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Abstract

Genome-wide association studies (GWAS) have linked hundreds of thousands of sequence 

variants in the human genome to common traits and diseases. However, translating this 

knowledge into a mechanistic understanding of disease-relevant biology remains challenging, 

largely because such variants are predominantly in non-protein-coding sequences that still lack 

functional annotation at cell-type resolution. Recent advances in single-cell epigenomics assays 

have enabled the generation of cell type, sub-type, and state-resolved maps of the epigenome 

in heterogeneous human tissues. These maps have facilitated cell type-specific annotation of 

candidate cis-regulatory elements and their gene targets in the human genome, enhancing our 

ability to interpret the genetic basis of common traits and diseases.

INTRODUCTION

How the human genome dictates individual phenotypic traits and propensity to disease 

is one of the fundamental questions in biology1. Common traits and diseases have been 

linked to sequence variation at thousands of loci through genome-wide association studies 

[G] (GWAS); however, over 90% of disease-associated variants map outside of protein-

coding sequences and remain largely unannotated to date2,3. Growing evidence suggests 

that a substantial fraction of these variants may affect binding of transcription factors to 

cis-regulatory elements [G] (CREs), thereby altering target gene expression in specific cell 
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types3–7. Yet, identifying such regulatory variants and delineating their functional roles has 

been difficult.

Epigenome profiling has proved extremely valuable in delineating CREs in the human 

genome6,8–10. The epigenome refers to the covalent modifications of nucleic acids and 

histone proteins that make up the chromosomes in the nucleus11–13. An expanded 

definition of the epigenome also includes features such as chromatin accessibility and 3D 

genome conformation. Owing to the actions of sequence-specific transcription factors and 

chromatin binding proteins, the epigenomic landscape of a cell is dynamically established 

during development in a cell-type and sequence-context dependent manner. Activation of 

CREs is frequently accompanied by epigenetic changes, including increased chromatin 

accessibility, DNA hypomethylation, or the presence of certain histone modifications. 

The strong correlation between CRE activity and specific epigenetic features allows such 

regions to be mapped across different tissues and cell types using epigenome profiling 

techniques that combine biochemical assays with high-throughput sequencing6,14,15. Indeed, 

the Encyclopedia of DNA elements (ENCODE)8, Roadmap Epigenomics Project6, and the 

International Human Epigenome Consortium15, among others, have carried out large-scale 

epigenome profiling studies to annotate millions of candidate cis-regulatory elements [G] 
(cCREs)3,5–7,14,16–19.

With these catalogs of cCREs, it was shown that disease-associated non-coding variants 

are strongly enriched in cCREs in a tissue- or cell-type dependent manner, supporting the 

notion that disease-associated non-coding variants likely act by disrupting gene expression 

in cell types or tissues relevant to disease pathogenesis and phenotypic traits5–7. However, 

existing catalogs of cCREs have several key limitations that prevent a more comprehensive 

understanding of risk variant function. Conventional epigenomic assays profile cells in 

‘bulk’ to produce population average measurements, and therefore the profiles of individual 

cell types are obscured in assays performed on heterogeneous primary tissue. Furthermore, 

rare cell types that make up a small proportion of the tissue will not be well represented in 

epigenomic profiles of bulk tissue. While conventional bulk assays can be applied to cell 

populations that have been purified, for example using fluorescence-activated cell sorting 

[G] (FACS), these assays have not yet been applied to all human cell types due to a 

scarcity of suitable marker genes and antibody reagents. In addition, bulk methods require 

established markers to capture the epigenome of discrete cell states within human cell 

types, and they do not capture continuous heterogeneity in the epigenome that describes 

transitions between cell states and cell types, for example during development or in response 

to environmental stimuli or disease. Finally, the target genes of cCRE activity in individual 

cell types remain largely unknown. Together these barriers have limited our ability to 

comprehensively interpret the function of non-coding variants and determine how they 

contribute to common traits and disease.

Recent advances in single-cell technology (for consistency and simplicity, we will use 

single-cell as a label irrespective of whether cells or nuclei are used as input material) 

have enabled epigenomic profiling of individual cells or nuclei in a highly parallel 

fashion in a single experiment13,20. In particular, methods have been developed to 

assay single-cell chromatin accessibility21–23, histone modifications24–33, transcription 
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factor binding24,30,34,35, 3D chromatin conformation [G]36, and DNA methylation37,38 

and its derivatives39–41 across a range of platforms utilizing droplet-, micro-well-based 

or combinatorial barcoding schemes13. Data from these assays29,42–46 not only allow 

deconvolution of individual cell types from mixed populations but also make it possible 

to profile the epigenome of constituent cell types. From these cell-type-resolved epigenome 

profiles, cCREs active in human cell types, target genes and transcriptional regulators of 

cCRE activity, and heterogeneity in their activity within a cell type can all be characterized, 

which can then be used to improve annotation of disease-associated noncoding variants13. 

By comparison, single-cell profiling of gene expression can also deconvolute common and 

rare cell types and sub-types from mixed populations, at both higher resolution and reduced 

cost, but lacks the information necessary to localize cCREs and annotate non-coding 

variants.

Here, we review recently generated cCREs atlases derived from single-cell epigenome 

assays of human tissues and highlight the utility of these maps in interpreting genetic 

variants affecting common traits and disease through identifying relevant cell types, cell 

sub-types, and cell states, prioritizing causal disease variants in cell type-specific cCREs, 

determining the cell type-specific function of disease variants, and linking disease variants to 

their target genes.

CIS-REGULATORY ELEMENT ATLASES

Atlases of cCREs derived from single-cell epigenomic assays have recently been generated 

for many primary human cells, tissues, organoids, and cell lines47–77 (Table 1). These 

studies have primarily profiled accessible chromatin, as these techniques are currently the 

most widely available, although studies for other molecular modalities are emerging (Box 

1, reviewed in13). Initial single-cell Assay for Transposase-Accessible Chromatin using 

sequencing (scATAC-seq) studies were performed in small numbers of cells, which limited 

the ability to detect cell populations and novel cCREs. More recently, higher throughput 

assays have been developed, such as single-cell combinatorial indexing (sci)ATAC-seq and 

droplet-based single-cell (sc)ATAC-seq, which allow accessible chromatin to be mapped in 

thousands to millions of cells.

One of the primary advantages of single-cell analyses is the ability to map the epigenome 

of both abundant and rare cell populations, the latter of which are frequently under-

represented in existing catalogs that have been derived using bulk assays. For example, 

droplet-based scATAC-seq analysis of 63,882 cells from peripheral blood and bone marrow 

defined 31 immune cell types, which included relatively rare cell types such as basophils, 

demonstrating that rare cell types could be identified from heterogeneous archival tissue54. 

Application of sciATAC-seq to 15,298 pancreatic islet cells from three donors, identified 

228,873 cCREs in 12 cell-types , including cCREs in less common cell types that had not 

been included in previous catalogs based on bulk assays, such as delta and gamma cells48. 

Profiling of 615,998 cells from 30 distinct adult human tissues from multiple donors using 

sciATAC-seq identified 111 cell types, including rare cell types whose chromatin profiles 

did not strongly correlate with any existing bulk chromatin profiles in ENCODE, such 

as enterochromaffin cells (0.06% of total nuclei profiled in the intestine) or Paneth cells 
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(0.045% of total nuclei profiled in the intestine)55. Hybrid approaches that first perform cell 

sorting of broad cell populations followed by single-cell analyses may also help map the 

epigenome of rare sub-types, but such approaches would only apply to cell populations with 

known markers and reliable antibodies.

Single-cell epigenome assays also identify more cCREs than bulk assays, owing to their 

improved ability to detect cell-type specific cCREs. For example, of 571,400 total cCREs 

identified in peripheral blood and bone marrow using scATAC-seq, 20.4% were specific to 

a single cell type54 and this cell-type specificity would be missed by bulk assays. Similarly, 

nearly half of the 359,022 cCREs identified by scATAC-seq of multiple brain regions were 

found only in a single cell type, at least partly explaining why 66% of these CREs were 

not identified in bulk ATAC-seq data from the same tissue. By contrast, the single-cell data 

recovered 89% of the cCREs detected in bulk data in addition to identifying a higher overall 

number of CREs51. A study that generated sciATAC-seq data for adult human tissues55 

and combined it with fetal sciATAC-seq data from another study58 identified 1.15 million 

cCREs, of which 34.8% and 51% were not present in previous bulk-derived cCRE catalogs 

in EpiMap3 and ENCODE14, respectively, although it should be noted that inclusion in 

these catalogs required that two distinct epigenetic signatures be present and they therefore 

represent a subset of data from these resources. Furthermore, we determined that 10% of 

cCREs were not identified in a survey of accessible chromatin across 733 samples using 

DNase I hypersensitivity assays despite this study profiling 5-fold more samples78.

Similar to scRNA-seq data, clustering analysis of single-cell epigenomic data can be 

used to resolve distinct sub-types and states within specific cell types, information that 

cannot be obtained from bulk data even from sorted cell populations. This approach 

has identified 30 different neuronal sub-types with distinct epigenomic profiles in the 

brain51, seven sub-types of fibroblasts with distinct tissue-of-origin dependent epigenomic 

profiles55 and, in pancreatic islets, multiple clusters of endocrine beta, alpha, and delta cells 

that represent distinct cellular states48. It has also identified differential representation of 

astrocyte and microglia sub-types in prefrontal cortex from control and Alzheimer’s disease 

(AD) samples52. We note that defining cell sub-types and states can also be performed 

from single-cell expression data and thus may be preferred in applications where this is 

the primary goal. In several studies48,52, the chromatin accessibility profiles of cells were 

also ordered on pseudo-time trajectories to reveal continuous epigenomic heterogeneity 

within cell types, which could help infer gene regulatory networks (GRNs) driving cell state 

transitions. Multiple studies have integrated single cell epigenomic profiles with single cell 

gene expression data (reviewed in ref13) to define GRNs that link transcription factors to 

their downstream target gene sets60,65,72. Single-cell epigenomic profiling has also provided 

insight into transcriptional programs and molecular mechanisms underlying lung63 or brain 

development65,72 as well as changes in pathologies including kidney diseases67,74,79,80, 

AD52 and colorectal cancer61.

PRIORITIZING DISEASE VARIANTS AND CELLS

The additional information provided by single-cell assays collectively enables new insight 

into the biological function of risk loci identified in GWAS. These insights come primarily 
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from: the expanded repertoire of active cCREs, and greater knowledge about the cell 

types in which they are active, generated by single-cell studies and to which methods 

originally developed for genetic analyses of conventional bulk data can be applied; and 

the identification of continuous patterns of heterogeneity within a cell type, such as state 

transitions or developmental trajectories, to which novel methods being actively developed 

for genetic analyses of single-cell profiles can be applied.

Identifying cell types enriched for trait or disease association

Catalogs of cCREs identified from single-cell epigenomic assays can be used in genetic 

enrichment analyses to infer the cell types involved in common complex traits and diseases 

(Figure 1a). Such studies have primarily used cCREs derived from ‘pseudo-bulk’ profiles 

of each cell type47–49,51,55,59 and applied enrichment methods previously developed in the 

context of conventional bulk data. These studies build on the substantial number of studies 

that have performed genetic enrichment analyses using catalogs of cCREs derived using 

conventional bulk assays3,5–7,14,78,81, and which have identified many cell types involved in 

common complex diseases.

A commonly-used method for genetic enrichment analyses is stratified linkage 

disequilibrium score regression [G] (S-LDSC)82, which determines whether variants 

genome-wide linked to a cCRE annotation have enriched trait heritability. S-LDSC is 

designed to test for enrichment of an annotation using variants genome-wide, such as all 

cCREs active in a given cell type. Different enrichment methods may be more appropriate 

for other analyses, such as when analyzing a small subset of cCREs (for example, cell 

type-specific cCREs or stimulus-responsive cCREs) or using only variants at known disease 

loci. Orthogonal methods, such as fGWAS (functional GWAS), which were also originally 

developed in the context of bulk data, have been applied in single-cell epigenome studies in 

these contexts3,83–86 (Figure 1b).

Application of genetic enrichment methods to cCREs derived from single-cell epigenomics 

assays has identified cell types enriched for a wide range of common complex traits and 

diseases, as well as disease endophenotypes47–52,55,56,58. For example, 32 of 34 UK biobank 

phenotypes showed enriched heritability in cCREs for at least one fetal cell type58 and 3,220 

enriched trait-cell type pairs were found across 222 adult and fetal cell types55. This study 

implicated a larger number of links between cell types and common complex disease risk 

than previous bulk-derived catalogs based on accessible chromatin14,78, which is typical of 

single-cell enrichment analyses and is likely due to the greater number of cell types tested 

and the larger number of available genetic association studies. However, it is worth noting 

that studies performing S-LDSC analyses often correct for multiple tests using family-wise 

error rate, where false discovery rates of 10% or even higher are considered significant. With 

increasing numbers of trait-cell type pairs tested, a greater number of false positives will be 

identified and a more stringent threshold may be appropriate.

In many cases, these enrichments mirror previously reported findings for cell types already 

present in catalogs derived using conventional bulk assays. For example, the prominent 

role for microglia in AD risk is supported by enrichment analysis of both scATAC-seq and 

bulk ATAC-seq data51,52,87,88. In other cases, single-cell studies have highlighted previously 

Gaulton et al. Page 5

Nat Rev Genet. Author manuscript; available in PMC 2024 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



unknown relationships between cell types and complex phenotypes. In one study, 160 of 

the 450 traits and diseases with at least one enriched cell type had cell type enrichments 

not reported in previous studies, including for cell types not annotated in previous bulk 

catalogs55. For example, type 2 diabetes (T2D) risk variants were enriched for pancreatic 

delta and gamma cell cCREs, thyroid stimulating hormone (TSH) level-associated variants 

were strongly and specifically enriched for thyroid follicular cell cCREs, and chronic 

obstructive pulmonary disorder (COPD)-associated variants were enriched for stromal 

smooth muscle cell cCREs.

Despite the usefulness of these analyses, there are several considerations when interpreting 

results from cCRE catalogs derived from single cell epigenomics data that do not apply to 

catalogs based on bulk assays. For rarer cell types, particularly for catalogs where smaller 

numbers of cells are profiled, the peak calls may not be saturated, and therefore these cell 

types will have fewer cCREs and reduced power in enrichment analyses compared to more 

common cell types. Moreover, cell types may not represent completely ‘pure’ populations, 

as misclassification of cells and technical issues such as doublets may result in artefactual 

peak calls.

Nevertheless, single-cell epigenome studies have collectively demonstrated that expanded 

atlases of cCREs derived from pseudo-bulk profiles of individual cell types, used in 

combination with previously developed genetic enrichment methods, can provide insight 

into cell types involved in common complex disease.

Defining cell sub-types and states enriched for disease risk

One key advantage of single-cell epigenomics over conventional bulk assays is the ability 

to resolve cCREs active in specific cell sub-types or cell states that may not have been 

previously known or may not yet have been characterized using cell sorting approaches. 

Genetic enrichment methods, as described above, can also be applied to cCREs derived from 

pseudo-bulk profiles of sub-types and states within a cell type to identify enrichments for 

complex traits and disease (Figure 1b).

A primary example is the brain, which has an incredible diversity of cell types and sub-

types, many of which have not been well characterized by cell sorting- or isolation-based 

methods and likely play distinct roles in complex traits and disease. For example, variants 

associated with schizophrenia were found to be enriched in cCREs active in specific 

specialized excitatory neuronal sub-types derived from scATAC-seq of multiple brain 

regions, including BNDF+ and BNDF− excitatory neurons, striatopallidal medium spiny 

neurons, and cortical intratelencephalic neurons51,68. Analysis of an integrated single-cell 

map of 31 cortical cell types and sub-types also identified highly specific neuronal sub-type 

cCRE enrichment patterns for other traits, such as bipolar disease and autism68. Single-cell 

epigenomics studies have also described distinct sub-types of the same cell type that are 

present in different tissues. The seven fibroblast sub-types identified across human tissues 

in the study mentioned above showed distinct patterns of enrichment for different common 

traits and diseases; for example, cardiac fibroblasts showed sub-type-specific enrichment for 

variants associated with myocardial fractal dimension whereas epithelial fibroblasts showed 

sub-type-specific enrichment for variants associated with balding55.
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Single-cell epigenome studies have also revealed enrichment of genetic association for 

cCREs active in discrete cellular states defined within a cell type, such as those that perform 

different cellular functions or that change during disease or in response to stimulation. 

As noted above, variants associated with AD risk were enriched for different sub-types of 

microglia, and the same microglial sub-types had differential representation in AD compared 

to non-diseased samples52. In another study, variants associated with fasting glucose level (a 

measure of insulin secretion) were specifically enriched in cCREs predicted to be active in 

a beta cell state enriched for insulin secretion-related processes compared to other beta cell 

states48. In both cases, the cellular states had not been previously documented, and therefore 

had no available profiles from previous studies using bulk assays.

One consideration for these analyses is that the resolution of cell sub-types and states 

is based on computational clustering of single-cell profiles. Novel sub-types and states 

reported in these studies therefore may not in every case reflect biologically meaningful 

heterogeneity. Additional validation experiments, such as cell sorting based on newly-

identified sub-type or state markers followed by characterization using functional assays, 

could confirm that these cells represent distinct functional units but are typically not 

performed in single-cell studies.

Overall, these findings demonstrate that single-cell epigenome assays can provide insight 

into which cell sub-types and states are involved in complex traits and diseases.

Identifying disease-relevant heterogeneity within a cell type

Unlike conventional bulk assays, single-cell epigenomics enables moving beyond discrete 

definitions of cell sub-types or states to continuous representations of cells within a cell 

type. Several novel approaches have been developed that can leverage the profiles of 

individual cells, or ‘bins’ of closely-related cells, instead of pseudo-bulk profiles to identify 

disease-enriched cell subsets, state transitions or cellular trajectories (Figure 1c).

The method g-chromVAR was developed to determine whether fine-mapped GWAS variants 

are enriched for cell type-specific peak profiles compared to a matched background and 

can be applied to bulk as well as individual cell profiles84. Application of this method 

to bone marrow scATAC-seq profiles revealed that monocyte-associated and platelet count-

associated variants were enriched for cells from different sub-populations of common 

myeloid progenitors. Furthermore, variants associated with platelet counts had increasing 

enrichment among single cells ordered along a developmental trajectory from stem cells to 

megakaryocytes, which are precursors to platelet cells, but not on trajectories to erythroid 

and lymphoid cells. A previously developed method, PolyTest85, was used to test disease-

associated variants for enrichment of single-cell profiles in pancreatic islets, and trajectory 

analysis revealed that fasting glucose-associated variants were increasingly enriched on a 

path towards beta cells in an insulin secretion-related state.

One consideration for enrichment analyses using single cells is that the profiles of 

individual cells are very sparse, and there is thus limited information available for each 

cell. Approaches to circumvent this issue include binning cells with similar profiles and 

creating pseudo-bulk aggregates per bin, or imputing the epigenomic profiles of each cell 

Gaulton et al. Page 7

Nat Rev Genet. Author manuscript; available in PMC 2024 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



based on profiles of similar cells89. These approaches can provide richer profiles for each 

cell and facilitate genetic enrichment analyses.

By leveraging the epigenomic profiles of individual cells, single-cell epigenomics provides 

additional insight into dynamic processes that occur within a cell type, such as disease 

trajectories or state transitions, and how they contribute to risk of common complex disease.

Prioritizing variants causal for disease association signals

Complex trait-associated and disease-associated loci often contain many associated variants 

that are not directly causal owing to linkage disequilibrium [G] (LD), as well as independent 

signals that each have distinct causal variants. Multiple strategies can be used to define sets 

of candidate causal variants at disease loci, including basic approaches such as identifying 

all variants in high LD (LD variants [G]) with the index variant [G] , and statistical fine-

mapping [G] approaches that assign causal probabilities (posterior probability of association 

[G] (PPA), or posterior inclusion probability [G] (PIP)) to variants at each signal90–94. The 

outcome of statistical fine-mapping is typically credible sets [G] of variants that explain 

the majority of the PPA and/or PIP and represent the most likely candidate variants for 

the signal. Compared to LD-based approaches, in which all linked candidate variants are 

considered equal, statistical fine-mapping has the advantage of ascribing varying levels of 

confidence to each variant, but with the drawback that these methods are typically more 

sensitive to genotyping and imputation errors.

Statistical fine-mapping or LD-based analyses often result in multiple candidate causal 

variants for a given signal, and in these cases epigenomic data can be used to prioritize 

candidates. Catalogs of cCREs derived from conventional bulk assays have been used 

to annotate candidate causal variants at disease association signals in specific cell 

types3,7,78,88,95, which has provided substantial insight into the mechanisms of association 

signals for many diseases. Single-cell epigenomics studies have improved the ability to 

prioritize candidate variants at disease-associated loci over previous catalogs in multiple 

ways (Figure 2a,b).

Atlases derived from single-cell epigenome assays provide a larger repertoire of cCREs in 

which candidate variants can be annotated. For example, a scATAC-seq study of different 

brain regions identified nearly double the number of cCREs than bulk assays, and many 

of the cCREs identified only in scATAC-seq data were cell-type specific. Using LD-based 

candidate variants defined for AD or Parkinson’s disease (PD), 80% of AD and PD loci 

had at least one variant overlapping cCREs in one or more brain cell types derived from 

scATAC-seq, including in cCREs not identified in bulk data51. In another study, variants 

associated with type 2 diabetes (T2D) and fasting insulin level overlapped cCREs identified 

by scATAC-seq of skeletal muscle56. A single fine-mapped variant at the ARL15 locus 

overlapped a cCRE active in mesenchymal stem cells, suggesting that this variant is likely 

to underlie the association signal56; this cCRE was absent from previous bulk catalogs14,78. 

However, although single-cell studies broadly generate larger catalogs of cCREs, reduced 

detection of cCREs in rare cell types –particularly in studies profiling fewer cells– likely 

leads to some candidate variants not being annotated in these cell types.
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In other studies, new insight into the cell types and states enriched for complex trait 

or disease association allowed for refined prioritization of candidate causal variants for 

these traits. For example, genetic variants associated with TSH levels were strongly 

and specifically enriched in cCREs active in follicular cells55, which were not profiled 

in previous catalogs using conventional bulk assays. Candidate variants for TSH level 

identified by statistical fine-mapping could be further prioritized based on overlap with 

follicular cell cCREs.

As complex diseases are typically caused by dysfunction in multiple cell types and 

processes, it is often necessary to further consider which cell type(s) are relevant to disease 

risk at a particular locus (Figure 2c). Determining the association of risk variants at a 

locus with relevant endophenotypes can help provide clues about the cell types of action, 

and variants can then be prioritized based on overlap with cCREs active in endophenotype-

relevant cell types. Single-cell epigenomics has extended this concept by enabling insight 

into novel cell states within a cell type relevant to disease risk at a locus based on 

endophenotype association. As mentioned above, variants associated with fasting glucose, 

an endophenotype of T2D related to insulin secretion, were specifically enriched in an 

insulin secretion-related beta cell state48. This information would enable variants associated 

with T2D that are also associated with fasting glucose level to be prioritized based on 

overlap with insulin secretion state-specific cCREs.

It is typically reported that over 90% of common complex disease signals are located 

in non-coding regions of the genome2,3,96–99. Across studies that have annotated disease 

signals using catalogs of cCREs from single-cell ATAC-seq47,48,51,55, between ~60–80% of 

signals per trait have any candidate variant in a cell type-specific cCRE. These numbers are 

likely biased upwards as poorly fine-mapped signals will have many non-causal variants. 

When considering higher probability variants only (PPA>.10), we estimate that ~40–60% 

of signals per trait are annotated with a cCRE. Therefore, a non-trivial fraction of disease 

signals remains unannotated by catalogs of cCREs from single-cell studies. Some or all 

of these signals may be unannotated because additional cCREs remain to be identified, 

for example in cell types or cellular states not yet profiled or because they are not well 

captured by assaying accessible chromatin. However, some of the unannotated signals may 

reflect other modes of gene regulation mediated by non-coding sequence, such as splicing, 

translation, or RNA stability.

Finally, prioritizing candidate causal variants based on overlap with cCREs active in 

different disease-relevant cell types can be a subjective process. Thus, functionally-

informed fine-mapping [G] (FIFM) methods have been developed that formally incorporate 

enrichments from epigenomic annotations as weights or priors of variants in fine-mapping 

directly83,100–102. When applied to conventional bulk datasets, these methods have been 

shown to reduce credible set sizes up to several fold compared to standard fine-mapping 

approaches that do not consider functional annotations83,100,103,104. However, they have not 

yet been applied in the context of cCREs identified in single-cell epigenomics studies.
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Prioritizing disease-relevant cells with single cell expression

It is worth noting that substantial insight into cell type-specific processes involved in the 

genetic basis of common complex diseases has also come from gene expression data, and 

cell type-specific expression maps have been generated from single cell gene expression 

data for many human tissues105–108. Compared to single-cell epigenomics, single-cell gene 

expression atlases tend to have greater clustering resolution, and this increased resolution 

enables analysis of a richer set of cell types, sub-types, and states. Multiple methods have 

been developed that leverage cell type-specific expression profiles to identify cell types 

and sub-types enriched for trait and disease heritability109–111. These methods typically 

assign variants to cell types indirectly, for example based on proximity of the variant to a 

gene with cell type-specific expression. Incorporating cell type-specific cCREs defined from 

single-cell epigenomics data may therefore help further enhance these methods.

MAPPING FUNCTIONAL RISK VARIANTS

Disease associated variants overlapping cCREs in a relevant cell type may not necessarily 

affect the activity of the cCRE, and it is therefore necessary to distinguish between candidate 

variants with functional effects on cCRE activity and benign variants with no effect. 

Furthermore, functional variants may lie outside of the cCRE they affect, and these variants 

would not be prioritized based on simple cCRE overlap as described in the previous section.

Data generated using conventional bulk assays have been extensively used to map genetic 

effects on cell type-specific regulatory element activity and identify functional disease 

associated variants95,112–116. Many of these same approaches have been adopted in single-

cell epigenome studies by using pseudo-bulk profiles of each cell type to identify functional 

non-coding variants (Figure 3). Here too, new insights gained from these analyses are 

currently largely owing to the larger set of cell types, sub-types, and states profiled in 

single-cell epigenomics versus bulk studies.

Mapping genetic effects on cell type-specific cCRE activity

One approach used to identify functional variants is allelic imbalance [G] (AI) mapping, 

whereby a heterozygous variant in a cCRE is assessed for differences in sequence read 

counts obtained from an epigenomic assay (Figure 3a). Functional variants are more likely 

to show imbalance, that is one of the alleles would have significantly higher counts than the 

other. Single-cell studies have primarily performed AI mapping using pseudo-bulk profiles 

comprised of reads from cells of just that cell type, although can also be performed using 

single cell profiles74. While AI mapping can be performed using just a few samples, the 

sparsity of single-cell profiles can severely limit the set of variants that can be effectively 

tested per sample. Furthermore, due to substantial differences in cell type abundance, and 

therefore available read coverage, rare cell types will have reduced sensitivity to detect 

significant AI effects compared to more common cell types. Therefore, the value of these 

analyses for interpreting disease associated variants may currently be limited to specific 

subset of variants with sufficient coverage in particular cell types. One advantage of single-

cell data over bulk data in AI mapping, however, is that as each cell represents its own 

library, the number of reads that can cover a variant position is much higher.
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When genetic variants were tested for allelic imbalance using accessible chromatin profiles 

of cell types derived from sciATAC-seq of fetal brain and liver, a set of 586 variants 

with significant allelic imbalance was identified, several of which were candidate causal 

variants at complex trait association signals58. However, due to the limited proportion of 

disease-associated variants tested and the limitations of allelic imbalance mapping in testing 

just variants within cCREs directly, more systematic prioritization of variants causal for 

disease association signals was not possible.

An alternative approach is quantitative trait locus (QTL) mapping [G], which models 

epigenomic profiles as a function of variant genotype across samples (Figure 3b). QTL 

mapping requires larger sample sizes compared to AI yet can be applied to all variants at 

a locus, which enables variants causally underlying associations to be identified, including 

those outside of cCRE boundaries. The results of QTL mapping, but not AI mapping, 

can also be formally compared to disease risk signals using colocalization analyses117 to 

identify variants affecting both the epigenome and disease risk. Conversely, AI mapping 

may be preferred in studies with low sample numbers where QTL mapping is not feasible or 

when detecting sample-specific effects such as rare or private variants118. As with AI, QTL 

mapping in single-cell epigenome studies has to date been performed using pseudo-bulk 

profiles collapsed for each cell type, although these studies can also be performed at the 

individual cell level119,120.

QTL mapping of chromatin accessibility in 14 immune cell types and sub-types derived 

from scATAC-seq of 10 peripheral blood samples with RASQUAL121 (which considers 

allelic imbalance as part of QTL mapping122) expanded the number of immune cell types 

and sub-types with chromatin accessibility QTL (caQTL) profiles, although these findings 

are based on one non-peer reviewed pre-print. Previous studies using conventional bulk 

assays of sorted immune cell populations have generated profiles for only a handful of cell 

types and sub-types112,113,115,116,123. Immune cell type caQTLs annotated 512 fine-mapped 

variants for 16 immune traits and diseases, including those with cell type- and state-specific 

effects. Another study used RASQUAL to map caQTLs in four major cell types derived 

from scATAC-seq of 41 coronary artery samples, none of which had available caQTLs 

from previous studies, and annotated variants associated with coronary artery disease (CAD) 

risk71.

As with AI mapping, a current limitation of single-cell studies is that the number of caQTLs 

identified per cell type varies greatly depending on cell type abundance, as less abundant 

cell types have lower read depth and thus reduced power to map QTLs. For example, rare 

cell types in peripheral blood such as megakaryocytes had almost no caQTLs identified 

while common cell types such as monocytes had thousands of caQTLs121. In addition, 

both studies prioritized trait- and disease-associated variants based on simple overlap with 

caQTLs, although fine-mapping of caQTLs and colocalization analysis is needed to formally 

establish shared trait and caQTL signals.

Allelic imbalance and QTL mapping analyses using data from single-cell epigenomics 

assays will undoubtedly increase in number and quality as studies profile larger numbers of 

samples. The value of single-cell epigenomics in this context, in addition to simply offering 
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a more efficient route to profiling cell types from a heterogeneous tissue in large sample 

numbers compared to sorting- or isolation-based approaches, is the ability to map genetic 

effects on molecular phenotypes obscured from bulk assays such as state transitions and 

trajectories. Conversely, the substantial disparity in AI and/or QTL detection across cell 

types due to differences in cell abundance may effectively limit these approaches at present 

to just the most common cell types.

Similarly, expression quantitative trait loci (eQTLs) are increasingly being mapped in 

specific cell types from single-cell gene expression profiles directly124,125. Other studies 

have used single cell gene expression as a ‘reference’ to deconvolute eQTLs identified 

in ‘bulk’ tissue into individual cell types with cell interaction analyses that link cell-type 

enrichment to genotype126,127. The sample sizes of single cell eQTL studies have been 

substantially larger than for caQTL studies to date, which enables mapping genetic effects 

on phenotypes within cell types such as on state transitions and trajectories120,124,125. 

Colocalizing eQTLs with disease association signals can then reveal cell type-specific 

mechanisms of disease risk for those signals, including affected gene(s)118. Cell type-

specific cCREs can enhance eQTL analyses, for example, by improving fine-mapping of 

variants causal for eQTL signals.

Data from single-cell epigenomics assays can also be used to deconvolute caQTLs identified 

in bulk tissue, as has been done for expression QTLs (eQTLs)126,127. These approaches 

offer a potentially exciting route for increasing sample sizes in QTL mapping of specific 

cell types, as existing bulk tissue datasets can be re-utilized, or new datasets more cheaply 

generated. The extent to which cell type-specific caQTLs identified with in silico cell 

interaction methods recapitulate caQTLs mapped in each cell type is currently unknown, 

although cell interaction eQTL studies have shown high concordance with eQTLs mapped in 

each cell type directly127.

Predicting variant effects on cell type-specific cCRE activity

Allelic imbalance and QTL mapping require variants to be present in the tested samples, 

which limits their application among low frequency and rare variants. An alternative strategy 

is to use machine learning to create sequence-based models of cCRE activity in each cell 

type, and then apply these models to predict the function of variant alleles (Figure 3c). These 

models learn the sequence grammar that underlies why certain regions of the genome are 

active, which can then be used to predict the regulatory activity of new regions as well as 

predict the effects of variant alleles. Numerous sequence-based machine learning models 

[G] have been developed and applied to cCREs from conventional bulk assays to model cell 

type-specific regulatory element activity and variant function128–131.

Many single-cell accessible chromatin studies to date have used gapped k-mer support 

vector machines (SVM) to model genomic sequence of cCREs active in a cell 

type47,48,51,53,56,59 and predict variants with functional activity in each cell type130,132. 

This approach was originally developed for and applied to conventional bulk data, and 

the primary benefit of single-cell epigenomic assays in this context is therefore the ability 

to model cell types and cell states that have not been profiled in previous catalogs. For 

example, a study that predicted variant effects on cCRE activity in brain cell types, many 
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of which had not been previously profiled, using three different methods identified 100 

candidate causal variants with predicted function at 34 AD and Parkinson’s disease loci51. 

Another study used deltaSVM to predict variants affecting endocrine cell type- and state-

specific cCREs, and variants with predicted effects on cell states were enriched for sequence 

motifs of TFs defining cell state identity48. Variants with cell type- and state-specific effects 

were under-represented in bulk QTLs, suggesting that these variants have muted effects in 

QTL studies of bulk tissue.

Predictions of variant effects in each cell type are particularly useful in interpreting the 

function of less common and rare variants, which are impractical to test with QTL and AI 

mapping without very large sample sizes. A neural network, BPNet, was used to model cell 

type-specific cCRE activity in the developing cerebral cortex at base-pair resolution, which 

was then applied to predict variants with functional effects in each cortex cell type. Rare de 
novo variants with predicted effects on the activity of cCREs in specific cell types during 

corticogenesis were enriched in autism cases compared to controls60. By comparison, there 

was no corresponding enrichment among de novo variants in cCREs without considering 

functional predictions, suggesting that the enrichment is obscured by the inclusion of many 

non-functional variants.

At present, there has been limited independent validation of variant effects on cell type-

specific regulatory activity predicted using machine learning models in single-cell studies. 

In few cases, studies have compared predicted variant effect to effects estimated using 

AI mapping of cell type-specific profiles48. In addition, individual variants with predicted 

effects have been validated using luciferase gene reporters and electrophoretic mobility shift 

assays (EMSAs), as well as base-specific editing of human cell lines and stem cell models48. 

However, using data from systematic validation experiments, such as high-throughput 

reporter assays and genome editing screens, will be valuable in helping to calibrate machine 

learning models trained on cell type-specific cCREs.

More recent machine learning methods can model the epigenomic profiles of individual 

cells133. Over time these methods can likely be used to predict genetic effects on molecular 

phenotypes obscured from conventional bulk assays such as developmental trajectories or 

cell state transitions.

LINKING RISK VARIANTS TO TARGET GENES

Disease associated variants primarily map in cCREs that are distal to promoters, and 

linking distal cCREs to the genes they affect is a major challenge. Conventional assays 

of 3D chromatin interactions in whole tissues, sorted primary cells70,88, or cell lines 

have annotated target genes based on physical proximity to cCREs. Approaches to define 

target genes using correlative analyses across different cell types and tissues, such as in 

ENCODE and EpiMap3,5, provide predictions that are not inherently specific to a cell 

type. The activity-by-contact [G] (ABC) method links distal cCREs to gene promoters 

by combining both chromatin accessibility and chromatin contact data4, and has been 

applied to epigenomic profiles from conventional bulk assays of many cell types. However, 

there is limited overlap in the links detected using these different target gene prediction 
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methods, none of which have been definitively validated and established as the standard, 

and there is still a need for improved maps of target gene predictions in each cell type. 

Single-cell epigenomics provides multiple avenues to link distal cCREs to their target genes 

in individual cell types.

Linking variants to target genes using single-cell correlative approaches

Bioinformatic approaches can be used to leverage single-cell chromatin accessibility data to 

identify distal cCREs correlated with the activity of gene promoter cCREs across individual 

cells (Figure 4a). For example, Cicero identifies pairs of cCREs that are co-accessible [G] 
across bins of related cells within a cell type (or, alternatively, using cells across different 

cell types) using a graphical Least Absolute Shrinkage and Selection Operator (LASSO) 

model134. Co-accessibility has been extensively used to link distal cCREs to putative target 

genes in specific cell types47,48,50–53,56,57,67,79. Moreover, co-accessible links have been 

shown to be enriched for 3D chromatin interactions from bulk promoter capture Hi-C (pcHi-

C) data from the same tissue or cell type48,57, supporting that co-accessible links capture 

true target gene relationships, and many co-accessible links are cell type-specific . For 

example, 2.82 million co-accessible links were detected between cCREs in brain cell types 

using single-cell chromatin accessibility data, 20% of which were identified as physical 

interactions in bulk HiChIP assays from each brain region51. Moreover, more than 90% of 

candidate variants for AD and PD in a brain cell type cCRE were linked to a gene promoter 

using co-accessibility data.

Single-cell co-accessibility analyses have been widely adopted, in part because they require 

only the chromatin accessibility profiles already obtained from a single-cell ATAC-seq assay 

to predict target genes of cCREs. In these analyses, the accessibility of a gene promoter is 

used to reflect gene activity; however, promoter accessibility is often a poor proxy for gene 

expression. A newer set of methods identifies single-cell ‘co-activity [G] ’ between cCREs 

and gene expression levels (from RNA-seq data) directly135. These methods can leverage 

data from ‘paired’ modalities, such as gene expression and accessible chromatin, generated 

from the same cell to correlate cCRE and gene expression across cells. Alternatively, studies 

have performed computational integration of ‘single’ modality ATAC-seq and RNA-seq 

data (diagonal integration methods, reviewed in ref. 13), and integrated maps similarly can 

be used to correlate cCRE activity and gene expression across bins of closely matched 

cells60,61,66,136. Compared to single-cell co-accessibility, co-activity links showed stronger 

enrichment for 3D chromatin interactions135, suggesting they may more accurately predict 

target genes.

A general limitation of correlation-based approaches is that some of the links may reflect 

secondary effects, rather than direct cis-regulatory effects. Furthermore, the sensitivity 

and specificity to recover true regulatory relationships from single-cell correlation-based 

methods may be lower than for other target gene prediction methods137. Validation studies 

of target gene links derived from single-cell-correlation based studies have been limited thus 

far to genome or epigenome editing experiments of a handful of loci47–49. More systematic 

validation of target gene predictions using experimental techniques such as genome or 

epigenome editing followed by gene expression profiling or flow cytometry of fluorescently-
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labeled transcripts will be needed to better calibrate the sensitivity and specificity of these 

predictions.

Linking variants to target genes using 3D chromatin conformation

Chromatin conformation can also be used to link disease variants to putative target genes 

based on physical proximity between cis-regulatory elements (Figure 4b). The development 

of assays to measure 3D chromatin conformation in single cells, such as single cell Hi-

C, single cell methyl-HiC or single-nucleus methyl-3C sequencing (sn-m3C-seq), enables 

the physical proximity between distal cCREs and target genes to be defined in each cell 

type138–141. Reanalysis of data from a previous study, in which 14 cell types were defined 

in prefrontal cortex using sn-m3C-seq, identified chromatin loops in all 14 cell types, most 

of which were specific to a cell type, with cell type-specific loops linked to genes with 

enriched expression in the same cell type141. Using these loops, 445 variants associated with 

common neuropsychiatric traits and disease were linked to 189 target genes, which included 

cell type-specific interactions, such as AD-associated variants that had astrocyte-specific 

interactions with the APOE promoter.

A general limitation of 3C-based approaches is that the resolution of interactions is often 

several kilobases or lower, restricting the ability to link single cCREs to target genes or 

proximal cCREs to gene promoters. Although single-cell Hi-C-based assays can define 3D 

chromatin conformation in specific cell types, to date they have been applied to few human 

tissues. Key barriers to their wider adoption are the limited availability and high costs 

per-cell of these technologies relative to other single-cell modalities. In particular, high costs 

mean that fewer cells are typically assayed in an experiment which limits the ability to 

profile rare cell types and heterogeneity within cell types.

Finally, methods originally developed for conventional bulk data, such as ABC, can be 

co-opted to predict target genes in each cell type identified in single-cell studies. For 

example, ABC was used to link candidate variants for complex traits and diseases to 

putative target genes with pseudo-bulk cell type profiles from scATAC-seq and contacts 

from promoter-capture HiC (pCHi-C) assays of matched bulk tissues55. On average, cell 

types had 726,000 total linkages between distal cCREs and genes, of which 6,800 were 

specific to a cell type. Predictions from ABC can likely be further improved if chromatin 

contact maps for each cell type are generated using single-cell Hi-C assays.

FUTURE PERSPECTIVES

There are multiple challenges ahead to further improve atlases of cCREs derived from 

single-cell epigenomics. These include the under-sampling of rare cell types in current 

single cell atlases, more robust cataloging of cell sub-types and cell states, and incomplete 

knowledge of the biological function of cCREs in the human genome. Below we provide our 

perspectives and strategies to bridge these gaps.

Improving the representation of rare cell types

The proportion of cell types obtained from single-cell assays reflects the abundance of 

the cell type in the tissue of origin, and profiles for rarer cell types therefore can be 
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under-sampled and define fewer cCREs particularly when using assays that profile a 

low number (thousands) of cells. Wider adoption of techniques such as high-content 

combinatorial indexing142,143 for profiling hundreds of thousands to millions of cells per 

experiment will help saturate the detection of cCREs in rarer cell types. However, the lack 

of commercial kits and the relatively high sequencing costs associated with these assays 

limit their application. Alternatively, hybrid approaches that perform commercial single-cell 

assays on previously sorted cell populations may also be valuable in enriching for rare cell 

sub-types. While this approach requires additional sample preparation steps to sort or isolate 

cells prior to single cell assays, it may be an accessible and cost-effective solution in the 

short term for cell types with available markers and robust antibodies.

Improving the classification of cell sub-types and cell states

As single cell atlases continue to accumulate, the catalogs of candidate sub-types and states 

undoubtedly will grow rapidly. Currently, the definition of cell sub-types and states from 

single-cell data alone is based on computational clustering. Therefore, novel sub-groupings 

of cells identified within a cell type ideally requires independent molecular validation, 

such as immunostaining, fluorescence in situ hybridization (FISH) or targeted cell ablation 

experiments, to establish they indeed represent distinct functional units. Furthermore, 

technical limitations of single-cell assays, such as doublets in the datasets, can complicate 

the identification and characterization of transitional cell states and resolution of ‘pure’ 

populations of cells. Study designs that pool multiple samples per single-cell assay will be 

powerful in accurately flagging doublet cells based on sample genotype. Although these 

designs require laborious up-front sample preparation to process and pool multiple samples 

prior to single cell assay, they are already being widely applied in single cell studies of gene 

expression124,125.

Improving functional interpretation of disease-associated variants

There are numerous avenues moving forward through which cell type-resolved epigenomics, 

either using single-cell assays or bulk assays of sorted or isolated cells, can improve 

functional interpretation of disease-associated variants. Current studies have thus far largely 

provided reference maps of cell type-specific cCREs by profiling only a few samples for 

each tissue. Larger sample sizes will enable mapping of QTLs for epigenomic profiles of 

cell types and, in the case of single-cell data, state transitions and developmental trajectories 

that are obscured in bulk data. For single-cell assays, cost-effective studies will be facilitated 

by pooling samples and demultiplexing cells based on genotype144, such as in recent eQTL 

studies using hundreds of pooled samples in single-cell RNA-seq124,125. The value of 

single-cell assays compared to bulk assays of sorted cells in resolving each cell type is 

magnified with larger sample sizes, for which it becomes increasingly intractable to isolate 

all cell types and sub-types in every sample. As rare and private variants cannot be easily 

assayed using QTL mapping even in large sample sizes, continued improvement of machine 

learning methods that leverage epigenomic profiles to predict variant effects on cell type 

and states, as well as cell trajectories and state transitions, will also be needed. Atlases of 

cell type-specific cCREs are also largely lacking context across ancestries, environmental 

exposures and disease states; single-cell data will be particularly useful in identifying 

disease associated variants that affect stimulus- and disease-relevant state transitions95.

Gaulton et al. Page 16

Nat Rev Genet. Author manuscript; available in PMC 2024 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Moving forward, integrating data generated across different studies, both from single-cell 

and conventional bulk assays, will help to improve prioritization of disease risk mechanisms, 

as was recently done for target genes of disease-associated variants67,145. These efforts 

also should consider that genes can be affected by multiple independent disease associated 

variants at a locus, and that associated variants can affect more than one gene.

These efforts to interpret disease risk variants all collectively depend on biochemical assays 

of the epigenome, and thus additional evidence is needed to help establish the variant 

function. One approach is to map QTLs across additional layers such as gene expression 

or protein levels85,118,146, in addition to cellular, tissue and endophenotypes147,148, where 

colocalizing QTLs can help resolve the specific variants causal for shared disease and 

QTL signals149. However, a major challenge in QTL mapping is that large sample sizes 

are needed to have sufficient power for discovery and colocalization. The function of 

specific variants can also be studied by removing them from their genomic context, for 

example using reporter assays that can measure biological functions including transcription 

factor binding, enhancer, promoter, silencer, and RNA processing activity150–153. While 

these assays are well suited to studying large numbers of candidate variants in a single, 

high-throughput experiment, the extent to which reporter function recapitulates function in 

the native genome context is not well established. Finally, genome editing of specific variant 

alleles enables variants to be studied in their native context for effects on genome and 

cellular function154, although these experiments are currently lower throughput.

Improving functional annotation of the human genome

To date, single-cell epigenome studies have primarily profiled accessible chromatin 

only, largely due to the wide availability of commercial ATAC-seq assays. However, 

there are multiple additional layers to the epigenome including histone modifications, 

DNA methylation, and transcription factor binding, for which single-cell techniques are 

increasingly available (Box 1, reviewed in ref.13). These assays can further improve 

annotation of the epigenome of specific cell types by identifying classes of cCREs not 

captured by accessible chromatin, annotating the biological state and function of cCREs, and 

determining the transcriptional regulators of cCRE activity. Techniques that map multiple 

modalities in the same cell, such as accessible chromatin and gene expression, will also 

help improve cell type and sub-type definition by leveraging the higher resolution of 

gene expression data and enable annotation of target genes using methods to correlate 

cCRE activity with expression levels directly155,156. Integration of chromatin accessibility 

assays with assays that profile chromatin interactions (whether to define 3D chromatin 

interactions70 or in the context of methods such as ABC4) in single-cells or after sorting of 

specific populations will further improve the annotation of target genes of cCRE activity and 

risk variant activity in each cell type . Emerging techniques for spatial epigenomics will also 

be important in defining the distinct cis-regulatory programs of cell types in different spatial 

niches157–159.

Finally, functional screens that combine genome editing with single-cell genomics have 

enabled the effects of genes and cCREs on downstream regulatory programs to be 

understood, in both cis and trans160,161. While these screens have to date primarily used 
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gene expression as a read-out, recent techniques such as Perturb-ATAC provide single-cell 

epigenomic profiles that can be used to annotate genomic elements affected by cCRE 

activity162. When intersected with genetic association data, the results of screens using 

single-cell epigenomics can help annotate gene networks through which disease-associated 

variants act.

Therapeutic implications of improved cCRE characterization

A new class of therapeutics are being developed using CRISPR-based genome or epigenome 

editing to target specific non-coding regions harboring disease risk variants154,163. For 

example, a recent cell therapy for sickle cell disease uses CRISPR inactivation of a 

disease-associated enhancer for BCL11A in patient derived hematopoietic stem cells164–166. 

Improved annotation and characterization of cCREs in the human genome can enhance 

efforts to design such therapeutics. A catalog of cCREs in rare, disease-relevant cell types 

and sub-types can reveal regions harboring risk variants that may represent therapeutic 

targets for that cell type. In addition, knowledge of cCRE activity across many cell types 

and sub-types can be used to prioritize cCREs highly specific to a cell type which may 

limit off-target effects. Furthermore, determining the direction of effect of a risk allele on 

cCRE activity using caQTL or AI mapping can provide insight into whether a therapeutic 

should activate or inactivate a given region. Finally, another area of potential therapeutic 

interest is designing synthetic enhancers that drive highly cell type-specific expression based 

on sequence-based models trained on cell type and sub-type cCREs167.

CONCLUSIONS

Building on previous studies that used conventional bulk assays, recent developments in 

single-cell epigenomics have improved our ability to interpret the function of non-coding 

variants associated with common complex disease and traits. Atlases derived from single-

cell epigenome assays applied to human primary tissues have increased the number of 

active cCREs annotated in the human genome at cell-type resolution and the number of cell 

types that have been profiled. In addition, these atlases have described cell sub-types and 

heterogeneous states within cell types that are largely absent from previous catalogs. This 

is particularly relevant to tissues such as the brain which contain an incredible diversity of 

cell types and sub-types that would be impractical to assay using cell sorting. Single-cell 

epigenomic studies have also enabled the target genes of cCREs in specific cell types to 

be predicted, although the optimal methods and techniques for defining target genes in 

each cell type is still an active area of research. In combination with disease association 

data, these atlases have been used to: identify cell types, sub-types, and states enriched for 

disease associations; prioritize risk variants in cell type cCREs; determine the functional 

effects of risk variants on cCRE activity; and link risk variants to putative target genes. Thus 

far, these studies have largely co-opted methods and concepts developed for bulk data by 

collapsing single-cell data down to pseudo-bulk profiles per cell type, sub-type, or state. 

Newer methods that leverage single-cell profiles directly are increasingly being developed 

that can provide insight into disease-relevant heterogeneity, state transitions, and trajectories 

within a cell type. Thus, single-cell epigenomics has proven to be a valuable addition to 
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the toolbox for annotating disease-associated variants alongside other resources such as 

conventional bulk epigenomics, gene expression, and gene functional data.
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GLOSSARY

Activity-by-contact (ABC)
A method for predicting the target genes of a distal cCRE based on cCRE activity and 

chromatin contacts between the cCRE and gene promoter cCREs

Allelic imbalance (AI) mapping
A statistical technique to identify genetic variants with allelic differences in a molecular 

phenotype (such as chromatin accessibility, transcription factor binding, or epigenetic 

marks) by comparing the number of reads directly covering each allele of a sample 

heterozygous for the variant

Cis-regulatory element (CRE)
Genomic DNA sequences that regulate transcription of a gene including enhancers, 

promoters, and insulators. CREs can be identified using molecular markers such as 

chromatin accessibility, transcription factor binding, DNA methylation and histone 

modifications

Candidate cis-regulatory element (cCRE)
Genomic DNA sequences with molecular hallmarks of regulatory elements such as 

chromatin accessibility, transcription factor binding, DNA methylation and histone 

modifications that have not yet been shown to regulate gene transcription

Chromatin conformation
The nuclear organization of chromatin that enables physical proximity of genomic regions 

such as distal enhancers and promoters in 3D space. Chromatin conformation can be 

mapped using proximity ligation-based assays such as Hi-C

Co-accessible
Describes pairs of cis-regulatory elements that have correlated accessible chromatin profiles 

either across samples or cell types if using bulk profiles, or across cells if using single-cell 

profiles. Co-accessibility can be used to predict the target genes of cCRE activity

Co-activity
Describes cis-regulatory elements with accessible chromatin profiles that are correlated with 

the expression level of a gene across samples or single-cells, and can be used to predict the 

target genes of cCRE activity
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Credible Set
The minimum set of variants obtained from statistical or functionally-informed fine-

mapping that cumulatively explains a high percentage of the total PPA (posterior probability 

of association) or PIP (posterior inclusion probability) at a disease signal (usually 99% or 

95%). These variants are considered candidates for being causal for the signal

Index variant
The variant at a disease associated locus showing the strongest association p-value, which 

is often used to designate the locus, but may not necessarily be causal for disease. In some 

cases, it is also called the ‘sentinel’ variant

Fluorescence-activated cell sorting (FACS)
A technique for separating cell populations using flow cytometry based on cells labelled 

with fluorescent markers

Functionally-informed fine-mapping (FIFM)
Statistical methods that integrate genetic data with functional annotations to identify 

independent association signals at a disease-associated locus, determine the enrichment 

of functional annotations for disease association, and resolve variants causal for each 

association signal using functional enrichments as weights or priors on variants

Genome wide association study (GWAS)
Systematic testing of directly assayed or imputed genotypes of variants genome-wide for 

association to a binary (for example, case or control) or quantitative phenotype

Linkage Disequilibrium (LD)
The non-random inheritance of variant alleles at a locus due to limited recombination 

events between variant positions leading to only a subset of observed haplotypes and highly 

correlated variant genotypes. At disease loci, many variants will show significant association 

due to being in LD with the true causal variant but are not directly causal themselves

LD Variant
A variants at a disease-associated locus that has strong association p-values due to linkage 

disequilibrium with the index variant and which may or may not be causal for disease

Posterior probability of association (PPA)
Probability obtained from Bayesian fine-mapping analyses that a variant is causal for a trait 

or disease association signal

Posterior inclusion probability (PIP)
Probability obtained from Bayesian fine-mapping analyses that a variant is included in any 

causal model which relates to the evidence that it is causal for a trait or disease

Quantitative trait locus (QTL) mapping
A statistical technique to identify genetic variants that have genotypes correlated with 

the levels of a molecular, cellular, tissue, or physiological phenotype such as chromatin 

accessibility, transcription factor binding, or epigenetic marks across different samples
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Sequence-based machine learning models
Methods that use machine learning to learn the sequence grammar underlying sets of active 

genomic regions (such as cCREs active in a cell type) compared to non-active regions. These 

machine learning models can then be used to predict whether a sequence is likely to have 

regulatory activity, which can be further leveraged to predict variant alleles with differences 

in predicted regulatory activity

Statistical fine-mapping
Statistical methods that utilize only genetic data to identify independent association signals 

at a disease-associated locus as well as resolve variants causal for each association signal

Stratified linkage disequilibrium score regression
Statistical technique to identify genomic annotations with enriched heritability for a 

common complex trait or disease based on linkage disequilibrium with associated variants 

genome-wide

ToC blurb
In this Review, Gaulton et al. discuss how single-cell epigenomics methods generate cell 

type, sub-type, and state-resolved maps of candidate cis-regulatory elements (cCREs) in 

heterogeneous human tissues that can help interpret the genetic basis of common traits and 

diseases
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Box 1:

Current status of techniques for generating single cell epigenomic atlases.

Single cell techniques have been developed in recent years to probe diverse epigenomic 

layers including chromatin accessibility, DNA methylation, histone modifications and 

chromatin interactions13.

Chromatin accessibility assays (as single modality and, to a lesser degree, as part 

of multi-omic workflows with transcriptome profiling) are widely employed to assess 

the gene regulatory landscape at the single cell level47–74,76,77,79,80. Reasons for their 

widespread use include robust protocols across scales to enable studies from thousands to 

millions of cells and availability of commercial solutions such as from 10x Genomics.

Robust plate-based single cell DNA methylation profiling techniques have also been used 

for human tissue profiling46,68,75. However, its use is limited by the high per cell cost, 

relatively low throughput without automation and lack of commercial solutions, but a 

very recent high-throughput combinatorial barcoding approach with lower per cell cost 

might help to overcome some of these hurdles168.

Chromatin interaction profiling has not yet been adopted widely for human tissue 

profiling due to low throughout, high cost, data sparsity and lack of commercial 

solutions68,75.

Very recently, multiple proof-of-principle studies showed histone modification profiling 

in single cells with and without transcriptomes from the same cell13,32,33. These 

workflows are complex and often require custom reagents not readily available for 

purchasing. We presume that continued optimization will lead to robust, scalable and 

widely applicable protocols amenable to human tissue profiling.
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Figure 1: Identifying common trait-enriched and disease-enriched cell types and sub-types.
Overview of approaches for identifying disease-enriched cell types and states that have 

been used in single-cell epigenomics studies. a, Enrichment analysis methods can make 

use of genome-wide summary statistics (top), variants in linkage disequilibrium (LD) 

with the ‘index’ (or ‘sentinel’) variant at known loci (middle), or posterior probabilities 

from statistical fine-mapping at known loci (bottom). In the example, locus 1, 2 and 3 

are disease-associated loci, whereas locus 4 shows no association (and therefore is not 

included in the middle and bottom panels). Each circle represents a genetic variant. Darker 

colors represent stronger association and grey denotes little to no association. b, cCREs 

(coloured triangles) defined from cell type ‘pseudo-bulk’ epigenomic profiles can be used 

in enrichment analyses to identify disease-enriched cell types and sub-types. The methods 

used to test pseudo-bulk cCREs for genetic enrichment are primarily co-opted from previous 

studies of conventional ‘bulk’ genomics. In this example, there is significant enrichment for 

cell type A and sub-type 2 of cell type C but not for other cell types or sub-types. The 

dashed lines highlight disease-associated variants overlapping cCREs in the enriched cell 

types and sub-types at loci 1, 2 and 3 but not locus 4, which contains no disease-associated 

variants. c, Epigenomic profiles such as accessible chromatin fragments (represented by 

horizontal lines) of each cell can be used to identify enrichment in individual cells or 

‘bins’ of closely related cells, between different cell sub-types, and across gradients of 

cells ordered along a trajectory. In the example, sub-type 2 cells show stronger enrichment 

Gaulton et al. Page 31

Nat Rev Genet. Author manuscript; available in PMC 2024 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



than sub-type 1 and there is a decreasing gradient of enrichment moving from sub-type 2 

to sub-type 1 cells. The dashed lines highlight associated variants overlapping accessible 

chromatin reads in cells in sub-type 2 at loci 1, 2 and 3 and not locus 4.

Gaulton et al. Page 32

Nat Rev Genet. Author manuscript; available in PMC 2024 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2: Prioritizing candidate causal variants at disease-associated loci.
Overview of approaches for prioritizing variants causal for disease-associated loci used 

in single-cell epigenomics studies. a, Variant association data at a locus, where the most 

strongly associated ‘index’ variant and variants in linkage disequilibrium (LD) with the 

index variant are highlighted. In an LD-based approach, variants in high LD (typically 

r2>.8, although not specified in this example) with the index variant are prioritized as 

causal candidates, in this case variants 1–4. b, Statistical fine mapping derives the posterior 

probability that variants at a locus are causal for a risk signal. In a ‘credible set’ approach, 

variants that cumulatively explain a certain amount of the posterior probability (for example, 

99% or 95%) of a risk signal from fine-mapping are prioritized as candidates. In this 

example, the index variant and variants 3 and 4 are in the credible set and thus prioritized by 

fine-mapping. c, cCREs identified using pseudo-bulk profiles of each cell type mapping to a 

locus are used to further prioritize among candidate variants. Studies have considered either 

cCREs active in any cell type, or just cCREs active in disease-enriched cell types. When 

prioritizing variants based on overlap with cCREs (indicated by dashed lines), variants 1, 

3 and 4 overlap cCREs active in any cell type and variant 1 and 4 overlap cCREs active 

in a disease-enriched cell type. In this example, the index variant itself does not overlap 

any cCREs. Note that in these examples the predicted mechanism is that the causal variant 

affects cCRE activity, but in reality, variants can affect other regulatory mechanisms such as 

RNA splicing or stability.
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Figure 3: Identifying disease variants affecting cell type regulatory activity.
Overview of approaches for determining the functional effects of disease variants in specific 

cell types using single-cell epigenomics. All examples in this figure use the same genetic 

variant with alleles A and G overlapping a cCRE derived from pseudo-bulk profiles of cell 

types A, B, C, and D. Many of the methods currently used to determine variant effects on 

cCRE activity using pseudo-bulk profiles have been co-opted from previous studies using 

conventional bulk genomics. a, In allelic imbalance (AI) mapping, read counts for variant 

alleles in heterozygous samples are compared for each cell type. In this example, the variant 

has significant imbalance in allele read counts for cell type A but not for cell types B, C 

and D. b, In quantitative trait locus (QTL) mapping, the cell type read depth for a cCRE is 

compared across samples with different genotypes. In this example, the variant is a QTL in 

cell types A and D but not in cell types B and C. c, In sequence-based machine learning 

using gapped k-mers, a model is trained using cCREs active and not active in each cell 

type and sequence k-mers are scored based on this model. In this example the models for 

each cell type are trained separately, although many models can jointly consider data from 

many cell types. The k-mer scores for the sequence around each variant allele are compared 

to identify variants with large allelic differences. In this example, the genetic variant has 

significant allelic differences in cell type A and therefore is predicted to affect cell type A 

function, but does not have corresponding allelic differences in cell types B-D.
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Figure 4: Linking disease variants to putative target genes.
Overview of approaches for assigning disease variants to their target genes in specific 

cell types using single-cell epigenomics. a, Co-accessibility or co-activity of distal cCREs 

and promoter cCREs (both represented by grey triangles) across single-cells within a cell 

type using single-cell accessible chromatin data. In this example, a distal cCRE harboring 

a disease variant is accessible (represented by horizontal lines) in the same cells as the 

promoter cCRE of gene X but not gene Y in cell type A, indicating that gene X is the target 

gene of the distal cCRE in this cell type. By contrast, the distal cCRE is not co-accessible 

with either of the promoter cCREs in cell type B, suggesting it does not regulate either gene 

X or gene Y in this cell type b, Chromatin contacts between distal cCREs and promoter 

cCREs in specific cell types using single-cell 3D chromatin interaction data. In this example, 

a distal cCRE harboring a disease variant physically interacts with the promoter of gene Y in 

cell type A and with the promoter of gene X in cell type B. In cell type C, the distal cCRE 

does not interact with either of the genes.
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