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ABSTRACT: Most proteins secreted into the extracellular space are first recruited from the
endoplasmic reticulum into coat protein complex II (COPII)-coated vesicles or tubules that
facilitate their transport to the Golgi apparatus. Although several secreted proteins have been
shown to be actively recruited into COPII vesicles and tubules by the cargo receptors LMAN1
and SURF4, the full cargo repertoire of these receptors is unknown. We now report mass
spectrometry analysis of conditioned media and cell lysates from HuH7 cells CRISPR targeted
to inactivate the LMAN1 or SURF4 gene. We found that LMAN1 has limited clients in HuH7
cells, whereas SURF4 traffics a broad range of cargoes. Analysis of putative SURF4 cargoes
suggests that cargo recognition is governed by complex mechanisms rather than interaction
with a universal binding motif..
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■ INTRODUCTION
Approximately a third of the proteins encoded by the
mammalian genome are cotranslationally inserted into the
endoplasmic reticulum (ER), from where they are subsequently
trafficked to the plasma membrane or various intracellular
organelles or secreted into the extracellular space.1−3 Properly
folded proteins destined for secretion are transported from the
ER to the Golgi via coat protein complex II (COPII)-coated
vesicles or tubular structures.4−6 Entry into COPII vesicles/
tubules is thought to occur passively via bulk flow or through
active recruitment and concentration.7 Transmembrane cargoes
can interact directly with the cargo-selective COPII component
SEC24 on the cytoplasmic face of the ER, whereas soluble
proteins restricted to the ER lumen require interaction with a
membrane-spanning intermediary, referred to as a cargo
receptor, to bridge this interaction. However, relatively few
such cargo receptors have been discovered in mammalian cells
to date, and the cargo receptor-dependence for most secreted
proteins remains unclear.
LMAN1, also known as ERGIC-53, is a 53 kDa protein that

localizes to the ER and ER-Golgi intermediate compartments
(ERGIC).8 LMAN1 has been shown to function as a cargo
receptor for coagulation factors V (F5) and VIII (F8),9,10 α1-
antitrypsin (SERPINA1),11 Mac-2 binding protein (Mac-
2BP),12 matrix metalloproteinase-9 (MMP9),13 cathepsin C
(CTSC),14 cathepsin Z (CTSZ),15 and membrane protein γ-
aminobutyric acid type A receptors (GABAARs).16 In vivo
studies in mice have confirmed the dependence of F5, F8, and
SERPINA1, but not CTSC and CTSZ, on LMAN1 for
secretion.17 No common LMAN1-binding motif has been

identified. It is unclear whether there are other cargoes beyond
those listed above that require LMAN1 for efficient secretion
from the ER.
Another recently identified mammalian cargo receptor,

SURF4, is a 29 kDa protein with multiple transmembrane
domains that also localizes to the ER and ERGIC.18 SURF4 is
highly conserved, with homologues in yeast (Erv29p), C. elegans
(SFT-4), and Drosophila.19 Erv29p facilitates the secretion of
yeast pro-α-factor, carboxypeptidase Y, and proteinase A.20−22

Multiple SURF4 cargoes in mammals have been identified to
date, including PCSK9,23−25 apolipoprotein B (APOB)25−28

growth hormone,29 dentin sialophosphoprotein (DSPP),29

amelogenin,29 erythropoietin,30 pathogenic SERPINA1 poly-
mers,31 sonic hedgehog,32 proinsulin,33 and the lysosomal
proteins progranulin and prosaposin.34 Two SURF4-binding
motifs on cargoes have been proposed, including an ER-
ESCAPE tripeptide motif immediately downstream of the signal
peptide sequence29 and a Cardin−Weintraub motif,32,35 though
not all of the putative cargoes listed above carry one of these
motifs, suggesting the presence of additional determinants for
recognition by SURF4.24

Previous attempts to define a comprehensive cargo repertoire
for LMAN1 and SURF4 have revealed additional putative
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cargoes. Using an in vitro vesicle formation assay and label-free
mass spectrometry in cells depleted for LMAN1 or SURF4,
Huang et al.36 described 4 and 17 novel cargoes, respectively, for
these receptors. Using SILAC labeling and mass spectrometry
analysis of conditioned media following SURF4 knockdown,
Gomez-Navarro and colleagues24 likewise identified 10 proteins
in HEK293 cells and 18 proteins in HuH7 cells as potential
SURF4 cargoes.
We and others have reported a mass spectrometry approach

to identify secreted proteins by quantifying protein abundance
in both conditioned media and cell lysates from cultured
cells.37−39 We found that calculation of media to lysate (M/L)
ratios (rather than using unadjusted protein abundance in the
media alone) greatly improved the sensitivity and specificity for
detecting secreted proteins.39 We now report the application of
this approach to determine the cargo repertoire of LMAN1 and
SURF4 in HuH7 cells.

■ EXPERIMENTAL PROCEDURES

Cell Culture

HuH7 cells40 were cultured in DMEM supplemented with
GlutaMAX (Thermo Fisher Scientific, Waltham, MA, 10569-
044), 10% fetal bovine serum (MilliporeSigma, Burlington, MA,
F8067), and penicillin/streptomycin (Thermo Fisher Scientific,
Waltham, MA, 15140-122). Cells were passaged every 3−4 days
and maintained between 20 and 80% confluence.
CRISPR-Mediated Inactivation of LMAN1 and SURF4

On day 0, cells were seeded at 20% confluence and infected with
lentivirus generated from pLentiCRISPRv2 (Addgene plasmid
#52961; http://n2t.net/addgene:52961; RRID:Addg-
ene_52961; a gift from Feng Zhang)41 engineered to deliver
Cas9 and a gRNA targeting LMAN1 (CCCCTTACACTA-
TAGTGACG), SURF4 (TCCGAGCTGCATGTACTGTT),
or a nontargeting gRNA (GTTCATTTCCAAGTCCGCTG),
as previously described.23 On day 1, the mediumwas exchanged,
and 1 μg/mL puromycin (MilliporeSigma, Burlington, MA,
P8833) was added for 48 h. Following selection, surviving cells
were passaged every 3−4 days until day 14 to allow for gene
editing and protein turnover. On day 14, cells were washed three
times with phosphate-buffered saline (PBS, Thermo Fisher
Scientific, Waltham, MA, 10010-023) and switched to serum-
free, phenol red-free DMEM prewarmed to 37 °C (Thermo
Fisher Scientific, Waltham, MA, 31053-036) for 12 h.
Conditioned Media and Cell Lysate Collection

Conditioned media and cell lysates were harvested as previously
described.39 Briefly, conditioned media were collected from the
cell culture dish and centrifuged at 2500g at 4 °C for 15 min to
remove cell debris. The supernatant was then ultracentrifuged at
120,000g at 4 °C for 90 min to remove exosomes42 and
concentrated using a 3 kDa molecular weight cutoff concen-
trator (MilliporeSigma, Burlington, MA, UFC900324). Cell
lysates were collected in 2 mL of RIPA buffer (Thermo
Scientific, Waltham,MA, 89900) containing a protease inhibitor
cocktail (cOmplete Mini Protease Inhibitor Cocktail, Roche,
Basel, Switzerland, 11836153001). Cell suspensions were
sonicated, rotated end-over-end for 1 h, and centrifuged at
21,000g at 4 °C for 45 min. Supernatants were then transferred
to new Eppendorf tubes. Protein concentrations in the
conditioned media and lysates were determined by DC protein
assay (Bio-Rad, Hercules, CA, 500-011).

Immunoblotting
Cell lysates (10 μg per sample) collected as above were resolved
in a 4−20% Tris-glycine gel as previously described.25 Proteins
were detected with antibodies against LMAN1 (Abcam,
Cambridge, U.K., ab125006, 1:1000) or GAPDH (Abcam,
Cambridge, U.K., ab181602, 1:10000).
Mass Spectrometry, Protein Identification, and Protein
Quantification
Mass spectrometry, protein identification, and protein quanti-
fication were performed as previously described.39 Briefly, 75 μg
of each lysate and 75 μg of each medium sample were
proteolyzed, labeled with tandem mass tags (TMT) 10-plex
(Thermo Fisher Scientific, Waltham, MA, 90110) according to
the manufacturer’s protocol, and subjected to liquid chromatog-
raphy−mass spectrometry analysis. Raw mass spectrometry files
were converted into open mzML format and were analyzed
using the FragPipe (https://fragpipe.nesvilab.org/) computa-
tional platform43−45 with the default TMT10-MS3 workflow.
For proteins that were identified and quantified in both the
media and lysate fractions, an M/L ratio was calculated using
absolute intensity values. Signal peptide and transmembrane
domain annotations were obtained from theUniProt database.46

Data Availability
Raw and processed mass spectrometry data have been deposited
to the MassIVE database with the data set identifier:
MSV000092642.
Statistical Analyses
The limma statistical package was used for comparison of
protein abundance or M/L ratios between cells treated with a
nontargeting, LMAN1-targeting, or SURF4-targeting gRNA,
using a log2-transformed protein abundance or M/L ratios as
input.47 P-values were adjusted for multiple hypothesis testing
using the Benjamini and Hochberg method. An adjusted p-value
(q-value) of 0.05 or less was considered statistically significant.
Analysis of ER-ESCAPE Motifs
The human proteome reference database was downloaded from
UniProt.46 Proteins were filtered for the presence of a signal
peptide and the absence of a transmembrane domain(s). The
tripeptide motif as proposed by Yin et al.29 was extracted from
the protein sequence. For proteins with a conventional signal
peptide, the tripeptide motif is defined as the first three amino
acid residues downstream of the annotated signal peptide
sequence. For proteins with a propeptide domain, the tripeptide
motif is defined as the first three amino acid residues
downstream from the propeptide cleavage site. For rare cases
of proteins with an uncleaved signal peptide (based on the
UniProt annotation), the tripeptide motif is assigned as the first
three amino acid residues of the protein. Each residue within the
tripeptide motif was classified based on the classification system
proposed by Yin et al.29 For this analysis, SURF4 cargoes include
putative SURF4 cargoes identified in this study as well as all
previously reported cargoes.

■ RESULTS

Identification of Bona Fide Secreted Proteins by Analysis of
Cell Lysates and Conditioned Media
To identify secreted proteins that depend on either LMAN1 or
SURF4 for secretion, we generated LMAN1- and SURF4-
deficient HuH7 cells by CRISPR-mediated gene editing. We
then collected conditioned media and cell lysates from cells
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receiving LMAN1-targeting, SURF4-targeting, or nontargeting
(NT) gRNA for analysis by TMT mass spectrometry (n = 3 per
group) (Figure 1A).
Across all three sample groups, we identified and quantified

5858 and 2947 proteins in the lysate and media fractions,
respectively, of which 2726 proteins were identified in both
fractions (Figure S1A and Tables S1, S2). Consistent with our
previous observations,39 the majority of the identified proteins
lack a signal peptide, with increasing M/L ratio correlating with
an increased proportion of proteins carrying a signal peptide,
consistent with the expected enrichment for secretory proteins
in the media relative to the cell lysates (Figure S1B).
Comparisons between NT, LMAN1, and SURF4 samples
revealed that there were fewer proteins with anM/L ratio of >10
in LMAN1- and SURF4-deficient samples (Figure 1B).
Few Proteins in HuH7 Cells Depend on LMAN1 for
Secretion
To identify secretory proteins that require LMAN1 for their
secretion, we compared the M/L ratios of proteins collected
from cells treated with LMAN1-targeting or NT gRNA. As
shown in Figure 2A, the only protein demonstrating a
significantly different M/L ratio following LMAN1 deletion
was MCFD2, a 16 kDa soluble ER luminal protein that forms a
complex with LMAN1 and acts as a cofactor for the secretion of
factors V and VIII. MCFD2 lacks an ER retrieval motif, and its
retention in the ER and ERGIC depends entirely on its
interaction with LMAN1.48 The increased M/L ratio for
MCFD2 in LMAN1-deficient cells (Figure 2A and Table S3),
resulting from a decreased intracellular (Figure S2A and Table
S4) and increased extracellular abundance (Figure S2B and

Table S5), is therefore consistent with its release from the ER in
the absence of LMAN1.36,48

Consistent with previously reported in vivo data in mice, we
also found that genetic deletion of LMAN1 in HuH7 cells
resulted in intracellular accumulation of SERPINA117 (Figure
S2A) without a statistically significant reduction in media
abundance (Figure S2B) or M/L ratio (Figure 2A). Though a
trend was observed consistent with a decreased secretion of F5, a
known LMAN1 cargo, these changes did not reach statistical
significance. Taken together, these data suggest that LMAN1
traffics a small number of secretory cargoes in HuH7 cells.
Though we cannot exclude technical limitations including
incomplete LMAN1 deletion, the marked LMAN1 depletion
observed in LMAN1-deficient cell lysates by mass spectrometry
(Figure S2A) and immunoblotting (Figure S3) suggests that the
latter explanation is unlikely.
Wide Range of Proteins Depend on SURF4 for Secretion in
HuH7 Cells
In contrast to LMAN1, SURF4 disruption in HuH7 cells caused
a significant decrease in the M/L ratio for numerous signal
peptide-containing proteins [log2( fc) <−1 and adjust p-value <
0.05]. For most proteins, this change was associated with both
an increase in lysate abundance and a decrease in media
abundance (Figure S4 and Tables S6 and S7). Affected proteins
include known SURF4 cargoes such as APOB, APOA1, and
APOA2,27,28 several putative cargoes identified in other mass
spectrometry based studies,24,36 as well as a number of
potentially novel SURF4 cargoes (Figure 2B and Table S8).
We conducted Gene Ontology (GO) enrichment analysis49,50

using PANTHER51 to assess the biological processes affected by

Figure 1. Identifying proteins dependent on LMAN1 or SURF4 for efficient secretion. (A) Experimental design to identify LMAN1 and SURF4
cargoes in the human hepatoma cell line (HuH7). HuH7 cells were infected with lentiviruses delivering CRISPR/Cas9 and guide RNAs targeting
LMAN1, SURF4, or a nontargeting (NT) control. Following selection, cells were cultured for 2 weeks before being switched to serum-free media for 12
h. Conditioned media and cell lysates were collected for protein identification and quantification by liquid chromatography (LC) followed by tandem
mass tag (TMT) mass spectrometry (MS). A protein abundance ratio was calculated for each protein that was detected in both the media and lysate
fractions as described in Methods. (B) Number of proteins with (red) and without (blue) a signal peptide identified in different M/L fractions. The
number of signal peptide-containing proteins in each bar is indicated.
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potential SURF4 cargoes. Analyzing secreted proteins sensitive
to SURF4 deletion (i.e., showing a significant increase in lysate
abundance and a decrease in media abundance and M/L ratios)
revealed significant enrichment of proteins involved in multiple
lipoprotein and cholesterol metabolism pathways, consistent
with the hepatocyte origin of the HuH7 cell line (Figure S5A−
C) and the previously reported role of SURF4 in the secretion of
lipid-related proteins.23−28

Though PCSK9 has been demonstrated to be dependent on
SURF4 for efficient secretion in vivo25 and in HEK293T cells in
vitro,23 we did not identify PCSK9 as a SURF4 cargo in HuH7
cells, consistent with a previous report.52 7 out of 2726 proteins
in our data set were among the other known SURF4 cargoes
from previously published studies, 4 of which showed a
significantly decreased M/L ratio. Comparison of protein
abundance in the media with the effect of cargo receptor
deletion suggested a greater dependency of highly abundant
proteins on SURF4, but not LMAN1, for their secretion (Figure
2C,D). A comparison of the putative SURF4 cargoes identified
here with those in two other recent reports24,36 identified 4
secreted proteins shared between all data sets (Figure 3A and
Table S9) and 10 between two or more data sets (Figure 3A,C).

Most SURF4-Dependent Secreted Proteins Lack an
ER-ESCAPE Motif

Previously, Yin et al.29 proposed a tripeptide motif (ER-
ESCAPE) as being responsible for the recognition and
recruitment of SURF4 cargoes. This motif is located
immediately downstream of the signal peptide and is
characterized by a proline residue flanked on either side by a
hydrophobic amino acid (Figure 3B). Qualitative analysis of
candidate SURF4 cargoes identified in our study and in previous
studies revealed a wide range of sequences at the predicted site
of the ER-ESCAPE motif, including some that fit the motif well
(NUCB1, NUCB2, and SDF4) and others with no apparent
overlap (COL5A2 and APOB)25−28 (Figure 3C and Table S10).
To determine whether the ER-ESCAPE motif was signifi-

cantly enriched among SURF4 cargoes, we compared the
tripeptide sequences from the full set of candidate SURF4
cargoes in relation to all proteins in the human proteome with an
annotated signal peptide (Tables S11, S12). As shown in Figure
3D, there are no significant differences in the distribution of each
amino acid class within the tripeptide motif between SURF4
candidate cargoes that have been reported to date and all
secreted proteins with an annotated signal peptide in the
proteome. In addition, we also found that among the proteins
detected in our data sets, those that are not SURF4 cargoes
generally carry “stronger” ER-ESCAPE motifs relative to those

Figure 2. Differential effects on protein secretion in HuH7 cells following LMAN1 or SURF4 deletion. (A,B) Volcano plots comparing protein M/L
ratios in LMAN1- (A) or SURF4- (B) deficient cells with those in controls. The log2 fold change (log2 fc) and statistical significance are plotted on the
x- and y-axes, respectively. Proteins with a signal peptide are colored in red, and proteins without a signal peptide are colored in blue. Dashed vertical
lines represent the log2 fc of 1 and −1. Dashed horizontal lines represent the −log10(q-value of 0.05). (C,D) Comparison of total abundance
(estimation from FragPipe; seeMethods) in themedia with LMAN1 (C) or SURF4 (D) dependency. Trend lines represent linear regression. Dot sizes
are proportional to −log10(q-value). R2 values in blue and red are for proteins without and with an annotated signal peptide, respectively.
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of SURF4 cargoes (Figure S6). These analyses suggest that the
ER-ESCAPE motif may be relevant only for a limited subset of
SURF4 cargoes.
Recent studies have also suggested a key role for the Cardin−

Weintraub (CW) motif [K/R][K/R][K/R]XX[K/R][K/R] in
recognition by SURF4 for cargoes such as the hedgehog
family.32,35 Analysis of the human proteome identified 267
proteins carrying a CW motif among 7327 proteins that carry a
signal peptide or a transmembrane domain. Among the 115
SURF4 candidate cargoes identified by our and previous studies
(Figure 3C), seven carry a CW motif, though only one of these
seven proteins was identified in the current study (Table S13).

■ DISCUSSION
In this study, we applied a broad, whole proteome approach39 to
profile the cargo repertoires for two well-characterized cargo
receptors, LMAN1 and SURF4, in the human hepatocellular
carcinoma cell line, HuH7. Though only a limited set of

LMAN1-dependent cargoes was identified in HuH7 cells,
SURF4 facilitated secretion for a broad range of proteins. A
subset of putative SURF4 cargoes carry the previously described
ER-ESCAPE29 or CW motifs32,35 potentially mediating
interaction with SURF4. However, most do not, suggesting a
more complex mechanism governing the SURF4 cargo
recognition.
While several established LMAN1 cargoes, including F5 and

SERPINA1, were detected in our data set, with a trend toward a
reduced M/L ratio in LMAN1-deleted cells, these changes did
not reach statistical significance. These findings suggest limited
statistical power, potentially due to only partial secretion
blockade in LMAN1-deficient HuH7 cells and/or overlap with
other cargo receptors. Indeed, humans and mice with complete
LMAN1 deficiency exhibit incomplete reduction in plasma
levels for two key LMAN1 cargoes, F5 and F8, to only ∼10%
(humans) and 50% (mice) of those in wild-type controls.17,53

Similarly, levels for the LMAN1 cargo SERPINA1 are

Figure 3. Most SURF4 cargoes do not contain an ER-ESCAPE motif.29 (A) Venn diagram of putative SURF4 cargoes that were identified in the
current study, or previously reported by Gomez-Navarro et al.24 in HEK293T and HuH7 cells following analyses of conditioned media, or by Huang et
al.36 using an in vitro COPII vesicle formation assay. (B) Classification system for the three amino acid residues immediate downstream of the signal
peptide cleavage site (ER-ESCAPE tripeptide motif) proposed by Yin et al.29 (C) Tripeptide motifs in previously reported SURF4 cargoes,23−34 in
cargoes that were identified in more than one MS-based data sets, and in this study color-coded according to (B). (D) Percentage of each amino acid
class [as described in (B)] at each position in the tripeptide motif for all secreted proteins with an annotated signal peptide in the proteome (n = 2110,
see Methods) and for SURF4 candidate cargoes (n = 86). P-values were obtained from Fisher’s exact test.
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unchanged in the plasma of Lman1−/− mice, though modest
accumulation is observed in hepatocytes.17 Although the
lysosomal proteins CTSC and CTSZ have also been proposed
as cargoes for LMAN1,14,15 our experiment approach would not
be expected to distinguish protein accumulation in different
cellular compartments (i.e., the ER vs the lysosome). Taken
together, these data suggest that LMAN1 traffics only a small
subset of proteins in HuH7 cells.
In contrast to LMAN1, the depletion of SURF4 significantly

impeded the secretion of 52 proteins, suggesting a much broader
cargo repertoire for SURF4 than for LMAN1. SERPINA1, a
previously reported LMAN1 cargo,11 also exhibited a reduced
M/L ratio following SURF4 deletion, suggesting dependence on
SURF4 as well as LMAN1 for efficient secretion. These findings
are consistent with a recent report demonstrating a role for
SURF4 in the secretion of pathogenic SERPINA1 polymers as
well as SERPINA1 monomers, albeit to a lesser extent than
LMAN1.24,31 The large difference in the number of potential
clients for LMAN1 and SURF4 could also help explain the
normal development and only mild bleeding defect observed in
LMAN1-deficient mice and human17,53 in contrast to the early
embryonic lethality of Surf4−/− mice54 and the lack of human
disorders associated with mutations in SURF4.
Though the role of the ER-ESCAPE motif proposed by Yin et

al.29 in the efficient SURF4-mediated trafficking of PCSK9 and
NUCB1 has been confirmed by Gomez-Navarro and
colleagues,24 our analysis suggests a more complex process for
SURF4 cargo selection. We failed to confirm a general
enrichment for the ER-ESCAPE motif among the broader
repertoire of potential SURF4 cargoes. However, we cannot
exclude the possibility that the tripeptide motif is shifted from
the expected starting position in the majority of cargoes.24 It is
also possible that SURF4 indirectly interacts with cargoes via a
cofactor, with each cofactor having a different recognition motif.
Lastly, the broad range of proteins that rely on SURF4 for
secretion also suggests the possibility that SURF4 could function
as a general mediator of ER-Golgi transport, promoting
secretion in a way other than directly binding to its cargoes.
For example, a recent study reported that SURF4 regulates the
entrance of secretory proteins into a tubular network lacking
LMAN1 and extending from the ER, which expedites protein
delivery to the Golgi, suggesting a distinct SURF4 trafficking
route.55

Our data demonstrated that genetic inactivation of LMAN1
and SURF4 using the lentiCRISPR system is efficient and
specific.41 The only proteins that significantly decrease in cell
lysates from LMAN1-null cells are LMAN1 and MCFD2, with
SURF4 being the only such protein in SURF4-deleted cells. We
also previously reported that the secretion defect seen in SURF4-
deficient HEK293T cells generated with the same SURF4 gRNA
used in this study was efficiently rescued by expression of a
CRISPR-resistant SURF4 variant.23 Taken together, these data
suggest minimal off-target effects with this CRISPR-mediated
gene targeting approach. Finally, our data confirm a previously
proposed model that LMAN1 and MCFD2 form a cargo
receptor complex and that MCFD2 is retained in the ER solely
due to its interaction with LMAN1.36,48 We found no evidence
for a similar SURF4 cofactor with SURF4 being the only protein
demonstrating a significant decrease in protein abundance in the
cell lysates of SURF4 null cells.
In this report, we demonstrated the analysis of protein

abundance in both cell lysates and condition media to identify
secreted proteins that depend on LMAN1 and SURF4 for

secretion. This approach could also be applied to other cargo
receptors and cell types. In addition, a similar strategy could also
be extended to study changes in cell secretomes resulting from
disruptions in the conventional and unconventional secretory
pathways as well as in response to external stimuli.
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