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% Check for updates Recent advancements in single-cell technologies allow characterization of
experimental perturbations at single-cell resolution. While methods have
been developed to analyze such experiments, the application of a strict causal
framework has not yet been explored for the inference of treatment effects
atthe single-cell level. Here we present a causal-inference-based approach to
single-cell perturbation analysis, termed CINEMA-OT (causal independent
effect module attribution + optimal transport). CINEMA-OT separates
confounding sources of variation from perturbation effects to obtain an
optimal transport matching that reflects counterfactual cell pairs. These cell
pairsrepresent causal perturbation responses permitting anumber of novel
analyses, such as individual treatment-effect analysis, response clustering,
attribution analysis, and synergy analysis. We benchmark CINEMA-OT on
anarray of treatment-effect estimation tasks for several simulated and real
datasets and show that it outperforms other single-cell perturbation analysis
methods. Finally, we perform CINEMA-OT analysis of two newly generated
datasets: (1) rhinovirus and cigarette-smoke-exposed airway organoids, and
(2) combinatorial cytokine stimulation ofimmune cells. In these experiments,
CINEMA-OT reveals potential mechanisms by which cigarette-smoke
exposure dulls the airway antiviral response, as well as the logic that governs
chemokine secretion and peripheralimmune cell recruitment.

Cellular responses to environmental signals are afundamentalcompo-  processes. Recent advances in single-cell technologies have enabled
nent of biological functioning, playing anintegralroleinbothhomeo-  complex experiments measuring high-dimensional phenotypes at high
stasisand disease'. For decades, controlled perturbation experiments  throughput under diverse stimulation conditions® . However, deriv-
have been used to reveal the underlying mechanisms of biological ingbiological insights from these experiments remains a challenge.
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Although techniquesto characterize the effects of perturbations
by averaging over populations are routinely used to analyze single-cell
data, methods allowing for causal single-cell perturbation analyses
have notyet been explored extensively. In causalinference, the quanti-
fication of responses to perturbations is known as the treatment-effect
estimation problem’. Throughout the text, we will borrow from the
terminology of causalinference, referring to perturbations and treat-
ments, as well as response and treatment effect, interchangeably. Ideal
causal methods allow for the direct characterization of underlying
confounding variation, afeature that existing single-cell analysis tools
donot provide.

A great deal of variability in cellular responses to treatment may
be attributable to underlying confounding variation™. In the case of
single-cellRNA sequencing (scRNA-seq) experiments, sources of vari-
ation such as cell cycle stage, microenvironment, and pre-treatment
chromatin accessibility may all act as confounding factors when per-
forming treatment-effect estimation™. Collectively, confounding
factors canbe thought of asa cell’sunderlying state that may both influ-
enceacell’sgene expression profile, and condition treatment-induced
genesignatures. Correctidentification of confounders enables appro-
priate causal matching of cell pairs between conditions, allowing
treatment-effect estimation at the single-cell level.

One well-established confounding factor that may affect treat-
mentresponseis cell type. Forexample, widely used nucleoside-analog
chemotherapeutics, such as 5-fluorouracil (5-FU), act selectively on
cells in the DNA-synthesis phase of the cell cycle, killing cancer cells
while minimizing effects on healthy tissue’>. Some mutations may also
drive differential response to astimulation, asis seen withsome tumors
inresponse to transforming growth factor beta (TGF-B)". Confounders
may be latent or unobserved, such as different exposures of cells to
adrug, which may have different effects at different concentrations
within each cell.

We aim to solve this problem by introducing a causal framework
permitting characterization of perturbation effects at the single-cell
level. Inthis paper, we present causal independent effect module attri-
bution +optimal transport (CINEMA-OT), which appliesindependent
component analysis (ICA) and filtering on the basis of a functional
dependence statistic to identify and separate confounding factors
and treatment-associated factors. CINEMA-OT then applies weighted
optimal transport (OT)"*', a natural and mathematically rigorous
framework that seeks the minimum-cost distributional matching, to
achieve causal matching of individual cell pairs. The computed causal
cell matching enables a multitude of novel downstream analyses,
including but not limited to individual treatment-effect estimation,
sub-cluster-level analysis of biological-process enrichment, treatment
synergy analysis, and attribution of perturbation effects.

We demonstrate the power of CINEMA-OT by benchmarking it
onseveral simulated and real datasets and comparing it with existing
single-cell-level perturbation analysis methods. We then perform
CINEMA-OT analyses of two newly generated datasets. In the first, we
examine the effects of viral infection and cigarette smoke on innate
immune responses in airway organoids. In the second, we perform
combinatorial cytokine stimulation of ex vivo peripheral blood mono-
nuclear cells to characterize how cytokines act in concert to shape
immune responses.

Results

Confounder signal matching using CINEMA-OT. To perform causal
inference of perturbation effects at the single-cell level, we have
adoptedthe potential outcome causal framework®"”. To generate causal
assertions about the effect of a perturbation on the transcriptional
state of agiven cell, weideally would measure the same cellboth before
and after a perturbation. However, the process of obtaining transcript
measurements from single cells is destructive, and an individual cell
may be measured only once. A solution is to infer counterfactual cell

pairs, which are inferred causally linked pairs—predictions of what a
cellinone condition would look like inanother condition. The potential
outcome framework formalizes this concept by establishing a rigor-
ous statistical framework based on triplets of confounding variables,
treatment and outcome variables®”*®, Our task of inferring single-cell
treatment effects canbe translated to estimating the individual treat-
ment effect (ITE) under the potential outcome framework®”'®,

Akey difficulty for applying the potential outcome framework for
our task is ‘the mixing of confounders with outcomes’. In the context
of causal discovery, this has also been described as learning with both
interventions and latent confounding”. In our case, a gene can con-
tribute to confounding variation as well as to treatment-associated
variation. Toapply thetools of classical causal inference, confounding
factors must first be distinguished from treatment-associated factors.

To unmix confounding effects and treatment-associated effects,
we propose two sufficient assumptions regarding the independence
between confounding factors and treatment events, and the linearity
of source signal combinations. On the basis of these assumptions, we
provided the theoretical foundation that confounding factors of data
obtained from ICA are identifiable if an ideal statistical test is used to
analyze each component (see Supplementary Note1). In CINEMA-OT, a
Chatterjee’s coefficient-based distribution-free test is used to quantify
whether each component correlates with the treatment event® (Fig. 1a).

Finally, using the identified confounding factors, we apply
optimal transport to generate causally matched counterfactual cell
pairs. This is equivalent to applying optimal transport on the full ICA
embedding while setting the treatment-associated factors to zero.
Optimal transport is a natural choice for this matching procedure,
becauseit preserves mass, is robust to outliers, and avoids collapsing
matches at the boundaries of separated clusters within the data'®*.
By contrast, global matching may have poor performance when there
are confounder-specific heterogeneous responses to treatment,
and local matching may be susceptible to boundary effects (Fig. 1b).
While solving the optimal transport problem is often prohibitively
resource-intensive for large-scale biological data, CINEMA-OT consid-
ersthetractable case of entropic regularization™>'°, Optimal transport
with entropic regularization can be formulated as a strictly convex
optimization problemthat can be solved efficiently using the alternat-
ing direction method (Sinkhorn-Knopp algorithm™¢).

There are a number of existing methods that perform
perturbation-effect analysis in single-cell omics data, but none of
them achieve guaranteed confounderidentification, whichis aneces-
sary condition for interpretable causal-effect estimation. A thorough

discussion of related methods® ** %% js available in Supplementary
Note 2.

Causal matching in the setting of differential abundance. A treat-
ment may change the distribution of cell densities, for example cells
may die or proliferatein response to a perturbation. That is, there may
be differential confounder abundance across datasets of experimen-
tally perturbed cells. Differential abundance can affect the performance
of CINEMA-OT because, inthis case, the underlying confounders are no
longerindependent of the treatment event, and our firstassumption is
violated. Our experiments have shown that although CINEMA-OT can
tolerate moderate levels of differential abundance, it can fail when high
levels of differential abundance are present (Supplementary Fig. 1).
To address the issue of differential abundance, we have devel-
opedareweighting procedure called CINEMA-OT-W. In this procedure,
before applying ICA, we first align the treated cells by their k-nearest
neighbors (k-NN) in the untreated condition, similar to the pertur-
bation signature calculation approach in Mixscape®. Although the
resulting aligned cell populations may beimperfectly mixed, the k&-NN
alignment process groups together cells with similar confounder
characteristics. We then cluster the aligned cells on the basis of the
confounder space and subsample themto ensure that there is an equal
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Fig.1|Overview of the CINEMA-OT framework. a, scRNA-seq count data

is first decomposed into confounder variation and treatment-associated
variation using ICA. Cells are then matched across treatment conditions by
entropy-regularized optimal transport in the confounder space to generate a
causal matching plan. The smooth matching map can then be used to estimate
individual treatment effects. b, Illustration of the properties of CINEMA-OT

Confounder axis 1

Confounder axis 1

compared with other potential matching schemes, including global matching
(minimizing the average difference) and local matching (finding nearest
neighbors for each cell). ¢, llustration of the differential abundance issue in
the unweighted CINEMA-OT method, and the resampling procedure used in
CINEMA-OT-W.

ratio of treated and untreated cells in each cluster. This reweighting
step effectively removes the confounding signal from the treatment
event, allowing subsequent application of CINEMA-OT to successfully
identify the confounders (Fig. 1c). CINEMA-OT-W greatly extends the
power of the original CINEMA-OT in samples with substantial differen-
tialabundance across experimental conditions.

We note that this functionality should be used only whenrequired.
When dealing with data exhibiting differential abundance, our

theoretical foundation nolonger holds, meaning that the ability of any
existing model, including CINEMA-OT-W, to identify certain classes of
cellular responses accurately may be reduced. Additionally, selecting
the optimal resolution of clustering in CINEMA-OT-W may require prior
biologicalknowledge, because suboptimal choices of clustering resolu-
tion could resultin reduced power to identify distinct cell populations.
Asanalternative to CINEMA-OT-W, CINEMA-OT also provides an option
to assign weights according to user-provided labels (for example cell
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Fig.2|Key functionalities of CINEMA-OT. a, CINEMA-OT takes scRNA-seq
datalabeled by treatment condition as input. CINEMA-OT learns a confounder
embedding that is mixed across batches and matches counterfactual cell pairs
across conditions to compute causal perturbation effects. b, The single-cell-level
treatment-effect matrices can be further clustered, and gene set enrichment
analysis can be conducted on the output. GO, Gene Ontology.

Embedding axis 1

¢, Single-cell-level synergy in combinatorial perturbations can be obtained as the
dissimilarity of extrapolated phenotypes and true combinatorially perturbed
phenotypes. d, CINEMA-OT can attribute divergent treatment effects to either
explicit confounders or latent confounders by analysis of cluster-wise response
matching matrices.

types). In this case, CINEMA-OT can sample data using confounder
labels instead of automatically balancing over all possible covariates.

Causal matching enables various downstream analyses. The
matched counterfactual cell pairs computed by CINEMA-OT define
two key outputs: (1) the matching correspondence matrix across treat-
ment conditions, and (2) the individual treatment effect (ITE) for each
cell with its counterfactual pair across treatments (Fig. 2a).

Individual treatment-effect (ITE) matrices are cell by gene matrices
that can be clustered and visualized by existing scRNA-seq compu-
tational pipelines. By clustering over an ITE matrix, we can identify
groups of cellswithashared treatment response. We can then perform

a statistical analysis to identify the genes with significant response
magnitudes in each group and identify their coordinated biological
function by gene set enrichment analysis (Fig. 2b).

In addition, when experimental data are available for multiple
treatments performed in combination (for example, control, treat-
ment A, treatment B, and combined treatment A+B), we can define a
synergy-effect metricby comparing the predicted effect of combining
multiple treatments with the observed effect of combined treatment
(Fig. 2c). We define this synergy metric by estimating the difference
between the true sample under combined treatment (A+B) and the
predicted sample by adding the effects of treatment A and treatment
B, thus assuming the effects are purely linear and non-interactive. If no
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difference is measured, we may conclude that there are no nonlinear
or interaction effects between the treatments. If non-zero synergy is
present, this points to some interaction between treatments A and B.
Synergy is computed for every cell-gene pair, resulting in a matrix of
equivalent formto the expression and ITE matrices—a unique feature
of CINEMA-OT. Notably, as the synergy serves as a summary statistic
of the combinatorial cellular responses, the same synergy value may
correspond to anumber of underlying mechanisms. For instance, for
gene X, synergistic activation (X,,; > X, = Xg = Xconero1 = 0) and uniform
inhibition (X ongo > Xa:5 = X4 = Xg) may lead to the same level of positive
synergy. Our synergy metric enables unbiased investigations of non-
linear treatment effects.

Another important task in perturbation-effect analysis is the
attribution of treatment effects. Differential response can be driven
either by differences in explicit confounding factors or by latent fac-
tors, such as treatment heterogeneity. Because CINEMA-OT provides
a single-cell-level matching as one output, the task can be solved by
analysis on the clustered matching matrix. Responses that cluster
bothinresponse andin confounder space may be attributed to explicit
confounding factors. Conversely, responses that cluster well in the
response space but do not demonstrate clustering in the confounder
space may be attributed to latent factors (Fig. 2d). Such an analysis
can be performed either at the cell-type level or at the sub-cluster
level to reveal underlying heterogeneity. To further identify genes
with explicit confounder-specific treatment effects, we quantify the
confounder-effect size via a causal regression model and estimate its
relative strength using the ratio of confounder-explained effect size to
the residual norm (see Methods for additional details).

Validation of CINEMA-OT using simulated data. To investigate
how CINEMA-OT differs from existing single-cell-level methods for
perturbation-effect analysis in practice, we first perform extensive
benchmarking on a number of tasks in simulated scRNA-seq data.
Our study involves a meticulous comparison of existing methods,
including a method we refer to as Mixscape that calculates the per-
turbation signature andis considered in CoCoA-diff*, scGen?, CPA%,
ContrastiveVI**,and CellOT*, with two variants of our approach with or
without sampling (CINEMA-OT-W, CINEMA-OT). Moreover, we explore
the potential benefits of integrating batch-effect analysis into Mixscape
analysis, a method we refer to as Harmony-Mixscape®®. Additionally,
weincludeadirect optimal transport (Full OT), applied on the original
data (without separation of treatment-associated and confounding
factors) as an ablation study showing the essence of modeling con-
founding variationin our approach. Our comparisonisbased onthree
categories of metrics:

1. Cell distribution equalization after treatment-effect removal. In
datasetswithorwithoutgroundtruth,wecanmeasurethevalidity
of treatment effects by examining cell distributions in the gene
expression space after removal of treatment effects. If different
treatmentsareappliedtothesameconfounderdistribution,then
thesedistributionsshouldoverlapwell aftertreatmenteffectsare
removed.Metricsforevaluatingtreatment-effectremovalinclude
average silhouette width and principal components regression
score (PCR).

2. Differential response cluster preservation. If a cell population
has divergent responses to a perturbation, the cell population
would form clustering structures in the response space. There-
fore, preservation of such clustering structures in the estimated
treatment effects is essential for identification of perturbation
effects. In this study, we evaluate the cluster preservation level
using an adjusted Rand index in ITE matrices.

3. Attribution accuracy. Differential response patterns can be at-
tributed to either confounder-specific effects (for example
cell-type-specific effects) or latent-factor-driven effects (for ex-
ample treatment drug dose distribution). In simulated data, the

attribution accuracy can be measured through independence

between confounding factors and responses conditioned on

ground-truth response labels. In our study, this is evaluated by
the PCRin ITE matrices.

We considered the dependence between confounders
and ground-truth treatment effects in three settings: (1) over-
all treatment-effect modeling of common responses, regard-
less of confounders; (2) confounder-specific treatment-effect
modeling of diverging responses driven by underlying confound-
ers, such as cell-type-specific response; and (3) latent-factor-driven
treatment-effect modeling of the differential treatment effect caused
by unobservable latent confounders. The genes in each setting are
separatedinto three subsets, correspondingto the underlying trajec-
tory, celltypes, and treatment-associated genes, respectively (Fig. 3a).
Inour simulated data, all settings were covered together by modeling
the differential response probabilities as conditional distributions on
confounder clusters (Fig. 3b). Additionally, we examine the impact of
differential abundance on the performance of various methods by
selectively subsampling cells from half of the confounder clustersinthe
treated condition. We refer to this subsampling ratio as the differential
abundance ratio (DA ratio) in the following sections. Furthermore,
we have investigated the relationship between the performance of
single-cell-level treatment analysis and the signal-to-noise ratio of an
scRNA-seq dataset by downsampling the gene counts of simulated
datasets at different levels.

Before our evaluations, the optimal hyperparameter setting for
each method was selected through parameter-sweep analysis (Meth-
ods and Supplementary Fig. 2). Our quantitative assessment of these
synthetic datasets shows that, in the case of balanced confounder
states (no differential abundance), CINEMA-OT (or CINEMA-OT-W)
achievesthe best performance among all tested methods in batch mix-
ing and treatment-effect attribution, while most methods, including
CINEMA-OT (and CINEMA-OT-W), succeed in differential-response
cluster preservation (Fig. 3c).

By varying the differential-abundance level, we have found that
the original version of CINEMA-OT performs better than CINEMA-OT-W
does when the differential-abundance level is small (DA ratio >
0.75), but CINEMA-OT-W performs better in treatment-effect attri-
bution at a higher differential-abundance level (DA ratio < 0.5). In
both cases, CINEMA-OT substantially outperforms other methods
in treatment-effect attribution, while performing as well as other
methods in cell-distribution equalization and preservation of
differential-response clusters (Fig. 3d). The superior performance of
CINEMA-OT-Win the datasets with substantial differential abundance
is also shown by qualitative visualizations of both confounder space
(where the response cluster should be mixed and the cell states should
be distinctive) and the treatment-effect space (where the response
cluster should be distinctive while the cell states should be mixed)
(Extended Data Fig. 1). Through our experiments with varying levels
of data sparsity, we have found that, even under a high sparsity level,
CINEMA-OT’s performance decreases only slightly with increasing
sparsity, maintainingitsleadinaccurately attributing responses while
achieving top performance in preserving batch mixing and differential
response clusters (Extended Data Fig. 2).

Finally, we performed abenchmarking study of run time and peak
memory usage on aseries of subsampled scRNA-seq data, containing
1,000, 2,000, 5,000, 10,000, 20,000, or 50,000 cells. Our results
show that CINEMA-OT and CINEMA-OT-W perform nearly as quickly
as the fastest method available (Mixscape), markedly outperforming
deep-learning-based approachesinspeed, witharuntime of approxi-
mately 1 min for 50,000 cells (Extended Data Fig. 3). Although the
peak memory usage of CINEMA-OT (and CINEMA-OT-W) is substantial
owing to the use of a dense matching matrix across conditions, it still
requires less than 12 GB of memory for 50,000 cells, making it possi-
ble to run on most modern laptop computers (Extended Data Fig. 3).
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of CINEMA-OT on the Sciplex dataset. f, Quantification of different validation
metrics on the Sciplex dataset for CINEMA-OT and other methods.
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Fig.4 | CINEMA-OT identifies a heterogeneous defensive response in human
airway epithelial cells exposed to rhinovirus and cigarette-smoke extract.

a, Overview of experimental design. Differentiated airway epithelial organoids
are challenged with mock (control) or RV infection, with or without CSE
exposure. b, UMAP projection of expression data labeled by perturbation and
celltype. c, UMAP projection of the individual treatment-effect matrix obtained
by CINEMA-OT from the RV response without CSE exposure, colored by response
cluster.d, Gene set enrichment analysis of mock to RV response clusters

identified by CINEMA-OT, colored by adjusted P value. e, UMAP projection

of theindividual treatment effect matrix obtained by CINEMA-OT from the

CSE response without RV exposure, colored by response cluster. f, Gene set
enrichment analysis of mock to CSE response clusters identified by CINEMA-OT,
colored by adjusted Pvalue. g, Cell-wise synergy score visualization. h, UMAP
visualization of CINEMA-OT synergy embedding, colored by cell type. f, Two
diverging patterns among CINEMA-OT identified synergistic genes, visualized by
stacked violin plots and dot plots.

We also implemented an experimental version of CINEMA-OT that
allows handling larger datasets by adopting advanced OT solvers in
the ott-jax library™.

Validation of CINEMA-OT using real data. To evaluate the perfor-
mance of CINEMA-OT in a real setting, we used two publicly available
single-cell transcriptomics datasets: (1) sequencing of entorhinal
cortex in people with Alzheimer’s disease and unaffected controls*’;
and (2) the sci-Plex4 drug perturbation dataset®, which measures the
response of the A549 and MCF7 cell lines to perturbation with 17 drugs.

In the Alzheimer’s disease dataset, we focused on qualitative
comparison of perturbation-effect removal and differential response
cluster preservation. While the first comparison can be conducted in
an unsupervised manner, for the second comparison, we integrated
prior knowledge to evaluate the preservation of clusters of interest*.
One notable example gene is SPP1, which has been described as being
upregulated insome cell types of people with Alzheimer’s disease (for
example microgliaand some neuronal subtypes), but notinothers (for
example endothelial cells)****. We compared CINEMA-OT with Mixs-
cape, scGen, CPA, ContrastiveVl, and CellOT in our experiments, cov-
ering both the default model (cell-type-unaware) and cell-type-aware
models for scGen and CPA. The visualizations of confounding spaces

and treatment effects identified by each method can be seen in
Extended Data Fig. 4. Our results show that the other methods, in
general, either preserve the differential response of SPP1by automatic
clustering (Mixscape, scGen, CPA without cell-type label) or mix cell
distributions well in the latent space (ContrastiveVl, CellOT), but not
both. By contrast, CINEMA-OT succeeds in both tasks (Extended Data
Figs.4and5).

Inthe Sciplex dataset, we investigated the response to perturba-
tion with pracinostat (SB-939), a histone deacetylase (HDAC) inhibi-
tor, with the combinatorial induction of exogenous acetate, citrate,
and pyruvate. HDAC inhibitors act as antitumoral agents by antago-
nizing the pro-transcriptional effects of histone deacetylation and
silencing the expression of oncogenic factors through chromatin
remodeling®. As HDAC inhibitors act partly through the deprivation
of acetyl-CoA, we expect that the relative abundance of acetyl-CoA
precursors within a cell would modulate the effect of HDAC inhibitor
exposure, and acetyl-CoA precursors can be considered confounders®
(Fig. 3e).Indeed, in the uniform manifold approximation and projec-
tion (UMAP) embedding of the A549 cell line across two doses of SB-939,
within each dose population, the cell neighborhood relationship is
determined by doses of exogenous acetate, citrate, and pyruvate,
separating the entire cell populationinto two latent-confounder states.
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Ideally, a treatment-effect analysis method should not only achieve
good mixing in the confounder space, but also automatically match
the cells by the latent states to accurately specify the treatment effect.
The two aspects can be quantitatively validated for each method by
employing batch-mixing metrics and label-preservation metricsin the
confounding space. Among all tested methods, CINEMA-OT achieves
superior performance inboth aspects, as suggested by our qualitative
and quantitative evaluations (Fig. 3f and Extended Data Fig. 6).

CINEMA-OT identifies synergy of smoke and virus infection. In
addition to benchmarking CINEMA-OT against other methods, we have
applied CINEMA-OT to new scRNA-seq data about rhinovirus infec-
tionin primary human bronchial organoids (Fig. 4a). The experiment
comprises four conditions: exposure to cigarette-smoke extract (CSE),
rhinovirus (RV) infection, the combination of rhinovirus and cigarette
smoke (RVCSE), and a control condition (mock). Although rhinovirus
infection has been investigated**, the goal of our study was to probe
cellular defense responses to viral infection from each airway epithe-
lial cell type in the presence or absence of a common environmental
insult that is known to impact the outcome of rhinovirus infection:
cigarette smoke. Previous studies of viral infection using this model
considered gene expression in each cell type, but not heterogeneous
response patterns, which may be of biological and clinical relevancein
understanding the tissue response to respiratory virus infections***.

We first performed preprocessing of the dataset and annotated
eight cell clustersin total, including major cell typesin the airway (basal,
secretory, ciliated) and other rare (ionocyte, pulmonary neuroendo-
crine cells (PNECs), and brush) or transitional (hillock and pre-ciliated)
celltypes (Fig. 4b). We then performed CINEMA-OT analysis on mock-
RV and mock-CSE condition pairs to identify single-cell-level treatment
effects (the ITE matrix). For both condition pairs, CINEMA-OT returns
batch mixed confounder embedding and reasonable response clusters
(Supplementary Figs.4 and 5). As expected, inresponse to RVinfection,
most epithelial cell types exhibited robustinduction of the interferon
response, with upregulation of several interferon-stimulated genes,
including ISGIS5, IFI44, STATI, MX1, and others (Fig. 4c,d)**.Inresponse
to CSE exposure, a subset of epithelial cells increased expression of
genes associated with metabolism of reactive oxygen species (PRDX1,
TXN) as well as genes related to fatty acid and xenobiotic metabo-
lism (ADHIC,ALDH3A1, CYP1BI). Interestingly, responses to CSE were
primarily enriched in particular cell subpopulations, including hill-
ock, ciliated, and secretory cells, in contrast to the global interferon
response that was seen following rhinovirus infection (Fig. 4¢,f). This
demonstrates a functional division of defense mechanisms in the air-
way epithelium, with cell-type-specific responses to different insults.

After analysis of the effect of cigarette smoke and viral infection
individually, positive and negative synergy between these two insults
was assessed by calculating cell-gene synergy scores (Fig. 4g,h).
We found that, among the strongest synergistic effects, interferon-
stimulated genes (ISGs) exhibited negative synergy in general when
cells were exposed to RV and CSE. ISGs showed a global reduction
during viral infection in the presence of cigarette smoke compared
with viral infection alone (Fig. 4i), consistent with previous mecha-
nistic studies showing that the antioxidant defense response induced

by CSE suppresses signaling pathways required for induction of
interferon-stimulated genes in response to viral RNA in airway epi-
thelial stem cells*.

Inaddition to a global attenuation of the interferon response, we
discovered that pre-ciliated cells, in particular, exhibit pronounced
synergistic expression of a distinct set of genes when co-exposed
to RV and CSE (Fig. 4g,i). Pre-ciliated cells, sometimes referred to
as ‘deuterosomal’ cells, are developing multiciliated cells with the
marker genes CCNO and CDC20B" . Pre-ciliated cells co-exposed to both
viral infection and CSE show synergistic induction of genes encoding
secreted proteins that are typically associated with secretory cells in
resting cultures, including SCGB3A1, LCN2, BPIFB1, SLPI, and WFDC2
(Fig. 4i). This pattern could arise from pre-ciliated cells adopting a
more secretory phenotype during co-exposure, or secretory cells
adoptingapre-ciliated phenotype. These findings highlight the use of
CINEMA-OT toidentify synergistic effects on gene expressioninduced
by co-exposure to viral infection and cigarette smoke.

CINEMA-OT reveals principles of innate immunity modulation. Typel,
typell, andtypelllinterferons (IFNs) act as central regulators ofimmune
responses during intracellular pathogen infection, cancer, and in
auto-immunity. However, despite theidentification and adoption within
the literature of a core set of interferon-stimulated genes (ISGs), IFN
responses canvarywidely by celltype, by individual, by IFN stimulus type,
by chronicity of exposure, and by combination with signals delivered by
other cytokines. In other words, theinterferon responseis highly context
dependent. This complexity, heterogeneity, and context-specificity of
IFN signaling can lead to counterintuitive results. For example, IFN-y
has been proposed to play both stimulatory and suppressive roles in
cancer, and typellFNs are used both asanimmunosuppressant to treat
multiple sclerosis and as immunostimulatory adjuvant treatments for
cancer (for example melanoma) and chronic viral infection (forexample
HCV)**"%°, To characterize the complexity of IFN signaling, we subjected
peripheral blood mononuclear cells (PBMCs) from multiple healthy
donorstoacute (2d) or chronic (7 d) stimulation with typel, typell, and
type Il IFNs, separately as well as in combination with other cytokines,
such as tumor necrosis factor (TNF) and interleukin-6 (IL-6) (Fig. 5a,b).

Tounderstand the underlying structure of the cellular response of
PBMC s tointerferon stimulation, we used CINEMA-OT to match treat-
ment conditions to the untreated (control) condition. This analysis
highlights the underlying hierarchical structure of cellular responses.
As the hierarchical structure of cytokine response can vary with cell
type, besides the regular CINEMA-OT analysis based on asingle patient
condition (Supplementary Fig. 5), we pooled CD4" T cells and mono-
cytes across individuals and experimental batches and performed
CINEMA-OT analysis. In this case, a confounder is defined by each
different experimental batch.InCD4" T cells, the response canbe char-
acterized by four meta-perturbation clusters: no stimulation, IFN-y,
IL-6, TNF; IFN-a2, IFN-B, IFN-B and TNF; IFN-p and IL-6; and IFN-B and
IFN-y (Fig. 5c). In monocytes, a similar structure is observed, except
that IFN-y in monocytes represents a distinct response cluster in the
phenotypic space (Fig. 5d).

Next, to demonstrate CINEMA-OT’s power in general
single-cell-level treatment analysis, we focused on analyzing the

Fig. 5| CINEMA-OT reveals combinatorial mechanisms of acute and

chronic cytokine stimulation. a, lllustration of experimental design.

b, UMAP projection of expression data colored by samples, perturbations, and
celltypes.Insample labels, H refers to the donor number, and D refers to the
number of days of stimulation. NK, natural killer. c, UMAP projection of the
CD4" T cell counterfactual space from CINEMA-OT. Projections are colored by
experimental batch and perturbation type. d, UMAP projection of the monocyte
counterfactual space from CINEMA-OT. Projections are colored by experimental
batch and perturbation type. e, UMAP projections of the original data,
confounder embedding, and individual treatment effects identified by

CINEMA-OT after acute stimulation with IFN- in H3D2, colored by response
cluster and cell type. f, Volcano plot highlighting genes with strong confounder-
specific treatment effects. g, Normalized expression of representative
confounder-specific treatment-associated genes in original UMAP space.

h, Distribution of gene synergy score, obtained by combining results of IFN-3

and TNF, IFN-B and IFN-y, and IFN-B and IL-6 treatments in H3D2. i, Cell-wise
synergy score visualization in the acute condition, taking a single experimental
batch (H3D2) as an example. j, Stacked gene expression violin plot of synergistic
chemokinesidentified by CINEMA-OT. k, Patterns of chemokine secretion
programmed by single or multi-signal cytokine stimulation. X: TNF, IFN-y and IL-6.
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treatment effects of IFN-f in a single experimental batch (H3D2).
CINEMA-OT analysis highlights theinduction of coordinated immune
responses across cell types along with cell-type-specific responses,
asshownin the confounder-specific effect volcano plot. Forexample,
despite a global change in interferon-stimulated genes (Extended
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Data Fig. 7), monocytes demonstrate a unique program character-
ized by increased APOBEC3A and IL10 expression and decreased A2M
and CCL24 expression compared with other cell types (Fig. 5e-g and
Extended Data Fig. 7). Notably, a similar qualitative analysis that we
performed on the Alzheimer’s dataset shows that CINEMA-OT achieves
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both good batch mixing and reasonable response clustering, com-
pared with alternative methods that we tested (Extended Data Fig. 8).
CINEMA-OT was also used toinvestigate the treatment effects of chronic
versus acute stimulationin CD4"T cells and reveals the attenuation of
genesinvolvedinthe core type I IFN response (Extended Data Fig. 9).

To estimate the synergistic effects of acute combinatorial cytokine
stimulation, we used CINEMA-OT to calculate cell-gene synergy scores.
We next performed gene synergy score analysis by computing the
gene-wise synergy score (Methods). The gene synergy score analysis
identified genes that were synergistically induced by each combinatorial
perturbation (Fig. 5h). Onthe basis of selected synergy genes, we summa-
rizedthe cell-wise synergy effect by taking the normover selected synergy
genes. We have found that monocytes exhibit the strongest synergistic
regulation compared with other cell types (Fig. 5i). Further enrichment
analysis identified a number of chemokines with specific synergistic
expressioninmonocytes withrespect todifferentinterferon perturbation
(Fig. 5jand Supplementary Fig. 6). These chemokines exhibit synergistic
patterns of response to multi-signalinflammation (forexample IFN-B and
IL-6) in monocytes, including inhibition of baseline neutrophil chemo-
tactic signaling and induction of a monocyte chemotactic signaling
program. The addition of IFN-y contributes lymphocyte-predominant
chemokines while maintaining core inflammatory programming
(Fig. 5j, k). Theseresults suggest that CINEMA-OT, when applied to combi-
natorial experiments, is capable of revealing the synergistic logic govern-
ing cellular signaling ininflammation and tissue repair.

Discussion

Withrapidly developing high-throughput screening technologies and an
ever-rising number of datasets, single-cell-level analysis of experimental
effects is becoming a critically important task in biological discovery.
Current analytical approaches aiming to address this need faceanumber
of challenges. When treatment effects are confounder specific and do
not changerelative cell proportions, differential-abundance methods
may be unsuitable for extracting the dependence between confounder
states and treatment responses. Recent neural-network-based methods
for characterizing perturbation effects learn nonlinear interactions
between confounders and treatment effects, but these can be prone
to overfitting and have limited interpretability. In response to these
challenges, we present CINEMA-OT, a framework for single-cell causal
treatment-effect analysis. By explicitly separating confounder and treat-
mentsignals and matching at the single-cell level, CINEMA-OT produces
aper-cell viewinto the effects of experimental perturbations and condi-
tions including disease states.

We applied CINEMA-OT in several use cases, including synthetic
andreal datasets. Inbenchmarks, CINEMA-OT was able to outperform
other methods in experimental-perturbation analysis. In human airway
organoids, CINEMA-OT revealed how CSE caninterfere with the normal
innate immune response to RV infection. In combinatorial cytokine
stimulation of ex vivo human peripheral immune cells, CINEMA-OT
revealed complex logic that may underlie the specific recruitment
of cells from the periphery to tissues responding to various injuries.

Two potential challenges for CINEMA-OT can arise owing to bias—
variance trade-offs in optimal transport and the magnitude of batch
effect versus biological-perturbation effect. For the first challenge, a
large smoothness threshold in the entropy-regularized OT method
canoverly smooth the obtained matching and cause false positives by
incorrectly identifying confounder variation as treatment-associated
variation. However, too small a threshold would both harm the meth-
od’s stability and cause high variance. In practice, as CINEMA-OT is
highly scalable, an adequate threshold can be chosen on the basis of
repeated runs with different parameter settings. For the second chal-
lenge, as CINEMA-OT performs matching in the confounder space,
the confounding space identified by CINEMA-OT and the optimal
transport matching plan are minimally altered by the level of batch
effect, as thebatch effect canbe viewed as a treatment-induced factor

itself. However, because the current implementation of CINEMA-OT
does not perform count modeling, the differential expression analy-
sis at the gene level may be still affected by the batch effect when it
causes substantial distortions of global gene expression. In this case,
the confounder embedding and the matching scheme identified by
CINEMA-OT can still serve as a basis for conducting advanced differ-
ential expression testing approaches, such as MiloDE®.

CINEMA-OT is designed to estimate causal treatment effects
from experimentally perturbed single-cell omics measurements.
CINEMA-OT is not able to extrapolate, meaning it cannot identify the
causal effect of unmeasured perturbation-cell pairs. Integrating prior
knowledge (such as ChemCPA*? and expiMap*) to achieve causally
meaningful extrapolation for unseen perturbation effects remains a
promising future direction. Moreover, although we have implemented
areweighting procedure to account for differential confounder abun-
dance that may arise in response to treatment, CINEMA-OT is not
designed for cases in which changes to confounder distributions are
the primary effects of interest. Inthose cases, tools such as MELD, MILO,
or DA-seq may be more suitable®*~°.

We anticipate that, as a highly explainable and scalable causal
framework, CINEMA-OT will be widely adopted for single-cell pertur-
bation analysis.

Online content
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maries, source data, extended data, supplementary information,
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Methods

CINEMA-OT

CINEMA-OT is an unsupervised method for separating confounding
signals from perturbation signals for matching cells throughimputing
counterfactualsand computing perturbation effect at asingle-celllevel
(https://github.com/vandijklab/CINEMA-OT). The detailed workflow
of CINEMA-OT is as follows.

Rank initialization. To perform CINEMA-OT, we first need to initial-
ize the expected matrix rank, representing the total signal number.
We offer two possible approaches for rank initialization in
CINEMA-OT.

Biwhitening®’ is a recently developed method to remove inde-
pendent heteroskedastic noise in datawith inspirations fromrandom
matrix theory. It does diagonal matrix transformation of the data on
both sides and thresholding based on the Marchenko-Pastur law*®.
After thresholding, we can get the true matrix rank and the matrix’s
low-dimensional approximation. Mathematical details of biwhitening
canbeseeninref.57.In CINEMA-OT, we haveimplemented a version of
biwhitening with fixed hyperparameters.

Inlarge datasets, we suggest using prespecified rank values. Empir-
ically, we have found that CINEMA-OT isrobust to rank selection at cer-
tainranges and can give agood performance when DimSize € [20,50].

Signal selection with independent component analysis. Independ-
ent component analysis is already an established method in data
analysis and has various implementations. Here we use the FastICA
implementation from the package sklearn.decomposition®,with
the ‘arbitrary-variance’ whitening scheme. Prior to FastICA, input data
were PCA-transformed using Scanpy®°.

Toidentify confounder signals and treatment-associated signals,
we adopted arecently proposed cross rank coefficient?’, which is able
to quantify the functional dependence between ICA signals and query
signals (in this case, the treatment signals). We use theimplementation
of thismethod from a modified faster version of the XICOR package in
Python. The threshold of the cross rank coefficient is set to 0.05-0.75
inthis study. Tuning the threshold parameter has a practical meaning
in the algorithm. High thresholds correspond to less tolerance for
false-positive treatment signals, which leads to local matching more
similar to Mixscape analyses. Meanwhile, setting alow threshold means
less tolerance for false-positive confounder signals and can lead to
lower resolution of matching, which, in the extreme case, coincides
with pseudo-bulk differential expression testing methods if the match-
ingresolutionis at cell-typelevel, and individual treatment effects are
further aggregated.

Optimal transport matching. After selecting confounding signals, we
perform matching across treatments via optimal transport, which pro-
videsasmooth transport map and does not require neighbor number
selection. Here we consider the entropy-regularized optimal transport
formulation, which can be efficiently solved by the Sinkhorn-Knopp
algorithm™. In this formulation of the problem, the penalty coefficient
acts as a hyperparameter influencing the resolution and smoothness
ofthe transport map. We have empirically determined that the optimal
value for the penalty coefficient often lies within therange (1x10°to 1
x107%) multiplied by the number of confounding signals.

Algorithm1CINEMA-OT

Require: Count matrix PC embedding X € R"*?, treatment vector
z € {0,1}", dimension size r, signal filtering threshold d, smoothnessss.
1: DimSize « r,Thres « d.
2: unmixing matrix B, source matrix S < ICA(X, DimSize);
3: c<«zeros(DimSize)
4: fori=1:DimSizedo

5: c; < xicor(S[:, i1, 2); > Compute Chatterjee cross
rank coefficient
6: endfor
7. S¢ < S[:,c < Thres] > Thresholding to separate
confounder signals §¢
8: M« OT(S7z=0], $[z=1], smoothness = s*S . shape[1])
> M: Matching matrix
9: ITE<X[z=1IM-X[z=0] ITE matrix computation; can
alsobe donefor the original gene
expression matrix

10: Downstream analysis.
Algorithm2 OT

Require: Confounder signals S; € R™*P, S, € R™2*P, weights w, = None,
w,=None, smoothnesss.
ifw,isNone then
r<1/n,c<1/n,
else
r < w,/sum(w,), ¢ < w,/sum(w,)
endif
: D < PairwiseEuclideanDistance(S,, S,).
: A < exp(=D % DJs) > Elementwise multiplication
for D here
8: M = SinkhornKnopp(4, setr = r, setc = ¢)
> Sinkhorn-Knopp algorithm

=

RN

Now

9: return M

CINEMA-OT-W

In CINEMA-OT-W, the treated cells are first aligned by their 20 near-
est neighbors in the untreated condition. Then Leiden clustering is
performed on the full aligned cell set at a prespecified resolution (r).
For each Leiden cluster, the cells from one of the conditions are sub-
sampled such that the number of cells are the same for each condition
in the same cluster. After subsampling, the confounder signals are
independent of the treatment event. Therefore, the ICA procedure can
be conducted onthe subsampled data, and the confounder component
selection is performed on the identified independent components.
Theentropicregularized OT canbe later performed on the confounder
components of either subsampled data or the full data. In the latter
case, the ICA unmixing matrix computed from subsampled data is
applied onthefull dataembedding. Notably, as control state indicates
the cells in the normal states in most cases, we may assume that the
untreated cells always cover the confounding states of the treated cells.
In this case, the treatment effect of all treated cells can be computed
by CINEMA-OT-W.

In practical datasets, the underlying confounders are often
provided in terms of cell-wise labels (such as cell types), which indi-
cates biological meaningful sampling labels. Therefore, apart from
CINEMA-OT-W, CINEMA-OT offers users the ability to specify known
confounder labels (for example cell type and cell cycle), without the
need for asampling procedure.

Algorithm 3 CINEMA-OT-W

Require: Count matrix PC embedding X € R™”, treatment vector
z€10,1}", dimensionsizer, signal filtering threshold d, smoothness s.
1: DimSize < r,Thres « d,Xy < X[z =0],X; < X[z =1].
2: X, < k—=NNy, (X) >-NN: The average embedding of
k-nearest neighbors
X'« [Xo; X[], Xpew < emptyList.
[ < Leiden(X"), z,e,, < emptyList.
fora=1: max())do > Cluster-wise sampling
i« argmaxie{o,l}{w[(z = )&(l = a)].shape}
Append X[(z=1-D&(=a)lto X,.,

N ew
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8: Append I-dx lX[(z:I—i)&([:a)] ).shape[0] 10 Zyen,

9: Subsample X[(z=i)&([=a)] to X[(z=1-i&(=a)].
shape[0] and append to X,,.,,

10: Append ix 1X[(z:l—i)&(l:a)]).shape[O] 10 Zpew

11: endfor

12: CINEMA-OT(X..o, Zoew I d, S).

Downstream analysis

Visualization and clustering of the ITE matrix. With the ITE matrix
computed by matching counterfactuals, we are able to perform numer-
ous standard analyses. We may employ dimensionality-reduction
techniques, such as t-SNE, UMAP, or PHATE®"*, to visualize clusters
in the response space. We may also employ clustering techniques,
such as Leiden clustering'®, to group cells by similarity of treatment
responses.

Synergy analysis. For the synergy effect, we compare ITE matrices
for two treatment conditions against the ITE matrix for the combined
treatment. Formal derivation of the synergy score is given as follows.
Consider D, 5, as the ITE matrix for treatment A alone, D,y 5., as
theITE matrix for treatment Balone,and D,_, 5., as the ITE matrix for the
combined treatment. We may define a synergy matrix ¥ as:

¥ = Dyoyp=1 — (Da=1,=0 + Da=0,8=1)

Whereeachentry ¥, represents the synergy score for genegand cellc.
Totest whether a particular gene ghas synergistic effect, we formulate
the problem as if we should reject

Hy : E(¥g) =0, Ve

Here, if we apply only library-size-normalized data, we are aiming for
additive synergy;if we further apply theloglp transformation, H, would
test for multiplicative synergy.

We assume that different cells are unlikely to have opposite syn-
ergy effects, allowing us to relax H, as:

Hy : E(F,.)=0.

Assume the new H, holds, then for each gene g, we compute the
absolute value of empirical synergy as the synergy score:

Synergy score = |¥, . |.

Inthis case, identifying most synergistic genes among all genes canbe
turned into comparing the synergy score over all genes.

GSEA analysis. To assess differential gene expression significance,
we used the non-parametric Wilcoxon signed-rank test. We used cus-
tomized P value thresholds (1x 107 in our study) and log-normalized
expression difference thresholds (0.5 in our study) to identify signifi-
cantly regulated genes. These genes are inputinto GSEApy for analysis
by functional signatures®*,

Attribution analysis. By clustering cells both by treatment responses
(that is using the ITE matrix) and control condition clusters (that is
cell subtypes), the matching matrix from CINEMA-OT can be coarse
grained. The resulting coarse-grained matching matrix is of shape
ResponseClusterNumber x ControlClusterNumber. Each column of
the matrix gives the likelihood of a control condition cluster to have
different modes of response. By reading each row of the matrix, we can
attribute each response to the underlying control condition cluster.
Furthermore, to investigate the genes with confounder-specific
treatment effect, we fit each gene’s normalized expression X to the
causal regression model, where z denotes the treatment event, ¢

denotes the confounding factorsand ¢, 5, yand constant are the linear
regression coefficients and the intercept, respectively:

X = az + fc + ycz + constant

Inthis case, the confounder-specific effect partis ycz, whose signif-
icance canbeestablished by classical linear regression theory. However,
in our case, the noise term can stand for latent-factor-specific effect,
thus not satisfying the assumption of classical regression. Therefore,
here weinstead quantify the /,-normratio between confounder-specific
effect and the residual as an indicator of confounder-specific-effect
significance.

Data simulation and analysis

We used Scsim to simulate1,000 gene by 5,000 cell-count matrices with
2-5underlying cell states with 2 gene-regulation programs. For each
cell state, we simulated a random discrete distribution to represent
the corresponding response distribution of the cell state. Then the
response count matrix of 500 genes x 5,000 cells was simulated and
concatenated with the confounder count matrix.

For the Mixscape analysis, we implemented a simple version in
Python that matches cells across conditions according to the descrip-
tions in ref. 11. For Harmony-Mixscape analysis, we used the Python
package harmonypy (https://github.com/slowkow/harmonypy) with
defaultsettings®, and applied Mixscape on the batch corrected embed-
dings returned by Harmony. For full OT analysis, we implemented
a function that calls entropy-regularized optimal transport on the
full PC embedding space with a tunable smoothness parameter. For
scGen, CPA, ContrastiveVland CellOT, the default model settings were
used, consistent with those provided in their tutorials: https://scgen.
readthedocs.io/en/stable/tutorials/scgen_perturbation_prediction.
html (scGen); https://github.com/facebookresearch/CPA/blob/main/
notebooks/demo.ipynb (CPA); https://colab.research.google.com/
drive/1_R1YWQQUJzgQ6kz1XqglL5xZn8b8h1TX?usp=sharing (Con-
trastiveVI); https://github.com/bunnech/cellot/blob/main/configs/
models/cellot.yaml (CellOT). For CellOT, we input principal component
embeddings for training and evaluation.

Toinvestigate the effect of hyperparameter settings on different
methods, we performed parameter-sweep analysis for all tested meth-
ods. The sweeped hyperparameters for all methods are summarized
as follows:

« Mixscape (the number of neighbors, k): [5, 10, 20 (Default), 50,
100];

* Harmony-Mixscape (k): [5, 10, 20 (Default), 50,100];

e Full OT (regularization parameter €, smaller values resulted in
instability): [0.1,0.3,1, 3];

« scGen (Kullback-Leibler (KL) divergence weight, 1):[0,5x10°¢,
5x107° (Default), 5 x10™];

«  CPA (adversary strength, [): [5, 20, 60 (Default), 200];

«  ContrastiveVl (Wasserstein penalty, lyyp): [0 (Default),1 x107*,
1x1031x1021x1071;

« CellOT (Frobenius normregularization reg): [0.01, 0.1, 1
(Default), 10];

»  CINEMA-OT (confounder threshold cutoff): [0.05, 0.1, 0.15, 0.2,
0.25]; (OT smoothness, e, based on the optimal cutoff): [1x 1075,
3x107,1x10™%,3x10™*,1x107%];

* CINEMA-OT-W (Leiden clustering resolution, r, based on opti-
mal parameters of CINEMA-OT): [0.3, 0.6,1,1.2].

The parameter-sweep analysis results are listed in Supplementary
Fig. 2. Based on the four metrics, the hyperparameter settings used
throughout our benchmarking analysis were selected: k = 20 (Mixs-
cape); k=20 (Harmony-Mixscape); €=0.1 (Full OT); /=0 (scGen); [=20
(CPA); lyp = 0 (ContrastiveVI); cutoff=0.05,e=1x107 (CINEMA-OT);
r=0.6 (CINEMA-OT-W).
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On the basis of the optimized hyperparameters, the following
analyses were performed:

1. Theeffect of differential abundance on single-cell
treatment-effect analysis. To explore the effect of differential
abundance on the performance of single-cell treatment-effect
analysis methods, we selectively subsampled cells from half of
the confounder clusters in the treated condition. The subsam-
ple ratio, which we refer to as differential abundance ratio, are
selected as different levels: [1,0.75, 0.5, 0.25, 0]. The case in
which the DA ratio =1 corresponds to no differential abundance
effect, and when the DA ratio = O, certain cell populations are
not observed in the treated condition.

2. Theeffect of noise level on single-cell treatment effect analysis.
To perform the analysis, the count matrix was subsampled ac-
cording to the Scanpy function sc.pp.downsample_counts with
the total_counts parameter specified to be (1, 0.5, 0.2, 0.1, 0.05)
times the total count number of the original matrix.

3. Running time and peak memory usage. We conducted the scal-
ability analysis by testing the run time and maximum memory
usage of the different methods on subsampled interferon
datasets, with cell numbers o0f 1,000, 2,000, 5,000, 10,000,
20,000, or 50,000. For Mixscape, scGen, CPA, and CINEMA-OT,
the data were normalized and log-transformed, and we selected
773 highly variable genes using mean and dispersion thresholds
provided by the default Scanpy function sc.pp.highly_variable
_genes(adata, min_mean=0.0125, max_mean=3, min_disp=0.5).
In the case of ContrastiveVI, which models the distribution of
the count matrix, we used the original count matrix of highly
variable genes.

Benchmarking metrics

ASW, PCR, and ARl are batch-mixing and biological-preservation met-
rics used to evaluate batch-correction methods performance in the
systematic benchmarking paper*. CINEMA-OT uses the first two met-
ricsto evaluate mixingin confounder space, as asurrogate for correct
matchingthat canstillbe measured when ground-truth labels are not
present. ARlis used to evaluate the preservation of response clustersin
ITE matrices estimated from simulated data. The PCR for ITE matrices
is used to evaluate attribution accuracy of response, as in our experi-
mental settings the response of each cell is conditionally independent
of cell states conditioning on the response cluster assignments. For all
metrics, we use the implementations from package scib*..

Alzheimer’s scRNA-seq data

The Alzheimer’s scRNA-seq data were downloaded from https://drive.
google.com/uc?id=1R1aN-LWUQ6c¢_N44n5-xjy2nEPzI7HODc. For Mix-
scape, scGen, CPA, and CINEMA-OT, the data were normalized and
log-transformed. Two thousand highly variable genes were selected
with the Seurat v3 approachimplemented in Scanpy. As ContrastiveVI
models the distribution of count matrix, the original count matrix of
highly variable genes was used for ContrastiveVI. For CellOT, weinput
principal componentembeddings computed from preprocessed highly
variable genes for training and evaluation.

Sci-Plex4 data

The Sci-Plex4 data were accessed from https://www.ncbi.nlm.nih.gov/
geo/query/acc.cgi?acc=GSM4150379 with GEO accession number
GSM4150379. The data are preprocessed via protocol https://github.
com/manuyavuz/single-cell-analysis/blob/main/single_cell_analy-
sis/datasets/sciplex.py. After preprocessing, we normalized and
log-transformed the raw count matrix, then performed highly vari-
able gene selection using mean and dispersion thresholds provided
by the default Scanpy function sc.pp.highly _variable_genes(adata,
min_mean=0.0125, max_mean=3, min_disp=0.5). Finally, we performed

subsequent analysis, described in the main text,for Mixscape, scGen,
CPA, and CINEMA-OT. The original count matrix of highly variable
genes was used to evaluate ContrastiveVI. For CellOT, we input principal
componentembeddings computed from preprocessed highly variable
genes for training and evaluation.

After estimating all metrics, each metric was rescaled so that
the max value for all methods tested equals 1. Then we computed the
average of batch mixing score (PCR) and label preservationscore (the
average of NMland ARI) as the final metric used (Overall_score).

Rhinovirus infection data

Primary human bronchial epithelial cells from healthy adult donors
were obtained from commercial vendor (Lonza) and cultured at the
air-liquidinterfaceaccording to the manufacturer’sinstructions (Stem
Cell Technologies) using reduced hydrocortisone. Cells were kept at
theair-liquid interface for 4 weeks before the experiment; maturation
of beating cilia and mucus production was confirmed using a light
microscope. Cells were then infected with mock or 1 x10° PFU human
rhinovirus (HRV-01A, ATCC) per organoid, with or without exposure
to 2% CSE. A single-cell suspension was collected by trypsin digestion
at5dpost-infection and submitted to scRNA-seq using The10X Genomics
single-cell 3 protocol. The final dataset contains 26,420 cells in
4 samples (mock, RV, CSE, RVCSE). We performed normalization (by
sc.pp.normalize_total), loglp transformation, hand selection of highly
variable genes using mean and dispersion thresholds provided by the
default Scanpy function sc.pp.highly_variable_genes(adata, min_
mean=0.0125, max_mean=3, min_disp=0.5), scaled their values for PCA
and Leiden clustering analysis. We annotated eight cell clusters on the
basis of known cell-type markers of airway epithelial cells®: cycling
basal, basal, hillock, secretory, pre-ciliated, ciliated, ionocyte, PNECs,
and brush cells. CINEMA-OT analysis on mock-RV and mock-CSE was
runwith default parameters with smoothness=1x107. Synergy analysis
was performed with smoothness =3 x107>,

Interferon treatment data

PBMC processing and in vitro culture. The study was approved by
Institutional Review Boards at Yale University (following Yale mela-
nomaskin SPORE institutional review board protocol). Healthy donors
consented to donation of peripheral blood for research use.

Human PBMCs wereisolated using Lymphoprep density gradient
medium (STEMCELL). PBMCs were plated at 1 million cells per mland
stimulated with1,000 U ml"* human IFN-a2 (R&D systems),1,000 Uml™*
human IFN-B (PBL Assay Science 11415),1,000 Uml ™ human IFN-y (PBL
Assay Science), 1 ug ml™ human IFN-III/IL-29 (R&D Systems), 100 ng
ml"humanIL-6 (NCIBiological Resources Branch Preclinical Biologics
Repository), 20 ng ml™ human TNF (R&D Systems), and combinatorial
cytokines IFN-B +IL-6, IFN-f + TNF,IFN-B +IFN-yatindicated concentra-
tions above forupto 48 h.

Cell enrichment and 10x sample preparation. Cultured cells were
collected stained with TotalSeq anti-human hashtags C0251-C0260
(Clone LNH-94;2M2, Biolegend, 1:1,000 dilution), viability dye (zombie
red, Biolegend), and anti-human CD45-FITC (Clone HI30, Biolegend,
1:40 dilution) and enriched for live CD45" cells using BD FACS Aria Il.
Sorted cells were thenresuspended to 1,200 cells per pl and barcoded
for multiplexed single-cell sequencing using 10x Genomics 5'v2 chem-
istry (10x Genomics, PN-1000263).

Sequencing and 10x sample alignment. Single-cell RNA sequencing
libraries were sequenced on lllumina NovaSeq at read length of 150-bp
pair-end and depth of 300 million reads per sample.

scRNA-seq data analysis. Datafrom three donors across Day 2 and Day
7were concatenated together into labeled anndata objects for analysis.
For each of the 6 samples, we filtered cells with fewer than 200 genes
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and we filtered genes expressed in fewer than 3 cells. For further quality
control, cellswithahigh proportion of mitochondiral reads (>7%) were
excluded. The distribution of genes per cell was visually inspected,
and upper thresholds were selected on a per-sample basis to exclude
doublets. For each of the samples, the upper threshold was selected
as 6,000, 3,500, 4,000, 3,500, 4,500, or 3,500. Following filtering,
the count datawere normalized and log-transformed. Highly variable
genes were selected using mean and dispersion thresholds provided
by the default Scanpy function sc.pp.highly_variable_genes(adata,
min_mean=0.0125, max_mean=3, min_disp=0.5). Highly variable genes
were scaled for subsequent PCA and UMAP projection.

For individual treatment effect analysis, we additionally filtered
T-cell-receptor genes, histocompatibility genes, and immunoglobu-
lin genes from the highly variable gene set. Genes to be filtered were
obtained from the HUGO database®. After filtering, highly variable
genes were used for downstream visualization analysis.

CINEMA-OT analysis was run on each of the samples separately,
with signalfiltering threshold thres=0.5, smoothness=1e-4, and toler-
ance eps=le-2,and preweights given by cell types. Theimplementation
of other methods were consistent with the experiments conductedin
the Sciplex dataset.

For the synergy analysis of donor 3 on day 2 (H3D2), we selected
strongly synergistic genes by an absolute value threshold of 0.15.

Reporting summary
Furtherinformation onresearch designisavailableinthe Nature Port-
folio Reporting Summary linked to this article.

Data availability

The Sciplex datawere taken from the original publication® (GSE139944)
andthe processed Alzheimer’s data were accessed from ContrastiveVI's
tutorial, with the original data from ref. 40 under GSE138852. The
newly produced datasets (RV infection scRNA-seq data, combinatorial
interferon stimulation scRNA-seq data) are available on Dryad®® in both
formats of raw count files and preprocessed anndatafiles.

Code availability

CINEMA-OT is implemented as a open-source Python package avail-
able at https://github.com/vandijklab/CINEMA-OT. An experimental
version of CINEMA-OT that adopts OT solvers from the ott-jax library*
isavailable at https://github.com/theislab/pertpy.
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Extended Data Fig. 5| Additional comparisons of ContrastiveVl and CINEMA-

OT in the Alzheimer scRNA-seq dataset. A. UMAP visualizations of different
covariates (Cell type, donor sex, donor batch, and AD/control) and expressions
of different cell-type specific AD marker genes. B. ContrastiveVlresponse
space visualization for covariates and leiden subclusters (first line), state-
specific gene visualization in the response space (second line), and confounder

space visualization for covariates (third line). C. CINEMA-OT response space
visualization for covariates and Leiden subclusters (first line), state-specific
gene visualization in the response space (second line), and confounder space
visualization for covariates (third line). D. Response-cluster specific genes
identified by CINEMA-OT.
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between chronic stimulation condition and acute stimulation condition condition. B. Dot plots of selected genes identified by CINEMA-OT. C. Single-cell
across different conditions. A. UMAP visualizations of CD4 T cell response expression differences of selected genes visualized in the UMAP space.
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Data collection  The Cell Ranger pipeline (v3.0.2 for rhinovirus infection experiment / v6.1.2 for combinatorial cytokine stimulation experiment) was used to
generate the count matrices from the newly generated datasets.

Data analysis Our main analysis uses the CINEMA-OT Python package (v0.0.3), available at https://github.com/vandijklab/CINEMA-QOT; The sciplex data is
preprocessed with additional code available at https://github.com/manuyavuz/single-cell-analysis/blob/main/single_cell_analysis/datasets/
sciplex.py (Commit id: 44e31959bcal618b05f837a524c4f4ce42d5b8dd). Analyses were performed using Python 3.9. Other relevant software
and versions: scanpy (v1.9.1), anndata (v0.8.0), umap (v0.5.3), numpy (v1.22.3), scipy (v1.8.1), pandas (v1.5.2), scikit-learn (v1.1.1),
statsmodels (v0.13.2), python-igraph (v0.9.10), louvain (v0.7.1), pynndescent (v0.5.7), scSim (Commit id:
20011651341c70cbda8e41f6446380b4435693ab), harmonypy (v0.0.5), CPA (Commit id: f16b3dcdd59ef1b7f863de9c6623a47a25c24dee),
contrastivevi (v0.1.0), scGen (v2.1.0), cellot (Commit id: df112863fb7b22a7a94ea57d404a7f57ae3bddd9), gseapy (v0.10.8).

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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The data of Sciplex is taken from the original publication (GSE139944) and the processed Alzheimer data is accessed from ContrastiveVI's tutorial, with the original
data under the accession number GSE138852. The newly produced datasets (Rhinovirus infection scRNA-seq data, combinatorial interferon stimulation scRNA-seq
data) are available on Dryad (https://doi.org/10.5061/dryad.4xgxd25g1) in both formats of raw count files and preprocessed anndata files.
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Reporting on sex and gender Sex and gender analysis is not considered in our study.

Population characteristics For the single cell sequencing of rhinovirus infection, the donor was a female between the ages of 30-40. For the interferon
stimulation experiment, all donors are healthy at the time of peripheral blood donation. All donors were between the ages of
20-40. Two donors were male and one donor was female.

Recruitment For the rhinovirus infection experiment, The de-identified primary human airway epithelial cells used in this paper were
obtained commercially from Lonza. For the interferon stimulation experiment, healthy donors consented to donation of
peripheral blood for research use in accordance with Yale IRB #2000033353. Healthy donors were recruited on a voluntary
basis by advertisement local to the Yale Cancer Center. Self-selection bias cannot be excluded, nor can bias arising from the
limited recruitment pool.

Ethics oversight For the rhinovirus infection experiment, Lonza guarantees that all tissue utilized for human cell products is ethically obtained
with donor informed consent in accordance with processes approved by an Institutional Review Board or comparable
independent review body. The interferon stimulation study was approved by Institutional Review Boards at Yale University
(following Yale melanoma skin SPORE IRB protocol).

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Sample size For the airway epithelial cell infection, the final dataset has one biological replicate, and contains 26420 cells in 4 samples from each condition
(mock, RV, CSE, RVCSE). For the interferon stimulation experiment, we sample PBMC from 3 healthy donors, containing 103518 cells after
preprocessing and filtering. No statistical method was used to predetermine sample size. The primary outcome of the studies was verification
of the capabilities of the computational method, not verification of the biological significance of relevant findings. A sample size of three was
sufficient for demonstration of the method.

Data exclusions  No dataset is excluded. For the interferon stimulation experiment, for each of the 6 samples, we filtered cells with less than 200 genes and we
filtered genes expressed in fewer than 3 cells. For further quality control, cells with a high proportion of mitochondiral reads (> 7\%) were
excluded. The distribution of genes per cell was visually inspected and upper thresholds selected on a per-sample basis to exclude doublets.
For each of the samples, the upper threshold was selected as [6000,3500,4000,3500,4500,3500] respectively.

Replication For the airway epithelial cell infection, the scRNA-seq experiement was performed on 1 set of replicate experiments. For the interferon
stimulation experiment, the results from the three healthy donors should be regarded as replicates. There was homogeneity among the three
healthy donors with regard to interferon stimulation response, and therefore all attempts at replication were successful.

Randomization | For both experiments, no randomization procedure was performed. For the rhinovirus infection experiment, there is only one replicate. For
the interferon stimulation experiment, each healthy donor’s samples were subjected to all experimental conditions for comparison, and
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therefore there is no role for randomization.

Blinding For the interferon stimulation experiment, each healthy donor’s samples were subjected to all experimental conditions for comparison,
therefore blinding among healthy donor identity was not necessary. All experimental conditions were pooled for processing and genomic
analysis, therefore blinding of experimental condition was not necessary. Additionally, for both datasets, transcriptional state changes in cell
culture would not be evaluable by simple observation, so blinding among experimental conditions is not necessary.
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X |:| Dual use research of concern

Antibodies

Antibodies used No antibodies are involved in the airway epithelial infection experiment. For the interferon stimulation experiment: TotalSeq anti-
human hashtags C0251-C0260 (Clone LNH-94; 2M2, Biolegend, 1:1000 dilution); Anti-human CD45-FITC (Clone HI30, Biolegend, 1:40
dilution)
TotalSeq anti-human hashtag C0251 (Clone LNH-94; 2M2) (Cat:394661) (Lot:B343252)
TotalSeq anti-human hashtag C0252 (Clone LNH-94; 2M2) (Cat:394663) (Lot:B337758)
TotalSeq anti-human hashtag C0253 (Clone LNH-94; 2M2) (Cat:394665) (Lot:B342838)
TotalSeq anti-human hashtag C0254 (Clone LNH-94; 2M2) (Cat:394667) (Lot:B346859)
TotalSeq anti-human hashtag C0255 (Clone LNH-94; 2M2) (Cat:394669) (Lot:B338441)
TotalSeq anti-human hashtag C0256 (Clone LNH-94; 2M?2) (Cat:394671) (Lot:B342026)
TotalSeq anti-human hashtag C0257 (Clone LNH-94; 2M?2) (Cat:394673) (Lot:B341069)
TotalSeq anti-human hashtag C0258 (Clone LNH-94; 2M?2) (Cat:394675) (Lot:B339940)
TotalSeq anti-human hashtag C0259 (Clone LNH-94; 2M2) (Cat:394677) (Lot:B334825)
TotalSeq anti-human hashtag C0260 (Clone LNH-94; 2M2) (Cat:394679) (Lot:B338860)
Anti-human CD45-FITC (Clone HI30) (Cat: 304038) (Lot:B348058)

Validation Links to manufacturer site for each antibody used are provided, technical data sheets and lot specific certificate of analysis that

confirm species reactivity and application are available for each antibody.

TotalSeq anti-human hashtag C0251 (Clone LNH-94; 2M2) (Cat:394661) (Lot:B343252)
https://www.biolegend.com/en-ie/products/totalseg-c0251-anti-human-hashtag-1-antibody-17162

TotalSeq anti-human hashtag C0252 (Clone LNH-94; 2M2) (Cat:394663) (Lot:B337758)
https://www.biolegend.com/en-ie/products/totalseq-c0252-anti-human-hashtag-2-antibody-17163

TotalSeq anti-human hashtag C0253 (Clone LNH-94; 2M2) (Cat:394665) (Lot:B342838)
https://www.biolegend.com/en-ie/products/totalseq-c0253-anti-human-hashtag-3-antibody-17164

TotalSeq anti-human hashtag C0254 (Clone LNH-94; 2M2) (Cat:394667) (Lot:B346859)
https://www.biolegend.com/en-ie/products/totalseq-c0254-anti-human-hashtag-4-antibody-17165

TotalSeq anti-human hashtag C0255 (Clone LNH-94; 2M?2) (Cat:394669) (Lot:B338441)
https://www.biolegend.com/en-ie/products/totalseq-c0255-anti-human-hashtag-5-antibody-17166

TotalSeq anti-human hashtag C0256 (Clone LNH-94; 2M2) (Cat:394671) (Lot:B342026)
https://www.biolegend.com/en-ie/products/totalseq-c0256-anti-human-hashtag-6-antibody-18373

TotalSeq anti-human hashtag C0257 (Clone LNH-94; 2M2) (Cat:394673) (Lot:B341069)
https://www.biolegend.com/en-ie/products/totalseq-c0257-anti-human-hashtag-7-antibody-18374

TotalSeq anti-human hashtag C0258 (Clone LNH-94; 2M2) (Cat:394675) (Lot:B339940)
https://www.biolegend.com/en-ie/products/totalseq-c0258-anti-human-hashtag-8-antibody-18375
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TotalSeq anti-human hashtag C0259 (Clone LNH-94; 2M2) (Cat:394677) (Lot:B334825)
https://www.biolegend.com/en-ie/products/totalseq-c0259-anti-human-hashtag-9-antibody-18376

TotalSeq anti-human hashtag C0260 (Clone LNH-94; 2M2) (Cat:394679) (Lot:B338860)
https://www.biolegend.com/en-ie/products/totalseq-c0260-anti-human-hashtag-10-antibody-18433

Anti-human CD45-FITC (Clone HI30) (Cat:304038) (Lot:B348058)
https://www.biolegend.com/de-at/sean-tuckers-tests/fitc-anti-human-cd45-antibody-707
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