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Abstract
Species interactions can influence species distributions, but mechanisms mitigating 
competition or facilitating positive interactions between ecologically similar 
species are often poorly understood. Aardwolves (Proteles cristata) and aardvarks 
(Orycteropus afer) are nocturnal, insectivorous mammals that co-occur in eastern and 
southern Africa, and knowledge of these species is largely limited to their nutritional 
biology. We used aardwolf and aardvark detections from 105 remote cameras during 
2016–2018 to assess their spatial and temporal niche overlap in the grasslands of 
Serengeti National Park, Tanzania. Using a multispecies occupancy model, we 
identified a positive interaction between occupancy probabilities for aardwolves and 
aardvarks. Slope, proportion of grassland and termite mound density did not affect 
the occupancy probabilities of either species. The probability of aardwolf, but not 
aardvark, occupancy increased with distance to permanent water sources, which 
may relate to predation risk avoidance. Diel activity overlap between aardwolves 
and aardvarks was high during wet and dry seasons, with both species being largely 
nocturnal. Aardwolves and aardvarks have an important ecological role as termite 
consumers, and aardvarks are suggested to be ecosystem engineers. Our results 
contribute to a better understanding of the spatial and temporal niche of insectivores 
like aardwolves and aardvarks, suggesting high spatial and temporal niche overlap in 
which commensalism occurs, whereby aardwolves benefit from aardvark presence 
through increased food accessibility.
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1  |  INTRODUC TION

Species distributions are determined by environmental conditions 
and interspecific interactions (Wiens, 2011). Ecological niche over-
lap between sympatric species can cause competition, resulting 
in reduced abundance or exclusion of weaker competitors (Creel 
& Creel, 1996; Miquelle et al., 2005). Competition can be avoided 
through niche partitioning (Schoener, 1974) which facilitates spe-
cies diversity (Chesson,  2000; Levine & HilleRisLambers,  2009). 
Alternatively, sympatric species with high niche overlap may in-
teract non-competitively. Two species can benefit from a symbi-
otic interaction through mutualism, while commensalism occurs 
when one species benefits and the other is unaffected (Mathis & 
Bronstein, 2020). Understanding species interactions can help con-
serve ecological communities because they influence species distri-
butions (HilleRisLambers et  al., 2012; Wisz et  al., 2013) alongside 
other factors such as anthropogenic landscape change (Broennimann 
et al., 2012).

Behavioural and morphological similarities between spe-
cies can cause niche overlap (Brown & Wilson,  1956; Dayan 
& Simberloff,  2005), with behavioural niche overlap occurring 
along the axes of space, time and diet (Schoener, 1974). Dietary 
niche overlap can be mediated through dietary differentiation, 
which can facilitate coexistence when species specialize in dif-
ferent foods (Emrich et  al., 2014; Ferretti et  al.,  2020; Kartzinel 
et  al.,  2015). Symbiotic relationships inherently require spatial 
niche overlap between species, while competing species can re-
duce the frequency and intensity of overlap through spatial par-
titioning (Rodriguez Curras et  al.,  2022; Sollmann et  al.,  2012). 
Similarly, symbiotic relationships may require temporal niche 
overlap, while competing species may display temporal niche par-
titioning through differences in foraging time, frequency or effort 
(Dröge et al., 2017; Kronfeld-Schor & Dayan, 2003).

Niche overlap can vary spatiotemporally (Wiens,  1989), for 
example, when dietary niche overlap varies with temporal (Porter 
et al., 2022) or spatial (Hasui et al., 2009) differences in food avail-
ability, or when species display decreased spatial overlap during the 
reproductive season (McConnell et  al., 2008). For example, arctic 
foxes (Vulpes lagopus) may avoid competition with red foxes (V. vul-
pes) during the reproductive season by denning at higher elevations 
(Tannerfeldt et al., 2002). Risk avoidance can also influence the ex-
tent of niche overlap between species, such as when avoidance of 
human disturbance increases spatial and temporal niche overlap be-
tween interacting species (Sévêque et al., 2020). Bobcats (Lynx rufus) 
and pumas (Puma concolor) had increased overlap in activity patterns 
in areas with more human disturbance (Lewis et al., 2015). Similarly, 
predator avoidance of sympatric species can influence niche overlap 
as refuge from predation is shared or partitioned in space and time 
(Holt, 1984; Sommers & Chesson, 2019).

Aardwolves (Proteles cristata) and aardvarks (Orycteropus afer) 
are nocturnal mammals co-occurring in eastern and southern 
Africa (Kingdon,  2015). Aardvarks have a diverse diet of termites 
and ants that varies geographically and seasonally (Taylor,  2013), 

while aardwolves depend on grass-harvesting termites of the genus 
Trinervitermes throughout their range (De Vries et al., 2011; Kruuk 
& Sands, 1972). Different degrees of dietary specialism may limit 
spatial niche overlap of aardwolves and aardvarks, as Trinervitermes 
occur only in open habitats such as grasslands (Anderson,  2013; 
Kruuk & Sands, 1972), while aardvark habitat use is more diverse 
(Kingdon,  2015; Melton,  1976). Termite activity may be higher on 
slopes, attracting termite predators, so spatial overlap of aardwolves 
and aardvarks may increase with slope (Freymann et  al.,  2010; 
Sarcinelli et al., 2009). Areas with high large carnivore activity could 
increase spatial overlap between aardwolves and aardvarks in other 
areas as they have common predators (Anderson, 2013; Mills, 1984; 
Taylor, 2013), and aardvarks might avoid areas near water to avoid 
large carnivores (Epps et  al., 2021). A commensal relationship has 
been suggested whereby aardwolves increase spatial overlap with 
aardvarks during seasons of lower food availability, to benefit from 
increased termite availability at locations where aardvarks excavate 
termite mounds (Taylor & Skinner, 2000). In the Serengeti grasslands, 
there is lower food availability for aardwolves during the wet season 
(Kruuk & Sands, 1972), which may coincide with a switch in primary 
prey of aardvarks from ants to termites (Melton, 1976). Additionally, 
seasonal variability in termite nocturnality may increase diurnal 
activity of aardwolves (Richardson,  1987) and aardvarks (Weyer 
et al., 2020), and there are no reported indications of temporal niche 
partitioning related to their diel activity.

We used remote camera data to quantify spatial overlap (occu-
pancy) and temporal overlap (diel activity) of aardvarks and aard-
wolves in southeastern Serengeti National Park, Tanzania. We 
predicted a positive correlation between the occupancy probabili-
ties of the two species. We predicted that occupancy for both spe-
cies would be positively associated with termite mound density and 
that for aardwolves only, this effect would be stronger in the wet 
season. Furthermore, we predicted occupancy probability for aard-
varks and aardwolves would be positively associated with increas-
ing slope and distance to water, and with proportional grass cover 
(as a proxy for grassland habitat) for aardwolves only. We predicted 
a positive correlation between the occupancy probabilities of the 
two species and similar diel activity patterns whereby both species 
would display strong nocturnality.

2  |  METHODOLOGY

2.1  |  Study area

We conducted the study in a 1533 km2 area of southeastern 
Serengeti National Park, Tanzania (Figure  1), which consisted 
primarily of grassland (89%), shrubland (7%) and woodland (2%) 
(Buchorn et al., 2020). Elevations are 1484–1859 m above sea level, 
with higher elevations in the eastern half of the study area (NASA 
et al., 2018). The climate is warm with stable temperatures averaging 
around 21°C (Metzger et al., 2015), and most precipitation occurs 
during November–May (Norton-Griffiths et  al.,  1975). Serengeti 
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National Park has several large carnivores that prey on aardwolves 
and aardvarks, including spotted hyena (Crocuta crocuta), lion 
(Panthera leo), leopard (P. pardus) and cheetah (Acinonyx jubatus) 
(Anderson, 2013; Craft et al., 2015; Taylor, 2013).

2.2  |  Data collection and processing

We collected data from August 2016 to June 2018 using 105 remote 
cameras (Stealth Cam, model N45NG; Irving, Texas, USA). Nearest 
distance between cameras was 3000 m for 63 cameras and 4225 m 
for 43 cameras (Figure  1). We attached cameras to metal stakes 
50-cm above ground and cleared vegetation in front of cameras 
every 6 weeks, with cameras programmed to record 3-image bursts 
at each detection with a 30-s delay. Because of staggered camera 
installations, we extracted data for a period of 70 consecutive days 
from each camera (hereafter a ‘camera-period’) from 26 August 
2016 to 1 January 2018, and a second 70-day camera-period for 77 
cameras from 22 January 2017 to 30 June 2018. Overlap between 
the two periods of data collection occurred due to staggered camera 
installation. Most (95%) data were obtained from September 2016 
to February 2018. Each 70-day camera-period was associated with 
a season (wet season, November–May; dry season, June–October). 
For 77 camera-periods that overlapped two seasons we split the 

data by season into two separate, shorter camera-periods each 
entirely with one season.

2.3  |  Covariates

We collected environmental covariates in a 50-m radius around 
each camera. We used proportional grass cover from the 2017 
Copernicus Global Land Cover dataset (range = 0–100, 100-m 
resolution; Buchorn et  al.,  2020) as a proxy for habitat type, with 
lower proportional grass cover implying higher proportional 
shrubland or woodland. We derived the slope from the ASTER Global 
Digital Elevation Model v3 (30-m resolution; NASA et al., 2018). We 
derived the distance from each camera to the nearest water feature 
using the Serengeti GIS and Data Centre (30-m resolution; Maliti 
et al., 2008). We used only year-round water sources for consistency 
between seasons (Schooler et al., 2022). We counted active termite 
mounds based on termite presence and signs of recent activity in 
a 50-m radius around each camera. We proportionally averaged 
covariate values where multiple values occurred within a 50-m 
radius. We scaled covariates before analysis by subtracting the 
mean from each value and dividing this by the standard deviation 
to facilitate comparison of parameter estimates. We used Pearson's 
correlations to test for multicollinearity (|r| > 0.7), retaining the 

F I G U R E  1 Camera locations (blue 
circles) to assess occurrences of aardvark 
(Orycteropus after) and aardwolf (Proteles 
cristata), Serengeti National Park (blue 
outline), Tanzania, 8 September 2016–30 
June 2018. Map was created using the 
2022 World Imagery Basemap in ESRI 
ArcGIS Pro Version 3.0.
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covariate from pairwise correlations considered most ecologically 
relevant (Dormann et al., 2013).

2.4  |  Occupancy models

We used single-season multispecies occupancy models to estimate 
the effect of environmental covariates on the occupancy of each 
species (MacKenzie et  al., 2002) and to determine interactions in 
occupancy probability between the two species (Rota et al., 2016). 
To allow for covariate effects that vary between wet and dry 
seasons, we treated camera-periods (defined above; data from a 
given camera during a given time period of ≤70 consecutive days, 
separated by wet and dry season) as separate sites for the purposes 
of the occupancy model (a ‘stacking’ approach; Kéry & Royle, 2020). 
Preliminary analysis showed a high proportion of non-detections 
led to numerical estimation and optimization problems (Steenweg 
et  al.,  2016; Tobler et  al.,  2015), so we pooled data points into 
5-day detection periods whereby every 5 days of data collection 
were grouped into one sampling occasion (i.e. ≤ 70 daily sampling 
occasions became ≤14 5-day sampling occasions).

Our occupancy models assumed occupancy was spatially and 
temporally constant for a site at a site throughout a ≤70-day sam-
pling period (Rota et al., 2009). We considered this reasonable, as 
aardwolves and aardvarks occupy small territories (1–4 km2) relative 
to the spacing between cameras (3–4 km) in our study area, with lit-
tle to no territory overlap between conspecifics (Anderson, 2013; 
Bothma & Walker,  1999; Taylor,  2013; Van Aarde et  al.,  1992). 
Furthermore, aardwolves and aardvarks are considered long-
lived species, based on lifespans in captivity exceeding 20 years 
(Anderson, 2013; Taylor, 2013).

We defined 10 candidate occupancy models based on our pre-
dictions which were implemented in R (v4.2.2, R Core team, 2022) 
using the unmarked package (Fiske & Chandler,  2011; Kellner 
et  al.,  2023). Models included covariates potentially affecting sin-
gle-species occupancy probabilities or species interaction: distance 
to water, proportional grass cover, termite mound density, slope and 
interactions with seasonality (Table 1). We included the number of 
trees present at camera sites as a detection covariate in all models. 
We included no other detection covariates because we cleared veg-
etation around cameras every 6 weeks, oriented cameras to avoid 
obstructed views and did not orient cameras toward roads, so we 
expected no other influences on detectability. A covariate was con-
sidered to have a significant effect if the 95% confidence interval 
did not overlap zero. We ranked models using Akaike's Information 
Criterion (AIC; Arnold, 2010) and selected a final model from candi-
date models based on the lowest AIC, or the competing model (ΔAIC 
<2) with fewer terms (Burnham et al., 2011). We also tested the out-
of-sample predictive performance of the candidate models with k-
fold cross-validation using an approach similar to Broms et al. (2016). 
For each model, we divided the data into k = 10 folds, then re-fit the 
candidate models 10 times. For each re-fit of k, one fold was held out 
as testing data and the remaining nine were used as training data. 

We then calculated the total log-likelihood llk of the held-out test-
ing data in fold k. Finally, we calculated the total model deviance as 
− 2∗

∑10

k=1
llk. We assessed goodness-of-fit for our top model with a 

parametric bootstrap (MacKenzie & Bailey, 2004). Using the parboot 
function in the unmarked package, we simulated 1000 datasets from 
the model and calculated the sum of squared errors (SSE) for each 
dataset. If the SSE from the real dataset fell within the distribution of 
SSEs from simulated datasets, we concluded the model fit the data 
reasonably well.

2.5  |  Diel activity

We assessed temporal niche partitioning in aardwolves and 
aardvarks by estimating overlap in diel activity using the package 
overlap (v0.3.433, Meredith & Ridout,  2018) in R. We created 
seasonal models to assess differences in diel activity and overlap 
between aardwolves and aardvarks, using a coefficient of overlap 
based on probability density functions. We filtered observations to 
a maximum of one hourly observation per species for each camera to 
avoid data clustering (Clauss et al., 2021). We used the estimator Δ4, 
appropriate when the least-detected species has >75 observations 
and calculated 95% confidence intervals of overlap estimates by 
bootstrapping 1000 generated samples (Meredith & Ridout, 2018). 
We concluded differences in overlap estimates of diel activity 
between aardwolves and aardvarks when confidence intervals did 
not overlap.

3  |  RESULTS

Using 105 camera locations totaling 12,505 camera days. 
Aardwolves and aardvarks were detected on 264 and 121 days, 
respectively. Across the study duration, aardwolves were detected 
at 71 camera locations (naïve occupancy = 0.68), aardvarks at 35 
locations (naïve occupancy = 0.33) and 25 locations had at least one 
detection of both species. Of a maximum of 14 sampling occasions 
per camera-period, the range of sampling occasions across sites 
was 10–14 (median = 10). Proportional grass cover across locations 
was 44–80% (median = 63%), distance to water was 25–13,108 m 
(median = 1842 m), slope was 1.2–27.5% (median = 4.2%) and the 
number of active termite mounds was 0–12 (median = 1); 65 of 105 
camera locations had at least one mound.

3.1  |  Occupancy models

No covariates were omitted from the analysis due to multicollinear-
ity (all |r| ≤ 0.55). Occupancy for aardwolves was positively related 
to distance to water (CI = 0.222–0.984; Figure 2), but we found no 
effect of slope, proportional grass cover or termite mound density 
on aardwolf occupancy probability (Table 2). For aardvarks, no co-
variates had a significant effect on occupancy probability (Table 1). 
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There were no differences in covariate relationships between sea-
sons for either species. Our top-ranked model indicated a positive 
interaction between aardwolf and aardvark occupancy probabilities 

(CI = 0.227–1.936; Table  2), suggesting a positive relationship be-
tween aardwolf occupancy probability and aardvark presence, and 
between aardvark occupancy probability and aardwolf presence 

TA B L E  1 Multispecies occupancy models for aardwolf (Proteles cristata) and aardvark (Orycteropus after), Serengeti National Park, 
Tanzania, 26 August 2016–30 June 2018.

Model K AIC ΔAIC Deviance

Predator avoidance

Single species: Water 9 2153.54 0 2159.53

Species interaction: No covariates

Species detection: Trees

Predator avoidance (inc. species interaction)

Single species: Water 10 2155.30 1.76 2180.89

Species interaction: Water

Species detection: Trees

Habitat type

Single species: Grass 9 2158.80 5.26 2172.29

Species interaction: No covariates

Species detection: Trees

Habitat type (inc. species interaction)

Single species: Grass 10 2160.66 7.13 2163.69

Species interaction: Grass species detection: Trees

Termite availability

Single species: Termite + Slope 11 2165.96 12.43 2173.32

Species interaction: No covariates

Species detection: Trees

Global

Single species: Water + Slope + Grass + Termite + (Season: 
Termite) + (Season: Slope)

21 2167.50 13.97 2179.02

Species interaction: No covariates

Species detection: Trees

Null

Single species: No covariates 5 2167.52 13.99 2176.34

Species interaction: No covariates

Species detection: No covariates

Termite availability (inc. species interaction)

Single species: Termite + Slope 13 2168.95 15.42 2169.19

Species interaction: Termite + Slope

Species detection: Trees

Seasonal termite availability

Single species: (Season + Termite) + (Season + Slope) 15 2173.23 19.69 2187.49

Species interaction: No covariates

Species detection: Trees

Seasonal termite availability (inc. species interaction)

Single species: (Season + Termite) + (Season + Slope) 16 2174.91 21.37 2221.92

Species interaction: Season

Species detection: Trees

Note: Models included effects of distance to water (Water), proportional grass cover (Grass), termite mound density (Termite), slope (Slope) and 
interactions with season (Season), on first- and second-order occupancy. Number of trees (Trees) present was used as a detection covariate.
Abbreviations: AIC, Akaike's Information Criterion; Deviance, total model deviance based on k-fold cross-validation; K, number of parameters; ΔAIC, 
AIC difference from the top model.
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(Figure 3). We found no effect of covariates on the interaction of 
aardwolf and aardvark occupancy probabilities. The number of trees 
at camera sites negatively influenced the detection of aardwolves 

only (CI = −0.868– −0.075, Table 2), though this did not notably af-
fect relationships between our covariates and species occupancy or 
the interaction between species occupancies. Our top model fits the 

F I G U R E  2 Predicted occupancy 
probabilities for aardvark (Orycteropus 
afer) and aardwolf (Proteles cristata) in 
relation to distance to permanent water, 
Serengeti National Park, Tanzania, 26 
August 2016–30 June 2018. Estimates 
and 95% confidence intervals were 
derived from the top-ranked multispecies 
occupancy model.

TA B L E  2 Parameter estimates, standard errors and 95% 
confidence intervals (CI) for the top-ranked multispecies occupancy 
model for aardwolf (Proteles cristata) and aardvark (Orycteropus 
after), Serengeti National Park, Tanzania, 26 August 2016–30 June 
2018.

Parameter Estimate SE CI

Aardwolf occupancy

Intercept −0.273 0.195 −0.698 to 0.052

Distance to water 0.563 0.192 0.222 to 0.984

Aardvark occupancy

Intercept −1.809 0.334 −2.477 to −1.203

Distance to water −0.168 0.180 −0.506 to 0.197

Aardwolf-Aardvark occupancy interaction

Intercept 1.074 0.445 0.227 to 1.936

Aardwolf detection

Intercept −1.640 0.098 −1.831 to −1.448

Number of trees −0.471 0.202 −0.868 to −0.075

Aardvark detection

Intercept −1.718 0.146 −2.004 to 1.433

Number of trees −0.394 0.273 −0.929 to 0.142

Note: The top-ranked model included distance to water on first-order 
occupancy and a second-order species interaction term. The intercept 
for the interaction term had a positive, non-overlapping confidence 
interval with zero (0.227–1.936), indicating a significant relationship 
between aardwolf and aardvark occupancy.

F I G U R E  3 Occupancy probabilities for aardwolf (Proteles 
cristata) based on aardvark (Orycteropus afer) presence (left panel), 
and occupancy probabilities for aardvark based on aardwolf 
presence (right panel), Serengeti National Park, Tanzania, 26 August 
2016–30 June 2018. Estimates and 95% confidence intervals were 
derived from the top-ranked multispecies occupancy model.
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data reasonably well based on the parametric bootstrap. Deviance 
estimates based on k-fold cross-validation corresponded closely 
with AIC scores (Table 1).

3.2  |  Diel activity

Overlap in diel activity between aardwolves and aardvarks was high 
(Δ4 = 0.85, 95% CI = 0.77–0.93), and similar between seasons (wet: 
Δ4 = 0.87, 95%, CI = 0.80–0.93; dry: Δ4 = 0.83, 95% CI = 0.74–0.93) 
(Figure 4). Large overlaps in confidence intervals between seasonal 
models suggested year-round consistency in diel activity overlap 
of aardwolves and aardvarks. The greatest overlap in diel activity 
occurred at night (18:00–6:00), with aardvark activity more frequent 
than aardwolf activity during 22:00–3:00. There appeared to be 
limited increases in diurnal activity during the dry season for both 
species, whereby aardwolves displayed increased morning activity 
(6:00–12:00), and aardvarks displayed increased afternoon activity 
(12:00–18:00).

4  |  DISCUSSION

We quantified the spatial and temporal overlap of aardvarks and 
aardwolves in southeastern Serengeti National Park, Tanzania. Results 
from the multispecies occupancy model supported our prediction 
of a positive relationship between the occupancy probabilities 
of aardwolves and aardvarks. Contrary to our predictions, we did 
not find evidence of spatial niche segregation through differential 
habitat use, or spatial niche overlap through similar responses to 
prey availability or predator avoidance. We found instead a positive 
relationship between occupancy probability and distance to water, 
a proxy for predator avoidance, for aardwolves only. We found no 
relationships between the occupancy probability of aardvarks and 
any of our covariates. Our prediction of high, year-round overlap in 
the diel activity of aardwolves and aardvarks was supported.

Previous observations of aardwolves using burrows dug by 
aardvarks (Anderson,  2013) and of aardwolves feeding alongside 
aardvarks when the latter excavates termite mounds (Taylor & 
Skinner, 2000) corroborate our evidence for spatial niche overlap be-
tween these species. Aardwolf occurrence is restricted to open hab-
itats because of their dependence on grass-harvesting Trinervitermes 
termites (Anderson, 2013; Kruuk & Sands, 1972), while aardvarks 
occur in more diverse habitats, presumably due to their wider dietary 
niche including wood-harvesting termites such as Macrotermes and 
Odontotermes (Taylor & Skinner, 2004). In the largely homogenous 
Serengeti grasslands, these genera of wood-harvesting termites 
have adapted to harvest grass (Freymann et al., 2010), potentially in-
creasing dietary niche overlap and by extension, spatial niche over-
lap between aardwolves and aardvarks.

We found high, year-round temporal niche overlap in the diel ac-
tivity of aardwolves and aardvarks, likely due to the nocturnality of 
their prey and thermoregulatory advantages of being active at night 

(Anderson, 2004; Weyer et al., 2020). Aardwolves and aardvarks in 
South Africa increased diurnal activity during winter when nocturnal 
prey is less active (Richardson, 1987; Taylor & Skinner, 2003), and 
during droughts (Rey et al., 2017; Weyer et al., 2020). Our analysis 
suggests limited increases in diurnal activity for both species during 
the dry season, potentially related to seasonal differences in prey 
activity (Materu et al., 2013). Year-round stable temperatures in the 
Serengeti ecosystem (Metzger et al., 2015) may facilitate consistent 
foraging opportunities for aardwolves and aardvarks, in contrast 
to South Africa where aardwolves and aardvarks strongly increase 
diurnal activity during winter when termite activity was low (Rey 
et al., 2017; Richardson, 1987; Taylor & Skinner, 2003).

Overall, we found evidence for spatial and temporal niche 
overlap for aardwolves and aardvarks, congruent with research 
suggesting co-occurrence of mammalian insectivores with similar 
diets is often driven by spatial and temporal activity patterns (Davis 
et al., 2018). Co-occurring species that rely on the same, limited food 
sources may compete for access to these resources in space and time 
(Hardin, 1960), but aardwolves and aardvarks are myrmecophagous 
and may benefit from high food availability (Taylor & Skinner, 2004) 
reducing the potential for competition. High prey abundance could 
explain the prevalence of inter-and intraspecific associative feeding, 
rather than competition for food, between myrmecophagous birds 
and mammals (e.g. Stenkewitz & Kamler, 2008; Taylor, 2013; Taylor 
& Skinner, 2000). Alternatively, subtle differences between species 
may explain coexistence without direct competition (Wiens, 1977). 
Aardwolves are morphologically adapted to consume termites 
from the surface (Anderson, 2013; Williams et al., 1997), whereas 
aardvarks have sharp claws to excavate mounds and an extensible 
tongue to extract prey from mound tunnels (Taylor et  al.,  2002). 
Aardwolves and aardvarks may avoid competition through fine-
scale spatial niche partitioning whereby aardvarks specialize on prey 
within mounds, and aardwolves on prey surrounding mounds. This 
idea is supported by reports of commensalism whereby aardwolves 
consume termites exiting mounds when excavated by aardvarks 
(Taylor & Skinner, 2003).

We found a positive relationship between aardwolf occupancy 
probabilities and distance from water, which could relate to spatial 
avoidance of large carnivores. Aardwolves and aardvarks largely 
do not rely on surface water and obtain water through prey con-
sumption (Anderson, 2004; Taylor & Skinner, 2004), so it is unlikely 
their response to water source proximity is linked to physiological 
needs. Many herbivores depend on surface water, thus large carni-
vores preying on herbivores often hunt in close proximity to water 
(Constant et al., 2015; De Boer et al., 2010; Tagwireyi et al., 2020). 
Aardvarks in South Africa avoided areas close to water, potentially 
to avoid predation (Epps et  al., 2021). Little is known about aard-
wolves and aardvarks as prey species, but they have few defences 
against large carnivores (Anderson, 2013; Taylor, 2013). Aardvarks 
could benefit from the many burrows they excavate that provide 
refuge from predators (Melton,  1976; Taylor & Skinner,  2003) 
while aardwolves may have only one or a few dens to use as refuge 
(Richardson,  1985). Aardwolves therefore may have fewer escape 
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options from predators (Bothma & Walker, 1999), resulting in stron-
ger spatial avoidance of large carnivores. However, further research 
is needed to definitively link proximity to water with predation risk 
for these species.

We note several limitations to our study. The model covariates 
we selected were based on studies from South Africa and Uganda, 
but the extent to which the ecological niche of aardwolves and 
aardvarks differs across their distribution is unknown. Our study 
area is characterized by limited variability in seasonal temperature 
differences, slope and proportional grass cover, which may be why 
no relation between these covariates and occupancy probabilities 
of aardwolves or aardvarks was found. Additionally, it is unknown 
whether termite mound density and slope on a 50-m radius are 
accurate year-round estimators of prey availability, particularly for 
aardvarks which elsewhere rely primarily on ants (Taylor et al., 2002; 
Willis et al., 1992). Similarly, our distance to water layer was imper-
fect due to consistent and complete datasets on ephemeral water 
sources being unavailable (Rich et al., 2017). Finally, our occupancy 
model assumed an individual present at a site occupied this site 
throughout each 70-day period, which may not be the case due to 
mortality or individuals altering their space use, though we consider 
this unlikely due to the territoriality and longevity of aardwolves and 
aardvarks (Anderson, 2013; Taylor, 2013).

Aardwolves and aardvarks have an ecological role as termite 
consumers (Anderson,  2013), and aardvarks are considered eco-
system engineers through the excavation of burrows which bene-
fit many vertebrate species (Whittington-Jones et al., 2011). These 
burrows provide sleeping shelter for various small and medium-sized 
mammals, and African wild dogs (Lycaon pictus) might use aardvark 
burrows to shelter young (Taylor, 2013). Aardvark burrows also con-
tribute to local soil and vegetation diversity (Louw et al., 2017). While 
aardwolves and aardvarks are currently classified by the IUCN as spe-
cies of least concern (Green, 2015; Taylor & Lehmann, 2015), a bet-
ter understanding of their ecological niches can help identify current 
and future conservation issues including habitat loss (Green, 2015) 

and climate change (Rey et al., 2017). Finally, species interactions are 
primarily studied in the form of competitive interactions, but little is 
known regarding symbiotic relationships, so these results contribute 
to a better understanding of this understudied species interaction.
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