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One major question in neuroscience is how to relate connectomes to neural activity,
circuit function, and learning. We offer an answer in the peripheral olfactory circuit
of the Drosophila larva, composed of olfactory receptor neurons (ORNs) connected
through feedback loops with interconnected inhibitory local neurons (LNs). We
combine structural and activity data and, using a holistic normative framework based
on similarity-matching, we formulate biologically plausible mechanistic models of the
circuit. In particular, we consider a linear circuit model, for which we derive an exact
theoretical solution, and a nonnegative circuit model, which we examine through
simulations. The latter largely predicts the ORN → LN synaptic weights found in the
connectome and demonstrates that they reflect correlations in ORN activity patterns.
Furthermore, this model accounts for the relationship between ORN → LN and
LN–LN synaptic counts and the emergence of different LN types. Functionally, we
propose that LNs encode soft cluster memberships of ORN activity, and partially
whiten and normalize the stimulus representations in ORNs through inhibitory
feedback. Such a synaptic organization could, in principle, autonomously arise through
Hebbian plasticity and would allow the circuit to adapt to different environments in
an unsupervised manner. We thus uncover a general and potent circuit motif that
can learn and extract significant input features and render stimulus representations
more efficient. Finally, our study provides a unified framework for relating structure,
activity, function, and learning in neural circuits and supports the conjecture that
similarity-matching shapes the transformation of neural representations.
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Technological advances in connectomics (1, 2) and neural population activity imaging
(3) enable the anatomical and physiological characterization of neural circuits at
unprecedented scales and detail. However, it remains unclear how to combine these
datasets to advance our understanding of brain computation. To address this, we focus on
the peripheral olfactory system of the first instar Drosophila larva—a small and genetically
tractable circuit with available connectivity and activity imaging datasets (4, 5).

This circuit is an analogous but simpler version of the well-studied olfactory circuit
in adult flies and vertebrates (6). It contains 21 olfactory receptor neurons (ORNs), each
expressing a different receptor type (Fig. 1A). ORN axons are reciprocally connected to a
web of multiple interconnected inhibitory local neurons (LNs) through feedforward
excitation and feedback inhibition. The connectome dataset contains not only the
presence or absence of a connection between two neurons, but also the number of
synaptic contacts in parallel (4), which is an estimate of the connection strength (2, 7–9)
(nonetheless, other factors like release probability and active zone properties also affect
synaptic strength (10, 11)).

Previous studies examined the role of LNs in transforming the neural representation
of odors from ORN somas to downstream projection neurons (PNs). In adultDrosophila,
this circuit was suggested to perform gain control and divisive normalization (12, 13),
which equalizes different odor concentrations and decorrelates input channels. In the
zebrafish larva, an analogous circuit was suggested to whiten the input, leading to pattern
decorrelation, which helps odor discrimination downstream (14, 15).

However, the underlying mechanistic principles of computation remain elusive. For
example, while different types of LNs have different connectivity patterns with ORNs
in the Drosophila larva (4), the role of different LN types, their multiplicity, and their
specific connectivity is not yet understood. Furthermore, the peripheral olfactory circuit
of adult Drosophila exhibits synaptic plasticity in response to changes in the olfactory
environment (16–19), but the functional role of this plasticity is unclear.

To address these shortcomings, we use a combination of data analysis and modeling
and develop a holistic theoretical framework that links circuit structure, function,
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Fig. 1. Circuit connectivity and LN types. (A) ORN-LN circuit diagram. xi ,
yi , zi : activity each ORN soma (circle), axonal terminal (rectangle), and LN
(pentagon). Each ORN is depicted as a two-compartment unit with a soma
and an axon. Half-circles: different types of chemical receptors. Red lines
with arrowheads, blue lines with open circles: excitatory and inhibitory con-
nections. LNs reciprocally connect with ORN axons and between themselves.
ORN axons and LNs synapse onto neurons downstream (dashed lines). (B)
Feedforward ORNs → LN synaptic count vectors, wLN (colored lines), and
average feedforward ORNs→ LNtype synaptic count vectors, wLNtype (black
lines, mean ± SD) for each LN type (SI Appendix, Fig. S2A). (C) Correlation
coefficients r between all wLN. L, R: left and right side of the Drosophila
larva. The numerical indices of BT and BD are arbitrary, and there is no
correspondence between the left and right side indices. Although BT 1 R
is of the same type as other BT, its connection vector has a correlation of
0 with other BT in the connectome data. Inset: Mean rectified correlation
coefficient r+ (r+ := max[0, r], i.e., negative values are set to 0) between LN
types calculated by averaging the rectified values in each region delimited by
a white border, excluding the diagonal entries of the full matrix.

activity data, and learning. Our contribution is fivefold: 1) We
find that the vectors of the number of synapses between ORNs
and LNs reflect features of the independently acquired ORN
activity pattern dataset (Figs. 2 and 3). 2) Building upon the
normative similarity-matching framework (20, 21), we develop
an optimization problem solvable by a biologically realistic circuit
model with the same architecture as the ORN-LN circuit. 3) The
model, driven by the ORN activity dataset, largely predicts the
following observations in the structural dataset (Figs. 3 and 4): the
ORNs→ LN synaptic weights, the emergence of LN groups, and
the relationship between feedforward ORN → LN and lateral
LN–LN connections. 4) Using our model, we characterize the
circuit computation (Figs. 5 and 6), and propose that LNs play a
dual role in rendering the neural representation of odors in ORNs
more efficient and extracting useful features that are transmitted
downstream. 5) We show that the synaptic weights that enable
this computation can, in principle, be learned in an unsupervised
manner via Hebbian plasticity. Note that, given the connectome
(4) originates from a 6-h-old first instar Drosophila larva, new
synaptic contact formation can take longer than 6 h (11), and
no study has yet demonstrated activity-dependent plasticity in
the larval ORN-LN circuit, it is unknown whether the observed
synaptic counts in this connectome could result from activity-
dependent synaptic plasticity.

In this study, we further our understanding of LNs and
their computations. We highlight the importance of minutely
organized ORN–LN and LN–LN connection weights, which
allow LNs to encode different significant features of input activity
and dampen them in ORN axons. The transformation from the
representation in ORN somas to that in ORN axons consists of
a partial equalization of PCA variances, which enables a more
efficient stimulus encoding (22). In fact, this results in a decorre-
lation and equalization of ORNs and odor representations, which
correspond to two fundamental computations in the brain: partial
ZCA (zero-phase) whitening (23, 24) and divisive normalization
(25). In essence, we uncover an elegant neural circuit motif that
can extract features and perform two critical computations. If
endowed with Hebbian plasticity, the circuit can also adapt and
perform its functions in different stimulus environments. Thus,
we present a framework that allows us to quantitatively link
synaptic weights in the structural data with the circuit’s function
and with the circuit adaptation to input correlations, thus making
a crucial step toward a more integrated understanding of neural
circuits.

The results are organized as follows. First, we show that the
connectome is adapted to ORN activity patterns. Second, we
propose a normative approach leading to two circuit models:
a linear circuit (LC) model, and a nonnegative circuit (NNC)
model. Third, we show that the NNC reproduces key structural
observations. Finally, we describe the computations performed
by the LC and NNC in general and on the ORN activity dataset
in particular.

Results

ORN-LN Circuit. ORNs in the Drosophila larva carry odor
information from the antennas to the antennal lobe, where they
synapse onto LNs and PNs. There, olfactory information is
reformatted and transferred through ORN axons and LNs to
PNs. LNs, which synapse bidirectionally with ORN axons and
PN dendrites, strongly contribute to the reformatting in ORNs
and PNs through presynaptic and postsynaptic inhibition, as
shown mainly in the adult fly (12, 13, 26–30). LNs project to
several uni- and multiglomerular PNs, and PNs project to higher
brain areas such as the mushroom body and the lateral horn (4).

We study the circuit and computation presynaptic to PNs, i.e.,
occurring from ORN somas to ORN axons and LNs. Specifically,
we examine the subcircuit formed by all D = 21 ORNs and
those 4 LN types (on each side of the brain) that reciprocally
connect with ORNs (4) (Fig. 1A, SI Appendix, Fig. S1). The
4 LN types include 3 Broad Trio (BT) neurons, 2 Broad Duet
(BD) neurons, 1 Keystone (KS, bilateral connections) neuron,
and 1 Picky 0 (P0) neuron (SI Appendix, Figs. S1 and S2A). This
amounts to 8 ORNs–LN connections per side (3 BTs, 2 BDs, 2
KSs, and 1 P0s) and 16 on both sides. See SI Appendix, Tables
S1 and S2 for a list of all acronyms and mathematical variables
used in the paper.

We use the number of synaptic contacts in parallel between
two neurons as a proxy for the synaptic weight (2, 7–9) (but see
refs. 10 and 11). In the linear approximation, the change in the
postsynaptic neuron activity due to a change in the presynaptic
neuron activity is proportional to the synaptic weight connecting
them.

We focus our analysis on the synaptic counts of the feedforward
ORNs→LN connections. We callwLN theD = 21 dimensional
vector containing the synaptic counts of the connections from
the 21 ORNs to one LN. Because all the entries of this synaptic
count vector wLN share the same postsynaptic neuron, this
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vector is likely proportional to the corresponding synaptic weight
vector. Conversely, the synaptic count vector from one LN to
all 21 ORNs may not be proportional to the corresponding
synaptic weight vector, because each connection affects a different
postsynaptic ORN, which potentially has different electrical
properties. This makes the entries of a feedback synaptic count
vector not directly comparable. Yet, the feedforward and feedback
synaptic count vectors are somewhat correlated (SI Appendix,
Fig. S2).

While the study (4) divided LNs into the above types based on
their neuronal lineage, morphology, and qualitative connectivity,
we also find that these types are innervated differently by ORNs
(Fig. 1B). Indeed, the average correlation ofwLNs within each LN
type is higher than between LN types (Fig. 1C ). Thus, for a part of
our study (Figs. 2 and 3 A and B) we use the 4 average wLNtype =
1
n
∑

LN∈LNtype wLN, where n is the number of connection vectors
for that LN type.

ORNs → LN Synaptic Count Vectors Are Adapted to Odor
Representations in ORNs. Several studies proposed that LNs
could facilitate the decorrelation of the neural representation
of odors (14, 15, 32–35). To perform such decorrelation, the
circuit must be adapted to or “know about” the correlations in
the activity patterns (36). We investigate whether this is the case
in this olfactory circuit by testing whether the wLNtypes contain
signatures of ORN activity patterns.

An ensemble of ORN activity patterns {x(t)}data (t =
1, ..., 170) was obtained using Ca2+ fluorescence imaging of
ORN somas in response to a set of 34 odorants at 5 dilutions
(5) (Fig. 2A and SI Appendix). These odorants were chosen
from the components of fruits and plant leaves from the larva’s
natural environment to stimulate ORNs as broadly and evenly

as possible, with many odorants activating just a single ORN at
the lowest concentration (i.e., the highest dilution).

We examine the Pearson correlation coefficients between the
activity patterns {x(t)}data and the ORNs → LNtype synaptic
count vectors {wLNtype} (Fig. 2 C and D for wBT and two odors;
Fig. 2B for all four wLNtypes and all activity patterns {x(t)}data).
After controlling for multiple comparisons (31), we find that
the wLNtypes for the Broad Trio and Picky 0 maintain significant
correlations (P < 0.05) with a selection of ORN activity patterns,
BT being highly correlated with the largest set of x(t)s. This
suggests that the synaptic count vectors of at least these two LN
types are more adapted to these activity patterns than would be
expected by chance (see SI Appendix, Fig. S4 and SI Appendix
for additional evidence). This supports the hypothesis that the
circuit is at least partially adapted to ORN activity patterns and
that it could perform a computation like decorrelation of input
stimuli.

Each wLNtype exhibits a different “connectivity tuning curve”
shape (Fig. 2G), wBT being correlated with the largest set of
x(t)s, and wP0 the most highly correlated to a few x(t)s, and the
wBD and wKS the most weakly correlated. Biologically, this could
signify that the BT type is activated by the largest set of odors
and P0 only by a few odors. One possibility is that a different set
of odors activates each LN class.

A Normative and Mechanistic Model of the ORN-LN Circuit. We
aim to understand the circuit’s computation and organization
using a top-down, normative (also called principle-driven)
approach, which involves formulating an optimization problem.
Such an approach provides us with a theoretical understanding
of the computation and organizational principles of the circuit.
Although a bottom-up modeling approach requires unavailable
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Fig. 2. Alignment of ORNs→ LN synaptic count vectors with odor representations in ORN activity. (A) Ca2+ 1F/F0 activity patterns {x(t)
}data in ORN somas in

response to 34 odors (separated by vertical gray lines) at 5 dilutions (10−8 , ...,10−4) from ref. 5. See SI Appendix, Fig. S3 for odor labels and scaled {x(t)
}data.

(B) Correlation between the four ORNs → LNtype synaptic count vectors (wLNtype for BT, BD, KS, and P0) with the odor representations {x(t)
}data from (A).

Slash: significant at 0.05 level; cross: significant at 0.05 FDR (false discovery rate) (31). P-values calculated by shuffling the entries of each wLNtype (50,000
permutations). (SI Appendix, Figs. S4A and S5). (C) ORNs → Broad Trio synaptic count vector wBT superimposed with ORN activity patterns x(A) and x(B) in
response to the ligands 2-heptanone (odor A) and 2-acetylpyridine (odor B) at dilution 10−4. y-axis: ORN, follows order of (A). (D) Scatter plot representation of
(C). wBT is more strongly tuned to x(A) (r = 0.6, P = 0.004) than to x(B) (r = 0.14, P = 0.3). P-values not adjusted for multiple comparisons. (E) wBT superimposed
on the 1st PCA direction of {x(t)

}data. y-axis: ORN, follows order of (A). (F ) Scatter plot representation of (E) (r = 0.65, P = 0.001). P-values are not adjusted
for multiple comparisons. (G) LN “connectivity tuning curves”: correlation coefficients sorted in decreasing order from (B) for each wLNtype. (H) Correlation
coefficient r between the top 5 PCA directions of {x(t)

}data and the four wLNtypes (SI Appendix, Fig. S6 A, B, and E). Two-sided P-values calculated by shuffling
the entries of each wLNtype (50,000 permutations). *: significance at 0.05 FDR.
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physiological circuit parameters, we verified our predictions with
a connectome-constrained model (Fig. 6).

Previous studies suggest that analogous circuits perform
stimulus whitening or decorrelation (14, 15, 32–35), and our
analysis above supports the possibility of such a computation. A
class of optimization problems based on the similarity-matching
principle and solvable by circuits similar to the ORN-LN one has
been shown to be capable of implementing whitening, principal
subspace extraction, and clustering (20, 21, 37). Note that the
circuit’s synaptic weights are adapted (optimized) to the ensemble
of inputs to perform such computation.

To understand the circuit, we first postulate an optimization
problem (Eq. 4) based on the similarity-matching principle
and solvable by a circuit with the ORN-LN architecture (see
Methods and SI Appendix). To match this architecture, similarity-
matching takes place between ORN axon and LN activities,
which seeks to maintain that distances (similarities) between
neural representations at the level of ORN axons and LNs.
Specifically, if the representations of two odors are similar
(dissimilar) in ORN axons, their representations will also tend
to be similar (dissimilar) in LNs. Second, we derive the circuit
models (Eqs. 5–7) that solve this optimization problem with the
recorded ORN soma activity described above (5) as input. Third,
we compare the synaptic weight organization of the circuit model
with the connectome (4) (Figs. 2, 3, and 4) and find that the
circuit model accounts for multiple experimental observations.
We thus conclude that the similarity-matching principle and
the optimization problem widely explain the biological circuit’s
organization. Lastly, we describe in detail the computation
performed by the circuit model (Figs. 5 and 6).

Mathematically, given a set of T activity patterns in D ORN
somas as input, {x(t)}t=1...T , the optimization provides us as
output the activity patterns in the D ORN axons {y(t)

}t=1...T
and K LNs {z(t)}t=1...T . The circuit model performing the
computation of the optimization has the following parameters:
W = [w1, ...,wK ] := E[y(t)z(t)T] and M = {mi,j}i,j=1...K :=
E[z(t)z(t)T], which are proportional to the connection weights
between ORNs and LNs, and between LNs, respectively. In
addition to K, the number of LNs, the model contains only
one effective parameter ρ2, corresponding to the ratio between
feedback inhibition and feedforward excitation strengths.

We consider two optimization problems leading to two circuit
models, differing in their domain of optimization: 1) a linear
circuit, LC-K with K LNs, Eq. 6, with no constraint on
the optimization domain; 2) a nonnegative circuit, NNC-K,
Eq. 7, with nonnegative constrains on ORN axon and LN
activity (y(t)

≥ 0, z(t) ≥ 0). This constraint renders the NNC
more biologically plausible than the LC, and the NNC indeed
predicts the structural data better than the LC (below). However,
only for the LC we can derive the analytical expressions for
W, M, {y(t)

}, and {z(t)}, whereas for the NNC we must
rely on numerical simulations (SI Appendix). Because both
models are closely related, we examine the analytical solution
of the LC to quantitatively understand the relationship between
input and output variables, describe the circuit’s function in a
mathematically tractable manner, and substantiate the numerical
results for the NNC.

Given an input {x(t)}, the optimal synaptic weights can be
found by solving the optimization problem offline (Eqs. 4 and 5),
or online with Hebbian plasticity (Eq. 8). The latter implies
that the circuit model’s synaptic weights can adapt to solve the

optimization problem on any ORN activity patterns ensemble,
in an unsupervised manner. This would correspond to activity-
dependent synaptic plasticity in the biological circuit, which was,
so far, only observed in the adult Drosophila (16–19). Given
the specific wiring of some LNs such as Keystone and Picky
0 in the biological circuit (4), it is very likely that the synaptic
weights of these (and potentially other) LNs are largely genetically
predetermined and were set over evolutionary time scales (similar
to an offline setting). It is unknown which mechanisms determine
the synaptic weights in the biological circuit, and it is beyond the
scope of this study to elucidate them.

Next, we characterize the computation performed by the LC
and the NNC as well as the connectivity (in terms of W and
M) that supports the computation. In short, in the LC, LNs
extract and encode the top K PCA subspace of the input in
ORN somas and the ORNs→ LN synaptic weight vectors {wk}
span that subspace. In the NNC, LNs encode soft cluster/feature
memberships of the odor representations in ORN somas and
{wk} are related to cluster locations. In both models, the ORN
axons encode a partially whitened and normalized version of the
ORN soma activity due to LN feedback inhibition.

Predictions of the ORN–LN Connection Weight Vectors. We
start by analyzing our models’ predictions in terms of circuit
connectivity. In the LC-K, the {wk}k=1...K (proportional to
the ORNs ↔ LN connection weight vectors) are linearly
independent and span the same K dimensional subspace as the
topK PCA directions {uX,i}i=1...K of the uncentered input {x(t)}
(SI Appendix):

wk =
K∑
i=1

ak,iuX,i. [1]

This ensures that LNs extract the top K PCA subspace of the
input (below). The {ai,j}i,j=1...K are coefficients with a degree
of freedom, arising from the nonuniqueness of the optimization
solution. Thus, the wks do not necessarily correspond to specific
PCA directions of the input and are not orthogonal. Because the
model predictions rely on “uncentered PCA,” i.e., PCA without
prior centering of the data, we use such PCA throughout the
paper.

We probe this structural prediction by testing the alignment
between the four ORNs→LN synaptic count vectors, {wLNtype}

and the first 5 PCA directions of the ORN activity data, {x(t)}data
(Fig. 2 E, F, and H ). We find that only wBT is significantly
correlated with the first PCA direction. Because this is uncentered
PCA, this direction closely resembles the mean activity direction.
We compare with the top 5 (instead of 4, as the number of
wLNtypes) PCA directions to account for the potential discrepancy
between this ORN activity dataset and the true ORN activity.

Next, to test Eq. 1 directly, we examine the alignment of the
subspaces spanned by the four wLNtypes and the top five PCA
directions of {x(t)}data (SI Appendix, Fig. S7). While ≈ 1 more
dimension is significantly aligned than is randomly expected,
supporting the results of Fig. 2H, there is no complete alignment.
In summary, although wBT aligns with the top PCA direction of
{x(t)}data, and the connectivity and activity subspaces are more
aligned than expected by chance, the LC does not account for
the connectivity of most LN types.

Next, we study the {wk}k=1...4 predicted by the NNC-4 (K =
4 as the number of LN types) optimized on {x(t)}data (Fig. 2A),
for 0.1 ≤ ρ ≤ 10. For ρ / 3.1, three of the four wks align
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significantly with a wLNtype (BT, BD, and P0, Fig. 3 A and
B). In a perfect fit between model and data, each wLNtype is
aligned one wk. wKS is not significantly correlated with any of
the wks, but NNC-5 has one wk significantly aligned with wKS
(SI Appendix, Fig. S6H). The significant alignment of w4 with
both wBT and wP0 could arise due to partial correlation between
wLNtypes (Fig. 1C ). Furthermore, we find a similarity between
the model and the data in terms of alignment of the ORNs→
LN connection weight vectors with the ORN activity vectors
{x(t)}data (SI Appendix, Fig. S8).

In summary, the ORN→ LN connection weights predicted
by the NNC model strongly resemble the synaptic counts in
{wLNtype}, but do not provide an exact one-to-one correspon-
dence. This analysis confirms that all the wLNtypes are adapted to
ORN activity patterns. It also corroborates the hypothesis that
the similarity-matching principle and the optimization problem
have explanatory power for the organization of the biological
circuit. Later we discuss the potential reasons for the nonexact
alignment between the model and the data.

Emergence of LN Groups in the NNC. In the connectome, LNs
are grouped by type and several wLNs are similar (Figs. 1 B and C
and 3C ). Do LN groups naturally emerge in our models? In the
LC, {wk}k=1...K spans the top K -dimensional principal subspace
of the input {x(t)}, resulting in distinct wks and thus no LN
group emerges.

In the NNC, however, we observe the formation of LN groups.
For example, in NNC-8 (8 LNs as on each side of the larva)
trained on {x(t)}data, several wks are similar, especially for smaller

A C

D

E

B

Fig. 3. Prediction of the connectivity with the NNC and emergence of LN
groups. (A) Correlation between the four ORNs → LN connection weight
vectors {wk } from NNC-4 (� = 1) and the four ORNs→ LNtype synaptic count
vectors {wLNtype} (SI Appendix, Fig. S6 C, D, F, G, and H). One-sided P-values
calculated by shuffling the entries of each wLNtype (50,000 permutations). *:
significant at 0.05 FDR. (B) Bottom: maximum correlation coefficient (mean ±
SD) of the four wks from NNC-4 with the four wLNtypes for different values
of � (50 simulations per �), encoding the feedback inhibition strength. Top:
number of wLNtypes significantly correlated with at last one wk from NNC-4
(FDR at 5%). For � ' 3.1, not all simulations converge to the same {y(t)

},
{z(t)}, and {wk }, potentially due to existence of multiple global optima or
simulations only finding local optima. (C) Correlation between the wLNs on
the left and right sides of the larva, portraying that several wLNs are similar. (D)
Same as (C) for the eight wks arising from NNC-8 and with � = 0.1,0.35,1,10.
Matrices ordered using hierarchical clustering and wks ordered accordingly
(SI Appendix). (E) Mean rectified correlation coefficient r+ (r+ := max[0, r])
from (C) (blue band delimited by the value for left and right circuit) and from
NNC-8 (black line, mean± SD, 50 simulations per �). r+ obtained by averaging
all the r+ from a correlation matrix, i.e., (C) or (D), excluding the diagonal.

ρ (Fig. 3D). Given that thewks point toward the cluster locations
in the ORN axon activity space, the grouping ofwks is influenced
by 1) ORN activity pattern statistics (closer clusters elicit more
aligned wks), 2) the number of LNs (having more LNs than
clusters lead to several similarwks), and 3) the value of ρ (higher ρ
leads to more separated clusters in ORN axons and thus dissimilar
wks) (SI Appendix, Figs. S9 and S10).

For the biological circuit, we lack exact measures of the factors
(e.g., {x(t)} and ρ) that influence {wk} grouping. Nevertheless,
we inquire whether NNC-8 can, in principle, generate a wk
grouping similar to the biological circuit for different values of ρ.
At ρ = 0.35, the mean rectified correlation coefficient r+ (r+ :=
max[0, r]) between all wks of the NNC-8 matched that of the
connectome (Fig. 3E). While this value of ρ, which corresponds
to a relatively low feedback inhibition in the model, should not
be interpreted as the “true” value in the actual biological circuit,
it falls within the range found above (ρ / 3.1).

In summary, within a reasonable parameter range, the NNC
reproduces another property of the biological circuit: the emer-
gence of LN groups.

Relation between LN–LN and Feedforward ORNs → LN Con-
nection Weights. The ORN-LN circuit contains reciprocal
inhibitory LN–LN connections (Fig. 4A) whose connectivity
patterns and roles are not fully understood. In our models,
these connections are symmetric: the synaptic weights LNi →
LNj and LNj → LNi are equal. This is largely verified in
the connectome, except for the P0, which inhibits the KSs,
but is not strongly inhibited by them. Theoretical predictions
of the LC-K model (with K LNs) state that the strength of
LN–LN connections (M = {mLNi, LNj}i,j=1...K ) and ORN–LN
connections (W = [w1, ...,wK ]) are related (SI Appendix):

M2 = M>M ∝W>W ⇔ M ∝ (W>W)1/2, [2]

where> is the matrix transpose. This relationship is exact for the
LC and approximate for the NNC. The ith column of M, mi, is
the LNs→ LNi (and LNi→ LNs) synaptic weight vector. The
ith column of W, wi, is proportional to the ORNs→ LNi (and
LNi→ORNs) synaptic weight vector. From Eq. 2 follows that:
1) ‖wi‖/‖mi‖ = const, i.e., the ratio between the magnitude of
the ORNs→ LN and LNs→ LN synaptic weight vectors is the
same at each LN. The magnitude is a proxy for the total synaptic
strength of a synaptic weight vector. 2) ](wi,wj) = ](mi,mj),
where ](a, b) is the angle between two vectors a and b. Thus
2 LNs with a similar (different) connectivity pattern with the
ORNs have a similar (different) connectivity pattern with LNs.

We test whether Eq. 2 holds in the connectome (Fig. 4), and
find a significant correlation (r = 0.73, P = 0.006) between the
off-diagonal entries of matrices M and (WTW)1/2, suggesting
a meticulous co-organization of the ORN–LN and LN–LN
connections. We lack the values of the LN neural leaks, which
correspond to the diagonal entries of M (Eqs. 6 and 7).

In summary, the synaptic weight organization in the NNC
model resembles that the connectome in several key ways: the
synaptic counts wLNtype, the emergence of LN groups, and the
relationship between ORNs→ LN and LN–LN. The LC model,
on the other hand, fails at explaining several of these structural
features.

Circuit Model Computation and Coding Efficiency. We next
explore the computations of the LC and NNC. In both models,
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A B C D

Fig. 4. Relationship between LN–LN (M) and ORNs→ LN (W) synaptic counts in the connectome reconstruction. (A) LN–LN connections synaptic counts M on
the left and right sides of the larva. (B) WTW with W = [wLN1 , ...,wLN8] on the left and right sides. Thus each entry is wT

LNiwLNj, the scalar product between
2 ORNs → LN synaptic count vectors wLN. (C) (WTW)1/2, i.e., the square root of the matrices in (B). (D) Entries of M vs entries of (WTW)1/2, excluding the
diagonal, for both sides. r: Pearson correlation coefficient. pv: one-sided P-value calculated by shuffling the entries of each wLN independently, which assures
that each LN keeps the same total number of synapses. Shuffling the entries of M in addition to shuffling each wLN leads to P-value < 10−4.

upon ORN soma activation, the computation is implemented
dynamically through the ORN–LN loop and converges expo-
nentially to a steady state (Eqs. 6 and 7). Given inputs {x(t)},
the circuit’s outputs are the converged representations in ORN
axons, {y(t)

}, and LNs, {z(t)}.
Efficient encoding of odor representations in ORN is crucial

for downstream processing. Odor representations can be visual-
ized as points in a neural space, where each axis is the activity
of an ORN. We consider a circuit with just D = 2 ORNs
and K = 2 LNs, and an artificial input dataset of two odors A
and B (Fig. 5 A and D). Given xA and xB the representations
of the two odors: the larger the angle ](xA, xB), the easier the
two odors can be discriminated, and the more efficiently the
space is utilized. We quantify the efficiency of the encoding
by the coefficient of variation of the PCA variances, {σ 2

i }, of
the representation: CVσ = SD[{σ 2

i }]/mean[{σ 2
i }]. If all the

variances are equal (CVσ = 0), the representation is white,
and the encoding space is efficiently used (38). A larger CVσ
indicates a less optimal space utilization. We study the PCA
variances and “whiteness” of uncentered data because we assume

downstream neurons experience uncentered activity. We further
describe the computation in terms of the modification of the
stimulus representations.

LC: Extraction of the Principal Subspace by LNs and Partial
Equalization of PCA Variances in ORN Axons. We first describe
the computation in the LC. Given activity patterns {x(t)} in the
D ORN somas, we call {uX,i} and {σ 2

X,i} (i = 1, ..., D) the PCA
directions and variances of the uncentered {x(t)} (Fig. 5D). The
activity of the K LNs, {z(t)}, encodes the top K PCA subspace
of {x(t)}, i.e., spanned by {uX,i}i≤K (Fig. 5B). How exactly LNs
encode the subspace is a degree of freedom of the optimization,
and thus the activity of individual LNs does not necessarily align
with the PCA directions of the input. When K < D, LNs
perform a dimensionality reduction of the ORN soma activity.

LNs inhibit ORN axons, altering their odor representation
{y(t)
} (Fig. 5D). However, the PCA directions {uY,i} of ORN

axon activity remain the same as in ORN somas, i.e., {uY,i} =
{uX,i}. Thus, this transformation from soma to axons only

A D E F G H

B

C

Fig. 5. Computation in the LC and NNC. (A) Artificial ORN soma activity patterns ({x(t)
}, D = 2 ORN somas), generated with two Gaussian clusters of 100 points

each centered at (1, 0.3) and (0.3, 1), SD = 0.17. This input is fed to the LC-2 (i.e., K = 2 LNs) (B, D, and F ) and the NNC-2 (C, E, and F ), � = 1. (B) LN activity, {z(t)},
in the LC-2. Because of a degree of freedom in LC, LN activity can be any rotation of the activity depicted here, i.e., Q · z, where Q is a rotation (orthogonal)
matrix. (C) LN activity, {z(t)}, in the NNC-2. LNs encode cluster memberships. (D) Scatter plot of the activity patterns in ORN somas ({x(t)

}, black, from (A) and
in ORN axons in the LC-2 ({y(t)

}, magenta). �X,iuX,i , �Y,iuY,i : vectors of the PCA directions of uncentered {x(t)
} and {y(t)

} scaled by the SD of that direction. wk
(green): direction of an ORNs→ LN synaptic weight vector in the LC-2 from (B). Rotating the LN output {z(t)} would alter the wks, but not the {y(t)

}. (E) Scatter
plot of the activity patterns in ORN somas ({x(t)

}, black, from (A) and in ORN axons in the NNC-2 ({y(t)
}, blue). All activities are nonnegative and the wks point

toward the cluster locations, enabling the clustering observed in (C). (F ) The PCA variances of the activity are less dispersed in ORN axons (output, {y(t)
}) than in

ORN somas (input, {x(t)
}) for the LC and NNC. The output representation is thus partially whitened. The LC and NNC are similar in terms of their PCA variances.

(G and H) Transformation of the SD (�X , �Y ) of PCA directions from ORN somas ({x(t)
}) to ORN axons ({y(t)

}) in the LC model on linear and logarithmic scales,
for different values of � (different line colors), encoding inhibition strength. When � = 0, the output equals the input. The higher the �, the smaller the PCA
variances in the ORN axon.
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stretches and does not rotate the cloud of representations in the
neural space. This absence of rotation (called “zero-phase”) makes
the axonal and somatic activity maximally similar (23). This is
advantageous for downstream processing because the evolving
representation in ORN axons, computed dynamically via LN ac-
tivation, is thus maximally close to the converged representation,
allowing meaningful downstream processing before the complete
representation convergence.

The PCA variances {σ 2
Y,i} and {σ 2

Z,i} of {y(t)
} and {z(t)} are

(Fig. 5 D and F ):
σY,i

(
1 + ρ2σ 2

Y,i
)

= σX,i 1 ≤ i ≤ K [3a]
σY,i = σX,i K + 1 ≤ i ≤ D [3b]
σZ,i = ρσY,i 1 ≤ i ≤ K . [3c]

Hence, the variances of the last D–K PCA directions in ORN
somas ({x(t)}) remain unaltered in ORN axons ({y(t)

}). The
variances of top K PCA directions in ORN somas are diminished
according to Eq. 3a (Fig. 5 G and H ): relatively large PCA
variances in ORN somas (σ 2

X,i � ρ2) are shrunken with a cubic
root in ORN axons (σY,i ≈ 3

√
σX,i/ρ2), relatively small PCA

variances (σ 2
X,i � ρ2) remain virtually unchanged (σY,i ≈ σX,i).

The PCA variances in LN activity ({z(t)}) are proportional to
those in ORN axon activity ({y(t)

}) (Eq. 3c). (Note the indices
i of the PCA directions and variances in ORN axons have been
set to match those in ORN somas, and do not follow the usual
decreasing order).

This transformation generally results in a smaller coefficient
of variation of PCA variances, CVσ , in the output {y(t)

} than
in the input {x(t)} (SI Appendix, see below, Fig. 6D). The PCA
variances are then less spread and the odor representations are
encoded more efficiently. Because the PCA variances are partially
equated and no rotation occurs, this transformation is a partial
(Zero-phase) ZCA-whitening.

NNC: Clustering by LNs and Partial Equalization of PCA Vari-
ances in ORN Axons. We next explore the computation of the
NNC, where LN ({z(t)}) and ORN axon ({y(t)

}) activities
are nonnegative. LNs implement symmetric nonnegative matrix
factorization (SNMF) on ORN axon activity, which consists
of clustering and feature discovery (SI Appendix) (37). SNMF

A

I J

C F G HD E

B

K L

Fig. 6. Computation in the LC, NNC, and NNC-conn models in response to {x(t)
}data (Fig. 2A): clustering, partial whitening, normalization, and decorrelation.

(A) LN activity, {z(t)}, for the NNC-4 and NNC-8 models (SI Appendix, Fig. S11). LNs are mostly active in response to the odors to which their connectivity is
the most aligned (SI Appendix, Fig. S8A). (B) ORN axon activity, {y(t)

}, in the NNC-8. (C) Variances of odor representations in ORN somas ({x(t)
}data) and axons

({y(t)
}) in the PCA directions of uncentered ({x(t)

}data). The variances decrease the strongest in the directions of the highest initial variance. (D) Uncentered
PCA variances {x(t)

}data and {y(t)
} scaled by their mean to portray the spread of variances. (E) Uncentered variances of activity at ORN axons ({y(t)

}, output)
vs. in ORN somas ({x(t)

}data, input). (F ) Box plot of the ORN activity variances from (E) scaled by their mean to show the spread of variances. (G) Magnitude of
the 170 activity patterns in ORN axons {y(t)

} vs in somas {x(t)
}data. (H) Box plot of the activity pattern magnitudes from (G) (only for top two dilutions 10−5

and 10−4) scaled by their mean to show the spread of magnitudes. (I) Correlations between the activity of ORN somas ({x(t)
}data, Lower Left triangle) and of

ORN axon activity in NNC-8 ({y(t)
}, Upper Right triangle). (J) Smoothed histogram of the channel correlation coefficients from (J), excluding the diagonal (based

on n=210 values). In all models, at the axonal level, there are more correlation coefficients around zero and fewer at higher values. (K ) Correlations between
activity patterns (i.e., odor representations) in ORN somas ({x(t)

}data, Lower Left triangle) and in ORN axons for NNC-8 ({y(t)
}, Upper Right triangle). (L) Smoothed

histogram of the activity pattern correlation coefficients from (K ) (only for top two dilutions 10−5 and 10−4, n = 2,278). Similar effect as for channels in (J).
The decorrelation in the LC is more effective than in the NNC. The decorrelation in NNC-conn is not as pronounced as for the other two models. � = 2 in this
figure. a.u.: arbitrary units, stands for appropriate unit of neural activity. See SI Appendix, Figs. S12–S16 for the alignment of PCA direction, the LC, the NNC, the
NNC-conn, and � = 10.
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is essentially “soft” K -means clustering, allowing inputs to
belong to multiple clusters. Clustering satisfies the optimization’s
objective of nonnegative LN activity and maximally conserved
distances between stimulus representations in ORN axons and
LNs. Thus LN activity, {z(t)}, encodes the cluster membership
of odor representations in ORN axons ({y(t)

}), and the ORN→
LN synaptic weight vectors, {wk}, point toward clusters (Fig. 5
C and E). Unlike the LC, there is no degree of freedom in LN
activity.

The activity in ORN axons in NNC resembles that in LC, only
without negative values, and the PCA variances are also similar
(Figs. 5 D–F ).

Circuit Model Computation on the ORN Activity Dataset. Next,
to better comprehend the potential computation of the ORN-
LN circuit, we study the computation of the NNC on the dataset
of odor representation in ORNs, {x(t)}data (Fig. 2A). We also
show the LC. We set the parameter that regulates the inhibition
strength ρ = 2 to clearly represent the effect of the odor
representation transformation in ORNs. K, the number of LNs,
is set to 1, 4 (as the number of LN types) or 8 (as the number of
LNs on one side of the larva). We also examine the computation
of a nonnegative circuit model (NNC-conn) with connectivity
weights proportional to the synaptic counts of the connectome
(SI Appendix). Because for NNC-conn multiple unknown model
parameters need to be guessed, and this circuit might not be
adapted to the specific statistics of {x(t)}data, its computation
might not accurately reflect that of the true circuit, and the
discrepancies with the normative models might be a consequence
of this. Nevertheless, we find many similarities between NNC-
conn and NNC-8, further supporting our predictions regarding
circuit computation. Fig. 6 exhibits the main results, SI Appendix,
Figs. S13, S14, and S15 display additional analysis of the LC,
NNC, and NNC-conn, respectively.

As above, LNs in the LC encode the top K -dimensional PCA
subspace of ORN soma activity (SI Appendix, Fig. S11B). LNs in
the NNC softly cluster odors, as observed by their sparser activity
and their correspondence with ORN activity patterns (Fig. 6A).
LN activity in NNC-conn is also rather sparse.

In all models, ORN axon activity ({y(t)
}) is weaker than in

somas (Fig. 6B). While it is also sparser and nonnegative in the
NNC models, in the LC, it contains negative values, which may
not be biologically plausible.

Next, we compare the PCA variances of the odor representa-
tions in ORN somas ({σ 2

X,i}) and axons ({σ 2
Y,i}) (Fig. 6C). In

the NNC models, variances decrease for all PCA directions.
In the LC, however, only the variances of the top K PCA
directions decrease. This difference results from the nonnegativity
constraint in the NNC models, which affects all stimulus
directions. The spread of PCA variances {σ 2

Y,i} decreases in all
models (smaller CVσ , Fig. 6D) indicating a whiter representation
in the ORN axons. This effect is the weakest in the NNC-conn.
Changing the number of LNs impacts the NNC less than the
LC. In the LC, only the order of the PCA directions of {x(t)} and
{y(t)
} changes, because K of them are shrunken (SI Appendix,

Fig. S12 A and B). For the NNC, the PCA directions are slightly
altered, but their order mostly remains (SI Appendix, Fig. S12
C and D). In the NNC-conn, the PCA directions are modified
more strongly (SI Appendix, Fig. S12E).

Considering the decreased spread of PCA variances, we inquire
whether activity becomes more evenly distributed among ORNs,
an important property of efficient coding. Both the LC and NNC

decrease the (uncentered) activity variance of “high-variance
ORNs” and leave “low-variance ORNs” virtually unaffected,
reducing the CV of ORN variance (Fig. 6 E and F). The NNC-
conn, however, exhibits an increase in CV due to several “high-
variance ORNs” being not strongly dampened.

Subsequently, we investigate changes in the magnitude of
ORN soma and axon activity patterns. The magnitude is the
length of an activity pattern vector in the D = 21 dimensional
ORN space and is a proxy for the total activity of all ORNs in
response to an odor. Similarly to ORN variances, the magnitude
of large-magnitude patterns decreases, whereas small-magnitude
patterns remain unchanged, decreasing the spread of pattern
magnitudes (Fig. 6 G and H). These effects resemble a divisive
normalization-type computation, also reported in Drosophila
(13, 25).

In line with the less dispersed PCA variances in ORN axons, in
all models ORNs and odor representations are more decorrelated
in the axons than in the somas (Fig. 6 I–L), consistent with partial
whitening.

Additionally, we investigate the effect of adjusting the model
parameter ρ, which regulates feedback inhibition strength. A
higher ρ (ρ = 10, SI Appendix, Fig. S16) leads to decreased
activity in ORN axons and smaller PCA variances, reduced
spread of PCA variances, channels and patterns norms, stronger
decorrelation of ORNs and patterns. When inhibition is elimi-
nated (ρ → 0), the axonal and somatic ORN activity become
identical. Although it is unknown if inhibition is modulated in
the real circuit, altering this parameter allows us to understand
this circuit’s potential.

In summary, NNC analysis predicts that the ORN-LN circuit
clusters odors with LNs and performs partial ZCA-whitening and
normalization of odor representations in ORN axons. This results
in a more efficiently encoded output with more decorrelated and
equalized ORNs and odor representations, ultimately enhancing
odor discrimination downstream.

Computation without LN–LN Connections. Lastly, we inves-
tigate the role of LN–LN connections by considering two
alternative circuit models. First, we consider an LC or NNC
circuit adapted to an input ensemble (i.e., Fig. 6) and remove
the LN–LN connections, which corresponds to setting the off-
diagonal elements in M to 0 (SI Appendix, Fig. S17). This
manipulation leads to less sparse LN activity in the NNC, altered
PCA directions in the axonal activity relatively to the soma,
increased inhibition, and more dissimilar odor representations in
ORN axons compared to somas. Thus, in an already “adapted”
circuit, LN–LN connections improve clustering in LNs for the
NNC, regulate inhibition, and maintain similar representation
in ORN axons and somas.

Second, we consider the slightly different optimization
problem that leads to an ORN-LN circuit without LN–LN
connections (SI Appendix) (39). In the linear case, the whitening is
complete (i.e., the firstK PCA variances that are larger than 1/ρ2

become equal) and the K LNs still encode the top K dimensional
subspace of the input. However, with nonnegativity constraints
on ORN axon and LN activity, all LNs display the same activity,
lacking differentiation (SI Appendix, Fig. S18). Thus, in this case,
LN–LN connections are imperative for clustering.

Discussion

Combining the Drosophila larva olfactory circuit connectome,
ORN activity data, and a normative model, we advance the
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understanding of sensory computation and adaptation, quanti-
tatively link ORN activity statistics, functional data, and con-
nectome, and make testable predictions. We reveal a canonical
circuit model capable of autonomously adapting to different
environments, while maintaining the critical computations of
partial whitening, normalization, and feature extraction. Such
a circuit architecture may arise in other brain areas and may be
applicable in machine learning and signal processing. Using ORN
activity patterns as input, our normative framework accounts for
the biological circuit structural organization and identifies in
the connectome signatures of circuit function and adaptation
to ORN activity. Such an approach offers a general framework
to understand circuit computation (40, 41) and could provide
valuable insights into more neural circuits, whose structural and
activity data become available (1, 2).

Model and Biological Circuit: Similarities and Differences. In
this paper, we compare the structural predictions of our nor-
mative approach to the connectome. The NNC model, when
adapted to the ORN activity dataset (5), accounts for key
structural characteristics (Figs. 3 and 4), for example, the ORNs
→ LN connection weight vectors. We ask two questions: 1) Why
does the strong resemblance between model and data arise, when
the available odor dataset most probably imperfectly matches
the true larva odor environment? 2) Why isn’t the resemblance
even greater, and could the imperfect fit suggest that the model
inadequately explains the biological circuit?

For 1), a possibility is that generic correlations between ORNs
arise in large enough ORN activity datasets, causing robust
features in the model connectivity. These correlations could result
from the intrinsic chemical properties of ORN receptors. Odor
statistics would also influence the connection weights, but to
a lesser degree. Thus, a more naturalist activity dataset could
further improve model predictions.

For 2), first, due to intrinsic noise and variability, no model
could be 100% accurate in predicting connectivity. In fact,
variability in synaptic count and innervation arises forDrosophilas
raised in similar environments (27, 42), indicating potential
“imprecision” of development and/or learning. We also observe
variability in the left vs. right side connectivity (Fig. 1B). Second,
incomplete ORN activity statistics may decrease prediction
accuracy. Third, synaptic count might not exactly reflect synaptic
strength (11). Finally, our model being a simplification of reality
misses additional factors shaping circuit connectivity.

Our analysis indicates that the matches between model and
data likely do not result from chance only, suggesting that
the similarity-matching principle influences circuit organization.
However, our unsupervised approach assumes that no odor is
“special” for the animal, and thus LNs in the circuit model cluster
odors solely based on their representations in the ORN activity
space. This contrasts with the biological ORN-LN circuit,
where LNs such as Keystone and Picky 0 have specific down-
stream connections likely related to survival needs and different
hardwired animal behaviors (4, 43), requiring them to detect
particular odors. Consequently, the connectivity of such LNs
might contribute to the imperfect one-to-one correspondence
between the model and the connectome (e.g., KS in NNC-4,
Fig. 3A).

The circuit model can learn the optimal connection weights
autonomously via Hebbian learning, offering the capacity to
adapt to different environments. Studies in adult Drosophila
reveal that glomeruli sizes (and thus ORN–LN or ORN–PN
synaptic weights) or activity depend on the environment in
which the Drosophila grew up (16–19). It is, however, unknown

if activity-dependent plasticity also occurs in the larval ORN-
LN circuit and whether the observed synaptic counts are a
result of such plasticity. If present, it is unclear whether the
short 6-h life of the larva from which the connectome was
reconstructed allows substantial learning to occur and whether
changes in synaptic weights would translate to different synaptic
counts (11).

Resolving connectomes of larvae raised in different odor
environments and at different times of their life, probing synaptic
plasticity, and recording ORN responses to the full odor ensemble
present in its environment would help clarify the influence of
noise, plasticity, and genetics in circuit shaping.

Roles of LNs. LNs form a significant part of the neural popula-
tions in the brain, perform diverse computational functions, and
exhibit extremely varied morphologies and excitabilities (27, 44).
We propose a dual role for LNs in this olfactory circuit: altering
the odor representation in ORNs and extracting ORN activity
features, available for downstream use (4). In the olfactory system
ofDrosophila and zebrafish, LNs perform multiple computations,
such as gain control, normalization of odor representations, and
pattern and channel decorrelation (12–15, 32, 45), which is
consistent with our results. Also, inDrosophila the LN population
expands the temporal bandwidth of synaptic transmission and
temporally tunes PN responses (28, 29, 46), which was not
addressed here.

In topographically organized circuits, such as in the visual
periphery or in the auditory cortex, distinct LN types uniformly
tile the topographic space, and each LN type extracts a specific
feature of the input, e.g., in the retina (47). In nontopographically
organized networks, however, the organization and role of LNs
remains a matter of research and controversy (27, 48). We study
a subcircuit with four LN types, and most types contain several
similarly connected LNs (Fig. 1). What is the function of multiple
similar LNs in the ORN-LN circuit, as also observed in the NNC
(Fig. 3 C–E)? First, LNs might differentiate further as the larva
grows. Second, several LNs might help expand the dynamic range
of a single LN. What are the features extracted by LNs in the
Drosophila larva? Our NNC model and the distinct connectivity
patterns of LN types in the connectome (4), suggest that different
LN types are activated in response to different sets of odors. The
extracted features might relate to clusters in ORN activity and
to prewired, animal-relevant odors. Since several ORNs→ LN
connection weight vectors {wk} in the NNC model resemble
those in the biological circuit, the odor clusters identified by
the model likely correspond to the set of odors that activate
LNs in the biological circuit. The feedforward synaptic count
vector from ORNs to the Broad Trio wBT, which aligns with the
first PCA direction of ORN activity and with an ORNs→ LN
connection weight vector wk in the NNC model (Figs. 2H, 3
A and B) could potentially encode the mean ORN activity and
thus be related to the global odor concentration (26). Other LNs
might encode features of odors, such as aromatic vs. long-chain
alcohols (5), or specific information influencing larva behavior
(4, 43), but more experiments are required to definitely resolve
the features. While our conclusions differ from a study that found
that LN activation is invariant to odor identity (48), that study
imaged several LNs simultaneously and might thus have missed
the selectivity of individual LNs.

The connectome reveals LN–LN connections, which we
propose play a key role in clustering and shaping the odor repre-
sentation, and are co-organized with the ORN–LN connections
(Fig. 4). To the best of our knowledge, the role of LN–LN
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connections and their relationship to ORN–LN connections is
relatively unexplored.

In summary, our study emphasizes the importance of the
different ORN–LN and LN–LN connection strengths and argues
that LNs are minutely selective and organized to extract features
and render the representation of odors more efficient.

Circuit Computation, Partial ZCA-Whitening, and Divisive Nor-
malization. We propose that the circuit’s effect on the neu-
ral representation of odors in ORNs corresponds to partial
ZCA-whitening and divisive normalization (Figs. 5 and 6). Such
computations, which reduce correlations originating from the
sensory system and the environment, have appeared in efficient
coding and redundancy reduction theories (22, 25, 36, 38, 49,
50). Partial whitening is in fact a solution to mutual information
maximization in the presence of input noise (38). In this circuit
too, complete whitening might also not be desirable due to
potential noise amplification. Thus, keeping low-variance signal
directions of the input unchanged and dampening larger ones
is consistent with mutual information maximization. Our con-
clusions are in line with reports of pattern decorrelation and/or
whitening in the olfactory system in zebrafish (14, 15, 32, 33)
and mice (34, 35).

The computation in our model also resembles divisive normal-
ization, an ubiquitous computation in the brain (25), proposed
for the analogous circuit in the adult Drosophila (12, 13). In
its simplest form, divisive normalization is defined as Yj =
αX n

j /(σ
n +

∑
k X

n
k ), where Yj is the response of neuron j, Xi is

the driving input of neuron i, α is the maximum response of the
output neuron and σ and n determine the offset and slope of the
neuronal sigmoidal response curve, respectively (25). Divisive
normalization captures two effects of neuronal and circuit
computation: 1) neural response saturation with increasing input
up to a maximum spiking rate α, arising from the neuron’s
biophysical properties; 2) dampening of the response of a given
neuron when other neurons also receive input, often due to lateral
inhibition (but see ref. 51). Aspect (1) is absent in our model but
could be implemented with a saturating nonlinearity. Depending
on the biological value of the maximum output, our model might
not accurately capture responses for high-magnitude inputs.
However, signatures of (2) are evident in the saturation of
the activity pattern magnitudes in ORN axons for increasing
ORN soma activity pattern magnitudes (Fig. 6G). Activity
patterns of large magnitude correspond to activity at higher
odor concentrations and with a high number of active ORNs.
Because such input directions are more statistically significant
in our dataset, these stimuli are more strongly dampened by
LNs (which encode such directions) than those with few ORNs
active. Thus, our model presents a possible linear implementation
of a crucial aspect of divisive normalization, which in itself is a
nonlinear operation.

Although the basic form of divisive normalization performs
channel decorrelation, and not activity pattern decorrelation
(13, 14, 32), our models perform both channel and pattern
decorrelation. Nevertheless, a modified version of divisive nor-
malization, which includes different coefficients for the driving
inputs in the denominator (52), performs pattern decorrelation
too, as our circuit model. The proposed neural implementations
of divisive normalization usually require multiplication by the
feedback (52, 53), which might not be as biologically realistic as
our circuit implementation.

Several neural architectures similar to ours have been pro-
posed to learn to decorrelate channels, perform normalization,

or learn sparse representations in an unsupervised manner
(21, 37, 52, 54–59). However, these studies either lack a norma-
tive/optimization approach or have a different circuit architecture
or synaptic learning rules. Using a normative approach has
the advantage of directly investigating the underlying principles
of neural functioning and also potentially providing a mathe-
matically tractable understanding of the circuit structure and
function.

Our study complements machine learning approaches to un-
derstand neural circuit organization (60, 61). These approaches
use supervised learning and backpropagation to train an artificial
neural network to perform tasks such as odor or visual classifica-
tion. In the olfactory system, circuit configurations arising from
this optimization, which could mimic the evolutionary process,
display many connectivity features found in biology (61). Unlike
these approaches, we propose a general principle governing the
transformation of neural representations, similarity-matching,
and also a mechanism to learn autonomously during the animal’s
lifetime.

Materials and Methods
Optimization Problems Describing the ORN-LN Circuit. We use a norma-
tive approach to study the ORN-LN circuit. We formulate two optimization
problems that can be solved by a circuit model with the ORN-LN architecture.
Studying the circuit model computation is then equivalent to studying the
solution of an optimization problem. We derive analytical expressions describing
different aspects of the computation and the circuit synaptic organization
(SI Appendix).

We define the following variables: an input matrix X = [x(1), ..., x(T)] of T
samples, and outputs Y = [y(1), ..., y(T)], Z = [z(1), ..., z(T)]. x(t) and y(t)

are D-dimensional vectors, while z(t) are K-dimensional. x(t), y(t), and z(t)

represent the activity patterns of D ORN somas (i.e., the inputs), D ORN axons
and K LNs, respectively. We call b∗ an optimal value (solution) of a variable
b. In the results section, we drop the ∗. We postulate the following similarity-
matching-inspired optimization problem (e.g., ref. 20), which seeks the optimal
output activities Y∗ and Z∗ given an input X:

min
Y

max
Z

T
2
‖X− Y‖2

F −
ρ2

4

∥∥∥∥YTY−
1

ρ2
ZTZ
∥∥∥∥2

F
+
ρ2

4

∥∥∥YTY
∥∥∥2

F
, [4]

where ‖·‖2
F is the square of the matrix Frobenius (Euclidean) norm. The term

‖X− Y‖2
F drives the activity of the ORN axons Y toward the activity of ORN

somasX and ensures that Y∗ = Xwhen there is no activity in the LNs. The terms
‖YTY − 1/ρ2ZTZ‖2

F and ‖YTY‖2
F align the similarities between the activities

of ORN axons and LNs and puts a 4th order penalty on the norm of Y; they
correspond to the bidirectional all-to-all connectivity between ORN axons and
LNs, as well as between LNs, but no direct connectivity between ORN axons; such
similarity-matching terms permit a significant change of neural representation
and a change of dimensionality, which takes place between ORN axons and LNs.
ρ is a parameter related to the strength of the dampening in Y and affects both
the optima Y∗ and Z∗.

We consider this optimization in two search domains forY and Z. One without
any constraints on Y and Z, representing the linear circuit (LC) model, and one
with nonnegativity constraints (Y ≥ 0, Z ≥ 0), representing the nonnegative
circuit (NNC) model. Nonnegativity constraints account for the fact that neural
activity is usually nonnegative, or at least not symmetric in the negative and
positive directions. The optimal Y∗ and Z∗ can be found analytically for the LC,
and through numerical simulations for the NNC. Note that one cannot always
guarantee converging to a global optimum for the NNC (62).

We prove that a neural circuit with ORN-LN architecture can solve this
optimization problem (SI Appendix, Online algorithm). In brief, we introduce
into the optimization problem two auxiliary matrices W := YZT/T and
M := ZZT/T , which naturally map onto ORNs–LNs and LNs–LNs synaptic
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weights, respectively. By construction, M is symmetric, i.e., M = MT. The new
objective function is then optimized over the variables {y(t)

}, {z(t)
}, W, and

M. Writing the gradient descent/ascent over y(t) and z(t) provides the neural
dynamics equations, with W and M related to the synaptic weights (Eqs. 6 and
7). The optimal W∗ and M∗:

W∗ = Y∗Z∗
T
/T, M∗ = Z∗Z∗

T
/T, [5]

can be found “offline” by obtaining the optimal Y∗ and Z∗ in Eq. 4, or in the
“online setting,” through unsupervised, Hebbian learning, where W and M are
updated after each stimulus presentation (Eq. 8, see below).

Circuit Neural Dynamics. A solution to the optimization problem Eq.4without
the nonnegativity constraints can be implemented by the following differential
equations describing the LC, whose steady-state solutions correspond to the
optima for y(t) and z(t) for given M and W (SI Appendix, Online algorithm).
These equations naturally map onto the ORN-LN neural circuit dynamics
(dropping the sample index (t) for simplicity of notation):{

τydy(τ )/dτ = −y(τ )−Wz(τ ) + x

τzdz(τ )/dτ = −Mz(τ ) + ρ2WTy(τ ),
[6]

where x, y, and z are D, D, and K-dimensional vectors, and represent the activity
(e.g., spiking rate) of the ORN somas, ORN axons, and LNs, respectively. τy and
τz are neural time constants, τ is the local time evolution (not to be confused
with the (t) sample index). The elements of the D × K matrices ρ2W and W
contain the synaptic weights of the feedforward ORNs→ LN and feedback LN
→ ORNs connections, respectively. Thus, the feedforward connection vectors
are proportional to the feedback vectors, and the parameter ρ sets the ratio.
The assumption of proportionality is reasonable considering the connectivity
data (SI Appendix, Fig. S2 A, B, and D). Off-diagonal elements of the K × K
matrixM contain the weights of the LN - LN inhibitory connections, whereas the
diagonal entries encode the LN leaks. In the absence of LN activity and at steady
state, the equations satisfy y = x, i.e., somatic and axonal activities of ORNs are
identical. In the absence of input (x = 0) both y and z decay exponentially to 0,
because of the terms−y(τ ) and−Mi,izi(τ ), respectively. In summary, these
equations effectively model the ORN-LN circuit dynamics by implementing that
1) the ORN axonal activity is driven by the input in ORN somas x and inhibited
by the feedback from the LNs through the term −Wz(τ ) and 2) LN activity is
driven by the activity in ORN axonal terminals by ρ2WTy(τ ) and inhibited by
LNs through the term−Mz(τ ). Note that changing ρ in the objective function
leads to different optimal W∗ and M∗.

When optimized online, the optimization problem Eq. 4 with the nonnega-
tivity constraints gives rise to the following equations describing the NNC:

y(τ + 1) = [y(τ ) + ε(τ ) (−y(τ )−Wz(τ ) + x)]+

z(τ + 1) =
[
z(τ ) + ε(τ )

(
−Mz(τ ) + ρ2/WTy(τ )

)]
+

,
[7]

where ε(τ ) is the step size parameter and [x]+ := max[0, x] is a
component-wise rectification. Here, τ is a discrete-time variable. These
equations are analog to Eq. 6, but also satisfying constraints on the activity:

yi(τ ) ≥ 0, zi(τ ) ≥ 0,∀τ , i.Suchconstraintsare implementedbyformulating
circuit dynamics in discrete time and using a projected gradient descent.

We call LC-K the linear circuit model implemented by Eq. 6 and NNC-K the
nonnegative circuit model implemented by Eq. 7, with K LNs.

Note that there is a manifold of implementations of the same computation
by a circuit model. First, one can introduce a parameter γ (SI Appendix), that
scales the feedforward and feedback connections as well as the magnitude
of LN activity, in such a way that the ORN axon activity remains the same.
Second, multiplying the whole equation in Eq. 6 or Eq. 7 would not alter
the converged output, but would scale the circuit time constants and synaptic
weights.

Synaptic Plasticity. The circuit model is capable of reaching the optimal
synaptic weights W∗ and M∗, which solve the optimization problem Eq. 4,
in an unsupervised manner, with Hebbian plasticity. In practice, as the circuit
receives a stimulus x(t) (ORN soma activation), it performs a computation
that yields a steady state output activity in ORN axons y(t) and LNs z(t)

(with Eq. 6 or Eq. 7); the synaptic weights are then updated using Hebbian
rules:

W(t+1) = W(t) + ε1(t)
(
y(t)z(t)T

−W(t)
)

M(t+1) = M(t) + ε2(t)
(
z(t)z(t)T

−M(t)
)

,
[8]

where εi(t) are learning rates. These equations arise when optimizing Eq. 4
online. We assume that the ORN soma activation x(t) is present long enough so
that y(t)(τ ) and z(t)(τ ) reach steady state values. During this iterative process
of synaptic updating, where the circuit model “learns”/“adapts” to the stimulus
ensemble {x(t)

}, the synaptic weights converge toward “optimum” steady state
Eq. 5 (which might require multiple learning epochs over the {x(t)

}). Note that
the neural leaks of LNs (diagonal values ofM) are set (Eq. 5) and updated (Eq. 8)
similarly to the synaptic weights (W and off-diagonal of M).

Data, Materials, and Software Availability. The connectome and activity
datasets are available in refs. (4) and (5). Code for generating the analysis
and all the figures is available in GitHub (https://github.com/chapochn/ORN-
LN_circuit) (63).
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