception is Skyline, which reports low-intensity values, and
uses “NA” for intensities of truncated or overlapped peaks. For
Skyline, MSstats v4.0 views “NA” as not associated with low-
abundant analytes, and assumes that they are missing at
random. The second exception is “NA” reported by any data
processing tool for the intensities of reference peptides, e.g., in
SRM experiments that use labeled references, or for any other
standards. Since reference peptides are not expected to be low
abundant, their intensities are also viewed as missing at
random, and kept as “NA” by MSstats v4.0. This step is
optional in the MSstats v4.0 workflow.
Split-Plot Approach Provides Robust and Accurate

Statistical Analysis for Diverse Experimental Designs. In
this section, we discuss statistical modeling and analysis in the

Figure 3. Distribution of log2 transformed and normalized intensities, after normalization. (a) Data set 1: Controlled Mixture−DDA−MaxQuant.
(b) Data set 2: Controlled Mixture−DIA−Spectronaut. Median normalization equalized the medians of log2-intensities of all the features between
the MS runs. “No. peaks” reports the number of peaks with log2 intensity >0. “No. 0s” is the number of log2 intensity = 0, “No. NAs” is the number
of intensities reported as “NA” by the data processing tool. “No. censored” is the number of censored intensities as defined by MSstats v4.0. Dotted
orange lines indicate the 25, 50, 75, and 99.9th percentiles (q̂25, q̂50, q̂75, and q̂99.9) of the log2 intensities exceeding 0. Dashed dark red lines indicate
the censoring threshold, estimated by MSstats v4.0.
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case of a label-free experiment with group comparison design.
A detailed explanation of the overall modeling and analysis
workflow, and it extension to experiments with complex
designs, can be found in Supporting Information Section 1.
This includes extensions to experiments with technical
replicates (Supporting Information Section 1.2), time course
designs (Supporting Information Section 1.3), paired designs
(Supporting Information Section 1.4), and experiments with
reference peptide designs (Supporting Information Section

1.5). Finally, a detailed method comparison between MSstats
v2.0 and v4.0 is available in Supporting Information Section 2.

Figure 4(a) illustrates the structure of the data for one
protein in a label-free experiment with a group comparison
design and technical replicates. The experiment has i = 1, ..., I
conditions, e.g., healthy and disease. Each condition is
represented by j = 1, ..., J subjects, i.e., distinct biological
replicates (e.g., patients, mice, etc). Subjects are main
experimental units, and in this special case of group

Figure 4. Two-step estimation and inference procedure for the linear mixed-effects model in MSstats v4.0, Step 4 of Figure 2. (a) Overview of an
example group comparison design. The whole plot and subplot subsections are highlighted. Observed values are indicated as y, missing values as
NA, and censored values as Cens. (b) The full linear model with the whole plot and subplot sections highlighted. c) The two-step modeling
procedure of MSstats v4.0. First feature level data are summarized into a single value per run using Tukey’s Median Polish. Next a linear mixed
effects model is fit using the summarized values.
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comparison designs subjects are nested within conditions (i.e.,
each condition is represented by different biological subjects).
Furthermore, each subject sample is profiled in k = 1, ..., K
mass spectrometry Runs. In practice the number of biological
and technical replicates varies across conditions and subjects.

In each run the protein is represented by l = 1, ..., L spectral
features. The features are peptide ions in DDA experiments,
combinations of peptide ions and transitions in SRM
experiments, and combinations of peptide ions and fragments
in DIA experiments. For the purposes of this manuscript we do
not distinguish transitions or fragments generated by a same or
different peptides. Each feature in each run is quantified by its
Intensity, yijkl (defined as peak area, peak height at apex, or any
other measure used by a data processing tool), that are log2
transformed and normalized. Such layouts are known in
statistical literature as split-plot experimental designs.41 More
details can be found in Supporting Information Section 1.1.

Figure 4(b) shows a classical split-plot linear mixed effects
model of a label-free group comparison experiment with both
biological and technical replicates, reflecting the sources of
variation in Figure 4(a). In the special case of a balanced
experiment with no missing values, these sources of variation
are estimated from the analysis of variance (ANOVA) table
(Supporting Information Section 1). Unfortunately, the
ANOVA decomposition does not hold in experiments with
unbalanced designs, censored, and outlying values. An
alternative approach to estimating the sources of variation is
restricted maximum likelihood (REML). Unfortunately, in
models with many terms such as in Figure 4(b), REML-
based estimates can be inaccurate, especially when some
sources of variation are close to zero.

As a solution, MSstats v4.0 separates the estimation
procedure into two simpler steps, namely ANOVA-style
summarization in the subplot, and REML estimation in the
whole plot as shown in Figure 4(c), as shown in Step 4 of
Figure 2. At the whole plot level the summarized data structure
has fewer irregularities, and the model has fewer terms. This
results in a more stable REML-based estimation. Below we
detailed the two-step modeling workflow of the estimation
procedure.
Modeling Step 1: Subplot Summarization. Missing

Value Imputation. As an option, MSstats v4.0 imputes
censored peak intensities (i.e., intensities assumed missing
for reasons of low abundance) before subplot summarization.
The peak intensities are considered censored if their values are
below the cutoff in eq 1 or marked as “NA” (except in the case
of Skyline, and in the case of reference peptides and

standards). In presence of censored observations, the observed
log2-intensities yijkl are viewed as yijkl = max(yijkl, mijkl), where
mijkl is the minimum threshold, i.e. the lowest quantifiable log2-
intensity for that feature. Here we assume that the threshold is
feature-specific but constant across the runs, i.e., mijkl = ml, and
estimate it by the smallest observed log2-intensity of the
feature. We define an indicator of whether the peak was
detected and quantified as

l
m
oooo
n
oooo

m y

m y

1 if , i.e., observed

0 if , i.e., censoredijkl

ijkl ijkl

ijkl ijkl
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>
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For the imputation, MSstats v4.0 relies on an accelerated failure
time (AFT) model42,43
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The parameters μ, Runijk, Featurel, and σ in eq 3 are
estimated by maximizing the product of the likelihoods of the
observed and censored peaks
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where f is the probability density function and F is the
cumulative density function of the Normal distribution with
expected value μ + Runijk + Featurel and variance σϵ

2. The
imputed log2-intensities are

Therefore, feature imputation is only possible for feature yijkl in
Runijk if there is an observed value for the feature in another
run and if there is an observed value from another feature in
Runijk. In particular, features are not imputed if the protein is
entirely missing in a run.

Figure 5 visualizes the imputation, and contrasts it to other
simpler methods. The imputation in eq 4 leverages information
from the noncensored values of the feature and the other
features in the protein, and relies on the assumption of parallel
profiles of features from a same protein between the runs. In
contrast, avoiding imputation underestimated the difference

Figure 5. Missing value imputation in MSstats v4.0. The plot illustrates a single protein with three features measured over two MS runs. The MS
runs are shown on the x-axis and the log feature intensity is on the y-axis. In the first MS run, colored blue, one of the feature points falls below the
limit of quantification and is not measured by the mass spectrometer. (a) MSstats imputation. (b) No imputation. (c). Imputation with a small
constant.
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between the MS runs, while imputing with a small constant
overestimated the difference.

MSstats v4.0s imputation of censored values excels for
proteins with many features, whose information can be
leveraged by the statistical model. In situations with low
feature counts, such as when modeling peptides instead of
proteins, there may not be enough information to perform
imputation and the imputation may not be reliable. As with all
imputation methods, MSstats imputation relies on the
underlying assumption it is making (that values are missing
for reasons of low abundance). The performance of MSstats
missing value imputation can be assessed by looking at the
feature-level data after summarization (obtained using the
dataProcess() function). We recommended that users inspect
the modeling assumptions and the resulting imputed values. If
the assumptions are violated, for instance if the values are
missing at random, the imputation may be biased, and it is best
to omit this option.
Robust Summarization. We consider an additive model

similar to eq 3

y Run Feature error
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0, 0

ijkl ijk l ijkl

i

I

j

J

k

K

ijk
l

L

l
1 1 1 1

= + + +

= =
= = = = (6)

where μ is the median log2-intensity across features and runs,
the medians of Runijk, Featurel, and errorijkl are centered at 0,
and the errors are independent. The difference from eq 3 is
that yijkl are now both observed and imputed log2-intensities,
and the parameters of this model are estimated with robust
Tukey’s Median Polish (TMP)38 that accounts for outlying
observations. TMP iteratively subtracts medians of each row
(Feature) and column (Run) from yijkl until there is no change.
The values remaining in the table after these operations are the
residuals of the fit. The run-level summaries z Runijk ijk= +
are obtained by subtracting the residuals from yijkl and
summing the resulting values in the run.
Modeling Step 2: Whole Plot Modeling and Infer-

ence. At the whole plot level, the linear mixed-effects model is
shown in Step 2 of Figure 4(c). In the simple case of a group
comparison experiment with biological replicates and no
technical replicates, the model is substituted with

z Condition Condition, where
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where σψ
2 represents a combination of the biological and the

technological variation. The same model is fit for controlled
mixtures with technical replicates and no biological replicates,
in which case σψ

2 is the technological variation. Extensions to
complex designs are in (Supporting Information Section 1.
MSstats v4.0 Provides a Flexible Framework for

Comparing Conditions. MSstats v4.0 implements a flexible
framework for model-based pairwise comparisons between
conditions, as well as any linear combinations of conditions
such as averaging of multiple groups. To compare the
conditions, we first estimate their expected values. The
expected value for condition i is defined as μi = μ + Conditioni,
where μ and Conditioni are parameters of the model in Eq. 7.
The parameters are estimated from the experimental data using

restricted maximum likelihood (REML) (Supplementary Sec.
2.1).

Next we spell out the comparison of interest, which involves
two or more expected values.44,45 Eq. 8 defines a linear
combination l of the expected values μi.

L c cwhere 0
i

r

i i
i

r

i
1 1

= =
= = (8)

For example, a pairwise comparison between the expected
values of Conditions 1 and 2 is expressed with coefficients C =
(1, −1, 0, 0). As another example, a comparison between the
average of the expected values of Conditions 1 and 2 versus the
average of the expected values of Conditions 3 and 4 is
expressed with coefficients C = (1/2, 1/2, −1/2, −1/2). The
special cases of linear combinations, where the coefficients ci
sum to zero, are called a contrasts. MSstats v4.0 can estimate
any linear combination of the expected values, not just a
contrast. To test the null hypothesis H0: L = 0 against the
alternative Ha: L ≠ 0, the estimate of the linear combination L̂
and its standard error are combined into a t-statistic

t
L

SE L( )
=

(9)

which is then compared against the student distribution with
appropriate degrees of freedom to determine the p-value.44

We now illustrate this model-based inference in the special
case of an experiment with I conditions and J biological
replicates per condition in a balanced design, the model Figure
4(c), and a pairwise comparison between Conditions 1 and 2.
The model expresses the expected values μ1, μ2, μ3, μ4 of the
four conditions. In the special case of balanced designs and
simpler ANOVA-based estimation, the model-based estimate
of an expected values matches its sample averages, i.e., μ̂i = zi̅.

44

Since the contrast coefficients of interest are C = (1, −1, 0,
0), L̂ = z1̅ − z2̅ is the model-based estimate of the log2-fold
change between the conditions. In this special case, the
standard error of L̂ is estimated as

SE L
IJ

( )
2

=
(10)

where σψ
2 is the ANOVA-based estimate of the error variance in

Figure 4(c). Finally, in this special case, the t-statistic in eq 9 is
compared against the Student distribution with I(J − 1)
degrees of freedom to determine the p-value.
Implementation
New Coding Strategies Improve Memory and Time

Computational Complexity. MSstats v2.0 and v3.0 ex-
clusively used base R46 verbs with parts of code written with
tidyverse.47 MSstats v4.0 implements all operations on tabular
data with data.table48 verbs, which ensures strong performance
for large data sets that fit in memory.49 In particular, whenever
possible, MSstats v4.0 relies on grouped tabular operations
rather than iterative procedures. Moreover, parts of the code,
including summarization and postprocessing of fitted statistical
models, were rewritten with C++ using the Rcpp interface50 to
improve execution time. Performance of logging was improved
by the addition of log4r backend,51 while performance of
parameter validity checks relies on the checkmate package.52

MSstats v4.0 is highly modularized. Code related to
preprocessing raw outputs of signal processing tools was
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moved to the MSstatsConvert package, and converters in
MSstats rely on functions from that package. This backend can
be reused to ensure high performance of new and custom
converters. Moreover, updated MSstats provides a set of
alternative functions to the existing dataProcess() and group-
Comparison(). With these functions, each step of the MSstats
workflow is implemented in a separate function (such as
MSstatsNormalize() for normalization, MSstatsSummarize() for
summarization) which serve as backend for established
functions, but can be used independently. This alternative
workflow improves both time and memory management, as
follows. First, it is possible to reduce the amount of repeated
operations when replicating the analysis. For example, new
analysis may start with normalized data without the need to
rerun operations done by the dataProcess() function before
normalization. Second, this workflow was designed with
parallel execution in mind. Summarization (particularly with
imputation) and model fitting are the most time- and memory-
consuming parts of MSstats workflow. Both operations are
done separately for each protein in a data set. Thus, operations
that use all data are implemented with data.table verbs for
maximum performance, while per-protein operations are
provided in self-contained functions (such as MSstatsSummar-
izeSingleTMP()) that can be run in parallel. Due to multiplicity
of architectures for parallel computations and differences in
parallelization options across operating systems, we do not
provide parallel versions of MSstats function. Instead, the
current version of the package provides tools which allow users
to take advantage of their own parallel infrastructure.
Moreover, these building blocks of MSstats workflow are
easily reusable across packages that implement data analysis
methods for different experimental workflows.
MSstatsBig Enables the Analysis of out of Memory

Data Sets. While the data.table backend and other updates in
MSstats v4.0 ensure strong performance for in-memory data
sets, handling data larger than memory is a challenge for the
MSstats workflow. Different steps of the workflow require
aggregation across different variables (such as Run and
Protein), which makes simple batch-processing and complete
reuse of existing code infeasible. Thus, motivated by large data
sets, such as the ones generated with Spectronaut, we created
MSstatsBig currently available on the MSstats GitHub page
https://github.com/Vitek-Lab/MSstatsBig. The package im-
plements a restricted (in terms of freedom of parameter

choice) version of MSstats workflow, assuming that feature-
level input data do not fit in the memory but preprocessed data
in MSstats format do. Since the MSstats preprocessing removes
low-quality and redundant PSMs, and aggregates measure-
ments repeated for a given Run and Feature, there are many
opportunities for reducing data set. Further reduction in data
size can be achieved by reducing redundancy in Run
annotation or changing Protein/Feature labels.

The biggest challenge in processing out-of-memory data sets
are grouped operations, as grouping does not necessarily
correspond to physical partitioning of the data. Thus, we use
SparklyR package to connect to Apache Spark database to
process data. This allowed us to process data set as big as 200
GB.

■ EVALUATION

Evaluation Criteria

We compared the performance of MSstats v4.0, v3.0, and v2.0
in terms of computational time. To test computation speed, we
first converted the data into the required format, using the
corresponding converter for v4.0 and v3.0, and manually for
v2.0, and ran the full statistical workflow for each version, using
the dataProcess() and groupComparison() functions. The
functions were each run 5 times for each version and each
data set and the mean run time for the workflow was recorded.

We compared the statistical results of MSstats v2.0, MSstats
v4.0, MSqRob, and DEqMS on the controlled mixtures and
biological experiments. For MSstats v4.0, the raw files were
input into the corresponding converters, and the default
parameters were used for the dataProcess() and group-
Comparison() functions. For MSqRob the data were first
manually converted into the required format, and then the
workflow noted in the MSqRob vignette was followed with
default parameters selected. For DEqMS the data were
manually converted and the vignette workflow was generally
followed. However, because the summarization function
requires TMT labeled data, we manually summarized the
feature level data using the log sum of features.

For statistical results, the versions were evaluated on the
controlled mixtures (data sets 1, 2, and 3) in terms of true
positive (TP), true negative (TN), false positive (FP), and
false negative (FN) differentially abundant proteins while
controlling the FDR at 5%. The true positives were defined as

Table 5. Use of Computational Resources by MSstats v2.0, v3.0, and v4.0 on Each Data Seta

Processing Time [s] Mem. Total [MB] Mem. Sum Max [MB]

Data Set File Size v2 v3 v4 v2 v3 v4 v2 v3 v4

1: Controlled Mixture−DDA−
MaxQuant

200 MB 831.56s 231.77s 164.38s 16,583.60 40,315.09 13,542.00 109.26 147.24 20.21

2: Controlled Mixture−DIA−
Spectronaut

1.04 GB 3,895.67s 1,428.82s 963.18s 20,726.46 17,920.83 7,090.18 291.09 243.60 13.76

3: Controlled Mixture−DDA−
Skyline

63 MB 243.52s 97.10s 42.35s 20,341.49 15,176.89 6,042.41 100.64 111.61 20.54

4: Mouse−DDA−MaxQuant 257 MB 1,076.97s 636.60s 338.98s 16,948.49 24,507.43 10,665.79 297.54 335.40 16.17
5: S. cerevisiae−DIA-Skyline 315 MB 4,411.80s 2,258.34s 1,897.62s 85,845.08 26,531.06 18,125.68 412.43 234.18 29.83
a“Processing time” is the time in seconds the data sets took to run. MSstats versions 2.0, 3.0, and 4.0 were each measured 5 times per data set, and
the mean processing time was reported. Because there was no converter in version 2.0, we applied data conversion to the experiments before
measuring processing time. Measurement was done using the microbenchmark package.53 “Mem. total [MB]” is the total memory allocation for
summarization and group comparison across controlled mixtures and biological experiments. “sum of maximum allocation” is the sum of maximum
allocation for summarization and group comparison across all data sets. MSstats v2.0, v3.0, and v4.0 were run once for each data set and memory
allocation was reported for dataProcess and groupComparison step. Here, we report total allocation for both steps of the workflow and sum of
maximum allocation in both steps. Measurement was done using the lineprof package.54
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spike-in proteins with known changes in abundance. The true
negatives were defined as spike-in proteins with no changes in
abundance. Additionally, the positive predictive value (PPV)/
empirical False Discovery Rate (eFDR) was calculated as
described in eq 11.

FP
FP

1 PPV
TP
empirical False Discovery Rate (eFDR)

=
+

= (11)

For the biological experiments (data sets 4 and 5) without
known ground truth, we compared the lists of differentially
abundant proteins produced by each version.
Evaluation
MSstats v4.0 Reduced Processing Time and Memory

Consumption Across All Data Sets. Table 5 reports the
computational resources used for MSstats versions 2.0, 3.0, and

4.0. MSstats v4.0 drastically reduced the mean processing time
across all data sets (an average decrease of 74.66%). The
processing time was dramatically reduced due to both changes
in modeling strategy and refactoring of the code base. Memory
allocation reports the line profiling for the complete statistical
workflow (summarization and group comparison). Across all
data sets both the total and maximum allocated memory
decreased with version 4.0. The maximum allocation was stable
despite different characteristic of the data (including data
acquisition mode). The decrease in allocation ranged from
about 10% to 65%, depending on a data set. This change was
mainly due to technological and code improvements from v3
to v4. Table 5 shows the reduction in memory usage was
inconsistent from v2.0 to v3.0, however there was a drastic
reduction from v3.0 to v4.0.
Statistical Methods inMSstats v4.0 Improved eFDR in

Three Controlled Mixtures. Figure 6 reports the results of

Figure 6. Controlled data sets 1, 2, and 3: Statistical analyses by MSstats v2.0 and v4.0. The true positives (TP) and false positives (FP) reported by
each version. The FP are shown on the top, and the TP are shown at the bottom of each bar, with the black line showing 0. In all data sets, the TP
numbers were similar between versions, while the FP were much lower when using v4.0. (a) Data set 1: Controlled Mixture−DDA−MaxQuant. (b)
Data set 2: Controlled Mixture−DIA−Spectronaut. (c) Data set 3: Controlled Mixture−DDA−Skyline.

Figure 7. Data set 4: Mouse−DDA - MaxQuant, Protein O08547 In this example, the estimate σ̂CS
2 of the Condition × Subject was zero, and this

severely undermined the estimation of degrees of freedom in MSstats v2.0 and in the full model v4.0. In contrast, the whole plot model in MSstats
v4.0 was simpler, had fewer variance components, and the variance components were away from zero. This produced a smaller estimate of standard
error(SE) of the pairwise comparison and the on-target degrees of freedom. After adjusting for multiple comparisons, such difference can affect the
decision of differential abundance.
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applying MSstats v2.0 and v4.0 to the three controlled
mixtures. In all the data sets the number of TP were nearly
equal, however the number of FP markedly decreased.
Subsequently the eFDR in Data set 1 decreased from 89.7%
in v2.0 to 20.6% in v4.0, the eFDR in Data set 2 decreased
from 27.7% to 12.9%, and the eFDR in Data set 3 decreased
from 62.45% to 41.67%. MSstats v2.0 overestimated the
number of positives in all cases, resulting in a much higher
eFDR.
MSstats v4.0 Improved Standard Error and Degrees

of Freedom Calculation in Biological Experiment. The
difference in performance of the versions of MSstats was
mainly caused by differences in statistical modeling and model
fitting. MSstats v2.0 reported overly high degrees of freedom at
the pairwise comparison stage, and as the result was overly

sensitive, and detected differentially abundant proteins even
when there was no true change between conditions. The whole
plot model used by MSstats v4.0 summarized all features into a
single value per MS run prior to fitting the final model. This
facilitated the estimation, and resulted in a more appropriate
estimation of variability and degrees of freedom.

Figure 7 illustrates a protein in Data set 4: Mouse - DDA -
MaxQuant where REML estimation had a small impact on
pairwise comparisons between conditions. The protein had a
balanced design, and the models in MSstats v2.0 and v4.0 had
identical theoretical ANOVA-based inference. In this example,
the estimate σ̂CS

2 of the Condition × Subject was zero, and this
severely undermined the estimation of degrees of freedom in
MSstats v2.0 and in the full model v4.0. In contrast, the whole
plot model in MSstats v4.0 was simpler, had fewer variance

Figure 8. Controlled data sets 1, 2, and 3: Statistical analyses by MSstats v4.0, MSqRob, and DEqMS. The true positives (TP, below the horizontal
line) and false positives (FP, above the horizontal line) reported by each tool. (a) Data set 1: Controlled Mixture−DDA−MaxQuant. The results
between MSstats and MSqRob were similar, with MSstats being a more sensitive, detecting more true positives and false positives, while DEqMS
lagging behind. (b) Data set 2: Controlled Mixture−DIA−Spectronaut. DEqMS was less sensitive than the other methods, missing many true
positives but reporting few false positive. MSstats reported fewer false positives than MSqRob but also did not identify as many true positives. (c)
Data set 3: Controlled Mixture−DDA−Skyline. All three methods were comparable. MSstats reported the most TP but also reported more FP than
MSqRob.

Figure 9. Data sets 4 and 5: Statistical analyses by MSstats v4.0, MSqRob, and DEqMS. (a) Data set 4: Mouse−DDA−MaxQuant. MSstats and
MSqRob show a large overlap of differentially abundant proteins, with MSstats reporting more differentially abundant proteins in total. DEqMS
produced the least differentially abundant proteins, with most of those reported also reported by the other methods. (b) Data set 5: S. cerevisiae−
DIA−Skyline. MSstats and MSqRob show a large overlap of differentially abundant proteins, however MSqRob reported more differentially
abundant proteins in total than MSstats.
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components, and the variance components were away from
zero. This produced a smaller estimate of standard error of the
pairwise comparison, and the on-target degrees of freedom.
After adjusting for multiple comparisons, such difference can
affect the decision of differential abundance. x
MSstats v4.0 Better Traded off False Positives and

False Negatives and Had an Easier Use than MSqRob
and DEqMS in Controlled Mixtures. Figure 8 reports the
results of the controlled mixtures using MSstats v4.0, MSqRob,
and DEqMS in terms of TP and FP. In all data sets, DEqMS
exhibited the poorest performance, mostly due to lack of
dedicated data preprocessing functionality. Both MSstats v4.0
and MSqRob implement multiple data preprocessing steps
directly into their workflows, and have dedicated protein
summarization functions. In contrast, DEqMS required manual
implementation of the majority of these steps. As the result,
the feature-level measurements included low quality features,
and the summarization was not as robust as MSstats and
MSqRob’s summarization. This in turn produced worse
statistical results.

MSstats v4.0 and MSqRob performed similarly on all
controlled mixtures. In data sets 1 and 3 MSstats reported a
higher number of TP and FP than MSqRob, whereas in data set
2 MSqRob reported more TP and FP. While the statistical
results were similar, the application of MSstats to the data sets
was much more straightforward. The output of MaxQuant and
Spectronaut could be directly converted into MSstats format
using the dedicated converters, whereas the data for MSqRob
had to be manually converted. The data preprocessing and
summarization for MSstats was applied using one function
(dataProcess()) with all options laid out as function
parameters. In comparison, MSqRob required each preprocess-
ing step to performed separately, with some processing steps,
such as filtering nonzero intensities, requiring manual
implementation. Additionally, in data set 1 MSqRob reported
uninformative errors due to features entirely missing in some
conditions. These features had to be manually filtered out in
order for the summarization function to complete. In contrast,
MSstats automatically took care of these features and required
no extra work or debugging by the user.
MSstats v4.0 Identified New Differentially Abundant

Proteins As Compared to MSqRob and DEqMS in
Biological Experiments. Figure 9 shows the number of
differentially abundant proteins reported by each method and
their overlap for biological experiments in this manuscript.
Unlike the controlled mixtures, the experiments contain
biological variation, and represent repeated measures design.
Consistently with the previous section, MSstats v4.0 and
MSqRob reported the highest number of the differentially
abundant proteins. In Data set 4, MSstats reported 929
differentially abundant proteins, while MSqRob reported 854.
In Data set 5 MSstats reported 1980 differentially abundant
proteins and MSqRob reported 2253. These two methods had
a large overlap in both data sets. In Data set 4 there was an
overlap of 681 differentially abundant proteins, 51% of all
differential proteins being reported by any method. In Data set
5, there was an overlap of 1753, 66% of all differential proteins.
While the results between these methods were similar, MSstats
was much easier to apply. It required only 8 lines of code,
calling data converter and wrapping all the data preprocessing
functionality. MSqRob on the other hand was much more
complicated to apply, taking 60 lines of code to complete the
analysis. Additionally, since the experiments had repeated

measures design the models in MSqRob had to be entered
manually, which can be challenging for users with limited
statistical expertise.

DEqMS reported the least number of differential proteins,
only 444 in Data set 4 and 1147 in Data set 5 (less than half of
those reported by MSstats and MSqRob). The majority of
proteins reported by DEqMS were also reported by the other
methods. As described previously, this is most likely due to the
lack of data preprocessing by the DEqMS workflow.
MSstatsBig Enabled Analysis of out-of-Memory Data.

We preprocessed both out of memory simulated data sets
using MSstatsBig functionalities: cleanBigSpectronaut() function
that performs initial data reduction and saves intermediate
result which can be processed with standard MSstatsConvert
tools or using the BigSpectronauttoMSstatsFormat() function
from MSstatsBig. Execution time was measured using system.-
time function from base R. Table 6 summarizes the results.

Processing step refers to the cleanBigSpectronaut() function
while Cleaning step is implemented by BigSpectronauttoMS-
statsFormat(). We used the Arrow55 package backend for this
benchmark. MSstatsBig package also supports cleaning data
with dplyr and sparklyr backends.

■ DISCUSSION
The manuscript describes a substantial update to the core
package of the MSstats Bioconductor family of packages. The
updates improved the usability of the implementation, the
statistical methodology, and the computational resource
requirements. The package now includes converters which
directly integrate it with the output of multiple spectral
processing tools used for analyte identification and quantifica-
tion. The converters greatly increase the usability of the
package, making it much easier for users to begin their analysis,
without having to go through a lengthy manual conversion.
The new statistical methods are applicable to a broader range
of experimental designs, and improved the accuracy of the
statistical inference as compared to the previous version. The
new implementation drastically improved both the computa-
tional speed and memory usage of the package. The users can
now process experiments of size that was out of reach for older
versions of MSstats.

In comparisons with MSqRob and DEqMS, MSstats v4.0
performed favorably, while being easier to use and implement.
The existing methods relied on manual implementation by the
user for upstream data processing, and focused mainly on the
final statistical model. In contrast, MSstats v4.0 encompassed
the entire data analysis pipeline, from the output of spectral
processing tools, to upstream data processing, and statistical
analysis. It included a wide range of additional analysis options,
such as plotting functionality to visualize the results of data
analysis, without depending on other tools. The broader scope

Table 6. Use of Computational Resources in out-of-Memory
Analyses with MSstats v4.0a

Elapsed Time [s]

Number of Copies File Size Processing Cleaning Total

15 17.3 GB 210.75 439.75 650.50
30 34.6 GB 380.54 1351.24 1731.78

aProcessing time for two data sets created by merging copies of the
Controlled Mixture−DIA. Computations were done a laptop with 16
GB RAM and 2.3 GHz CPU with 4 cores.
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of MSstats v4.0 eased the analysis of all data sets in the
manuscript, requiring only a few lines of code to go from raw
data to group comparison and high quality statistical analysis.

Overall, we believe that MSstats v4.0 is a strong contribution
to reproducible mass spectrometry-based proteomic research,
taking a user-first approach to MS experimental analysis and
producing accurate statistical results in a straightforward, easy
to apply, implementation.
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