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Abstract
Motivation: In recent years, high-throughput sequencing technologies have made available the genome sequences of a huge variety of organ-
isms. However, the functional annotation of the encoded proteins often still relies on low-throughput and costly experimental studies.
Bioinformatics approaches offer a promising alternative to accelerate this process. In this work, we focus on the binding of zinc(II) ions, which is
needed for 5%–10% of any organism’s proteins to achieve their physiologically relevant form.

Results: To implement a predictor of zinc(II)-binding sites in the 3D structures of proteins, we used a neural network, followed by a filter of the
network output against the local structure of all known sites. The latter was implemented as a function comparing the distance matrices of
the Ca and Cb atoms of the sites. We called the resulting tool Master of Metals (MOM). The structural models for the entire proteome of an or-
ganism generated by AlphaFold can be used as input to our tool in order to achieve annotation at the whole organism level within a few hours.
To demonstrate this, we applied MOM to the yeast proteome, obtaining a precision of about 76%, based on data for homologous proteins.

Availability and implementation: Master of Metals has been implemented in Python and is available at https://github.com/cerm-cirmmp/
Master-of-metals.
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1 Introduction

Metalloproteins (MPs) are a diverse class of proteins that con-
tain metal ions as integral components of their structures.
They are found in all forms of life, from bacteria to humans,
and are involved in numerous physiological processes, includ-
ing catalysis, electron transfer, oxygen transport, and gene
regulation. Metal ions can have a variety of roles in MPs.
They can act as structural elements, providing stability to the
protein, or they can participate in catalysis, activating sub-
strates or stabilizing reaction intermediates. Metal ions can
also act as electron carriers, transferring electrons between
redox-active sites, or they can regulate protein activity and
transduce cellular signals (Mertz 1998, Degtyarenko 2000,
Nordberg and Nordberg 2016). MPs are also important tar-
gets for drug development. Many drugs target MPs by
exploiting their metal-binding sites (MBSs) to block their ac-
tivity (Chen et al. 2019). During bacterial infections, the host
can deploy a protective mechanism, called “nutritional
immunity,” which inhibits the growth of pathogens by
restricting the availability of metal ions (Hennigar and
McClung 2016).

The investigation of MPs at the whole organism or whole
cell level is called metalloproteomics (Shi and Chance 2011,
Barnett et al. 2012). Owing to the difficulties of experimental
metalloproteomics, bioinformatics has rapidly emerged as an
alternative approach to mine metalloproteomes (Andreini
et al. 2009, Gladyshev and Zhang 2013, Zhang and Zheng
2020). In this context, the 3D structure-based prediction of
the occurrence of metal sites, which makes use of the knowl-
edge about the relative location in space of the amino acids
possibly serving as donor atoms for metal coordination, is an
area of application that has attracted a lot of attention
(Andreini and Rosato 2022). The success of AlphaFold
(Senior et al. 2020) and AlphaFold2 (Jumper et al. 2021a, b)
in the CASP programs has given these kinds of approaches a
considerable boost, thanks to the extensive availability of via-
ble 3D structural models for proteins not yet described experi-
mentally (Varadi et al. 2022).

There are several tools available to figure out a protein’s
metal content [e.g. ZincFinder (Passerini et al. 2007),
ZincExplorer (Chen et al. 2013), Zincbindpredict (Ireland
and Martin 2021)], the residues that bind a metal [e.g.
IonCom (Hu et al. 2016), MIB (Lin et al. 2016)], and the loca-
tion of the metal [e.g. AlphaFill (Hekkelman et al. 2023),
BioMetAll (Sánchez-Aparicio et al. 2021)]. These predictors
use sequence and/or structural information as their input.
Pattern recognition is used by sequence-based predictors to
pinpoint the amino acids that could bind a metal. In
structure-based approaches, the position of metals is inferred
via distance characteristics (BioMetAll) or homology to
known structures (MIB, AlphaFill). Some sequence-based
approaches use machine learning (ML) techniques. Recently,
a tool (Metal3D) exploiting 3D convolutional neural net-
works (NNs), a deep-learning methodology, became available
to predict the location of zinc(II) ions in protein structures
(Dürr et al. 2023).

In this work, we describe an approach for the prediction of
zinc(II) MPs based on 3D structural models generated by
AlphaFold that leverages a collection of metal site templates,
i.e. a pre-arranged spatial distributions of prospective metal
ligands. In our methodology, triads or quadruplets of amino
acids with appropriate relative spatial arrangements are iden-
tified by a ML algorithm and then ranked based on their

structural similarity to a library of templates extracted from
the MetalPDB database (Andreini et al. 2013, Putignano et al.
2018). Our tool, called Master of Metals (MoM), can process
an entire proteome in a few tens of minutes, with satisfactory
accuracy. MoM is available at https://github.com/cerm-
cirmmp/Master-of-metals.

2 Materials and methods

2.1 Representation of the metal-binding sites

Selecting informative features is the first step in the design of a
successful ML/statistical model. In our context, several differ-
ent features describing the chemical physical properties of
MBSs could be used (Koohi-Moghadam et al. 2019, Feehan
et al. 2021, Ireland and Martin 2021). In this work, we fo-
cused simply on the spatial configuration of the metal ligands.
Thus, our input consisted of the Cartesian coordinates of the
Ca and Cb atoms, together with the amino acidic type. We
decided not to use the coordinates of further atoms in the side
chains (SCs), because we previously observed that metalation
of an apo-MBS is likely to induce a significant rearrangement
of the SCs, whereas the backbone atoms are largely unaf-
fected (Bazayeva et al. 2023). The backbone atoms should
thus be at a position that is closer to the holo-structure than
the SC atoms in experimental or predicted apo-structures. A
five-dimensional one-hot vector was used to specify the amino
acidic type; the first 4 positions indicate if each residue is one
among Cys/His/Asp/Glu [CHED group (Babor et al. 2008)],
whereas the fifth was used for all other aminoacids. In this
way, a L-length structure (excluding Gly) is represented by a
2L � 3 matrix containing the x, y, z coordinates of the Ca
and Cb atoms of each residue and a L � 5 matrix indicating
the type of amino acid at each position.

2.2 Construction of the dataset of positives

(holo sites and apo sites)

All zinc(II) sites annotated as “physiological,” and therefore
having a functional role in the protein, were selected from
MetalPDB (Andreini et al. 2013, Putignano et al. 2018). We
retained only those having a single zinc(II) ion (mononuclear
sites) with three or more protein residues acting as metal
ligands. The MBSs were then grouped on the basis of their
metal-binding pattern (i.e. the type and order of amino acids
that bind directly to the metal ion). For example, all sites that
bind the zinc(II) ion with a His followed in sequence by two
Glu residues are grouped together as “His-Glu-Glu.”
MetalPDB computed these patterns only within individual
chains, thus making the current implementation of MoM not
suitable to detect inter-chain sites. To avoid analyzing similar
MBSs several times, we subsampled sites with the same pat-
tern if there were more than 30 of them. For this, we com-
puted the difference between all possible pairs of MBSs
having a given pattern. Such difference is mathematically de-
fined as the mean absolute value of the difference between the
adjacency matrices of the two MBSs, where the adjacency ma-
trix of an MBS is the matrix containing the distances among
all the Ca and Cb atoms of the MBS. For all MBSs having a
difference smaller than a threshold T (set at 0.1 Å) only one
site was retained. Note that the specific identity of the
retained MBS is not relevant as MoM works only with the ad-
jacency matrices. At the end of the subsampling, all remaining
MBSs sharing the same pattern have a distance from each
other greater then T. To remove protein redundancy due to
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homology, we clustered all the proteins with at least 30%
identity in any given pattern-based group by running the
CD-HIT (Huang et al. 2010) program. Five sites were ran-
domly selected for each cluster and included in the dataset of
holo (i.e. metal loaded) MBSs. Sites belonging to the same
cluster were never separated into different datasets for algo-
rithm training, i.e. were all included in the training dataset or
all included in the testing dataset.

MetalPDB contains information also on apo (i.e. devoid of
their physiological metal cofactor) MP structures (Putignano
et al. 2018). Thus, we retrieved all apo-sites linked to mono-
nuclear zinc(II) MBSs. We retained only one apo-site for each
protein.

2.3 Construction of the dataset of negatives

To construct the dataset of negatives, i.e. non-zinc(II)-binding
structures, we started from all sequences in the entire PDB
and grouped them with CD-HIT (Huang et al. 2010) into
clusters of sequences with at least 30% identity. All clusters
containing one or more physiological metal-binding struc-
tures were then removed from the dataset. Finally, one struc-
ture from each remaining cluster was randomly selected.

2.4 MBS recognition pipeline/workflow

Our tool (MoM) takes as input a pdb or mmCIF file. For each
CHED residue, MoM creates a group of CHED structural
neighbors, whose Ca distances among each other are within a
given threshold. In this way, we extract a list of potential sites
(PSs) from the protein structure. The threshold values were
defined from a previous analysis (Bazayeva et al. 2023) and
taken equal to 13 Å. This procedure ensures that the residues
in each PS are at reasonable distances, but we still do not
know anything about their spatial configuration. We trained
a graph neural network (GNN) to estimate the probability
that a PS is an MBS (see next section). The PSs that have a
probability value greater than .6 are named highly probable
potential sites (HPPSs).

In practice, only some of the HPPSs are indeed real MBSs.
To address this point, MoM compares each HPPS with all the
MBSs of our training set that have the same metal-binding
pattern (i.e. the type and order of amino acids that bind to the
metal ion). For this comparison, all sites are represented as
the adjacency matrices of their Ca and Cb atoms. For each
HPPS, MoM identifies the MBS having the smallest difference
to it (d_min). If d_min is lower than a given threshold (e.g.
0.35 Å), we propose that the HPPS is a real MBS.
Fundamentally, this is grounded on the fact that there exists
an experimentally validated MBS that has a shape, as defined
by the positions of the Ca and Cb atoms, very similar to the
predicted HPPS.

2.5 Architecture, training, and evaluation of

performance of the GNN

MBSs can be represented suitably as graphs, where the Ca
and Cb atoms are the nodes, and the edges represent the inter-
action with neighboring atoms. GNNs are ML models engi-
neered to process data structured as graphs. The nodes of the
graph are associated to vectors that represent their state, i.e.
their feature values. The topology of the graph, that is the set
of relationships between all its nodes, is represented by the ad-
jacency matrix A, whose (i, j)th element is 1 if node i and
node j are connected by an edge and 0 otherwise. In our case,
values in A are scaled as exp(�d_ij/alpha) where d_ij is the

Euclidean distance between node j and node i and alpha is
experimentally optimized.

In this work, we used a graph convolutional network
(GCN). GCNs take as input the adjacency matrix and the fea-
ture vectors of the nodes. A GCN is composed by multiple
stacked layers. Each layer generates a new feature vector
(called embedding) for each node, processing its feature vector
and those of the nodes to which it is connected. Lastly, the
embeddings of all the nodes are averaged and the resulting
vector is fed to a fully connected layer with two outputs, act-
ing as the classifier.

To train the GCN, the dataset of holo sites was randomly
split into validation (20%) and training (80%) groups. All the
sites belonging to the same CD-HIT cluster (see Section 2.2)
were assigned to the same group, thus ensuring that related
MBSs are not found in different groups. The parameters of
the model were optimized to maximize the performance of the
training set (training process) using cross-validation and then
tested on the validation set.

2.6 Evaluation of performance

In the holo and apo datasets, each item is a single MBS (target
site); this means that we have multiple items for proteins har-
boring multiple MBSs. The negative dataset is composed of
whole protein structures. We used the holo training set to op-
timize our GCN, which was then tested on the holo validation
set, as well as on the apo and negative datasets. In our work-
flow, for the holo and apo datasets, a prediction is considered
a success (true positive) if the site corresponds (at least two
out of three metal ligands) to an MBS. Conversely, all experi-
mental MBSs for which there was no prediction with a d_min
value below the selected threshold are false negatives (FN).
All predictions with a d_min value below the threshold for
the structures in the negative dataset are false positives (FP).
For our analyses, we used different performance measures,
including:

Recall: TP/(TP þ FN), also called sensitivity, true positive
rate (TPR)
Precision: TP/(TP þ FP), also called positive predictive
value (PPV)
True negative rate (TNR): TN/(TN þ FP)
False positive rate (FPR): FP/(TP þ FP)

The same parameters were used to evaluate the results for the
prediction of the zinc(II) proteome of yeast.

3 Results

The MBS is a substructure around the metal ion(s) that repre-
sents the macromolecular environment that the metal is sens-
ing and can be automatically extracted from the 3D structures
stored in the Protein Data Bank (PDB) (wwPDB Consortium
2019). This substructure ought to match the bare minimum
environment that determines the functionality of the metal, or
the “minimal functional site” (Andreini et al. 2011). In this
work, we used the definition of MBS implemented in
MetalPDB (Andreini et al. 2013, Putignano et al. 2018); alter-
native definitions tend to yield similar results (Tran and
KreR _zel 2021). We implemented a ML approach to predict
MBSs in the 3D structures of proteins, which we called MoM.

The PDB contains two different types of structures of MPs,
depending on whether the deposited structure contains the
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physiological metal ion(s). In holo structures, the metal is pre-
sent and thus the SCs of the metal-binding protein residues
(the metal ligands) are organized such that their donor atoms
have a spatial configuration matching the coordination geom-
etry preferences of the metal (Andreini et al. 2012, Zheng
et al. 2017). In apo-structures instead, the conformation of
the SCs of the metal ligands may differ with respect to their
counterparts in holo structures due to the absence of the metal
ion. In particular, the donor atoms may be located at incor-
rect distances from one another and with the wrong geometry
for metal binding (Bazayeva et al. 2023). We used only the
holo structures to train MoM, whereas both apo and holo
structures were employed to evaluate the tool performance.

3.1 Experimental datasets

To generate the holo structure dataset, we selected from
MetalPDB (Andreini et al. 2013, Putignano et al. 2018) all
the physiologically relevant zinc(II) MBSs (Laveglia et al.
2022) and retained only those having a single metal ion
(mononuclear sites) with three or more donor residues. We
first grouped the sites by their metal-binding patterns. The
distribution of these patterns is very unbalanced, with the 12
most frequent patterns, covering 70% of all MBSs
(Supplementary Table S1). We retained only the patterns ob-
served in at least 10 sites.

For each pattern present in more than 30 MBSs, we sub-
sampled all the sites to obtain a smaller dataset, more uni-
formly distributed in the MBS space. Subsequently, for each
pattern, we clustered all the MP structures based on their se-
quence similarity. The sites belonging to the same cluster were
all at once selected exclusively for inclusion in the training or
test datasets, thus ensuring that the two datasets did not con-
tain similar proteins. MetalPDB contains information also on
apo-structures (Putignano et al. 2018), allowing us to retrieve
all apo-sites linked to mononuclear zinc(II) MBSs. We kept
only one apo-site for each MBS. In addition, to establish a
negative dataset for validation, we chose an ensemble of pro-
teins for which no metal containing structure was present in
the PDB. In total, our datasets contained 3083 holo sites, 231
apo, sites and 500 negative proteins.

3.2 Performance of Master of Metals

For the holo and apo datasets, we consider a prediction to be
correct if the known site is included among the sites output by
MoM. Table 1 reports the recall obtained for different values
of the d_min threshold (see Section 2), showing recall rates be-
tween 83% and 95% for holo MBSs. For the apo data, the re-
call ranges between 66% and 86%. This lower recall is

determined by the structural rearrangements caused by metal
binding in a protein site (Bazayeva et al. 2023). Indeed, our
tool exploits the position of Ca and Cb atoms precisely be-
cause their extent of rearrangement upon metalation is typi-
cally less extensive than that of SCs. This resulted in a still
satisfactory recall of 66% for apo-structures at the most strin-
gent d_min threshold, with a corresponding FPR of only
about 7%.

3.3 Structure-based prediction of zinc MBSs in

the Saccharomyces cerevisiae proteome

To perform a proteome-wide prediction of zinc(II) MBSs in
S.cerevisiae, we retrieved all the 6309 structural models of
yeast proteins available from the AlphaFold database
(Hekkelman et al. 2023). AlphaFold models include a mea-
sure indicative of the local accuracy of the prediction
(plDDT). We retained the structures having at least 90% of
their residues with a plDDT > 0.7, reducing the dataset to
1500 models, in order not to bias the prediction results due
to the quality of the AlphaFold models. Within the latter
ensemble, we identified 191 zinc(II)-binding proteins
(Supplementary Table S2).

For all the yeast proteins with a predicted MBS, we
searched if there was already an experimental structure, by
mapping their UniProt IDs to the PDB. Out of 191 proteins,
77 had a deposited structure and we observed that in 62 cases
the MBS was correctly identified. This corresponds to a preci-
sion (PPV) of 80.5% and a false discovery rate of 19.5%
(Fig. 1A).

We then looked for structurally characterized homologs of
the remaining 114 proteins. BLAST retrieved close homologs
having a deposited 3D structure for 75 proteins (Fig. 1B).
Forty-six of these structures (61%) contain one or more
zinc(II)-binding sites, 16 bear different metals than zinc(II)
(21%), and 13 are apo structures (17%). For 8 proteins, only
distant homologs were detected (i.e. BLAST retrieved some
hits that did not fulfill our thresholds), whereas for 31 pro-
teins no related structures were found. The latter group in-
cluded nine proteins for which an experimental structure is
available but lacks the region containing the predicted site be-
cause of the presence of an additional domain or motif in the
AlphaFold model. For each yeast protein having a structurally
characterized homolog, we superimposed its AlphaFold
model to the experimental structure of the homolog. We as-
sumed that if the homolog harbored an experimental zinc(II)
MBS, then the predicted AlphaFold structure should also
have a zinc(II) MBS.

For the 13 experimental apo structures, we qualitatively
evaluated whether the spatial disposition of the residues in the
predicted site suggested that it could be populated by a
zinc(II) ion under appropriate conditions. In fact, it can hap-
pen that even in the 3D structure of an actual MP, the MBS is
not populated by its cognate metal, because of shortcomings
in the sample handling procedures (Grime et al. 2020).
However, given that any incorrect prediction made by our
tool can only be attributed to an apo structure, we anticipated
that the predictions whose homologs are apo proteins would
have the highest FP rate. Assuming mild rearrangements of
the protein backbone, we determined that the predicted sites
for 10 proteins in this group (76%) were unreliable because
the disposition and/or orientation of the putative ligands was
not appropriate for metal binding. However, three proteins

Table 1. Performance of MOM.a

Recall/TPR (%) FPR (%)

d_min threshold Holo data Apo data Negative data

0.25 82.7 6 2.4 66.0 6 1.4 6.60 6 0.37
0.30 88.9 6 1.2 74.3 6 1.2 10.5 6 0.2
0.35 91.9 6 1.3 79.1 6 1.6 14.2 6 0.6
0.40 94.0 6 1.3 80.6 6 1.9 18.8 6 0.5
0.45 95.2 6 1.4 85.8 6 1.9 25.0 6 0.8

a We measured the performance as the fraction of correctly predicted
sites over the total number of experimental sites, TP/(TP þ FN). In addition,
we used the structures of the negative dataset to estimate the FPR, given by
the fraction of FP predictions over the total number of negative proteins in
the dataset.
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(or 23% of all proteins in this group) had sites resembling
physiological ones (see Table 2).

We then inspected the 16 predicted zinc(II) proteins whose
experimentally characterized homologs bear different metals.
We obtained satisfactory superimpositions with the experi-
mental sites for nine proteins (56%), as shown in Fig. 2E
and F. For example (Fig. 2E), for the protein with UniProt ID
Q05584 (cytoplasmic hydroxyacylglutathione hydrolase), the
two sites predicted by our tool overlapped almost perfectly
with all the metal-binding residues observed in the experimen-
tal structures of various homologs. Notably, the protein is

annotated as a zinc(II) enzyme in UniProt. The proteins hav-
ing a zinc(II)-binding homolog were separated in two groups,
depending on their sequence similarity. The superimposition
verified the positions predicted by our method for eight out of
eight proteins (100%) that had only distant homologs
(Table 2 and Fig. 2A and B). The predicted sites were exactly
overlaid to the real ones in 32 out of the 46 (70%) near-
homolog structures containing zinc(II), whereas in another
seven structures (15%), our prediction only partially matched
the experimental MBS. Finally, our prediction did not overlap
with the experimentally observed MBS in seven cases (15%).

The 31 models with no structural information from homo-
logs are of high interest since they may contain zinc(II)-
binding sites never observed before. The reliability of the pre-
dicted sites was qualitatively evaluated by the superimposition
to the site used for the prediction. For 11 structures (35%),
the overlap was perfect (Fig. 2D), whereas the outcomes for
13 proteins (42%) were deemed satisfactory, given that the
residues are arranged in a way that appears compatible with
the binding geometry observed in the reference site. On the
other hand, for seven proteins (23%), the prediction appeared
unreliable, e.g. because the putative ligands were in secondary
structure elements preventing the reorientation of their SCs to
coordinate the metal (Fig. 2C).

Overall, MoM demonstrated a satisfactory performance in
a real life scenario, namely the analysis of the proteome of an
entire organism. Cumulatively, with a d_min threshold of
0.35 Å, MoM had an error rate (false discovery rate, FDR,
given by the ratio of FP over the total number of positive pre-
dictions) for all its predicted MBSs of 24% and a precision of
76% (Fig. 1). To obtain further insight into the performance
of MoM, we performed a comparison with a previously pub-
lished dataset consisting of 229 zinc(II)-proteins identified by
sequence-based bioinformatics prediction of the MBS and
detected by mass spectrometry in zinc-replete cells (Wang
et al. 2018). Out of these 229 proteins, we analysed 157 struc-
tural models of sufficient quality. With a d_min threshold of
0.35, MoM predicted the existence of a zinc(II) MBS for 151
of these models (96% of the dataset), yielding a FN rate of
4%. At the level of individual residues, in 130 proteins (86%
of the dataset), the current prediction included all or all but
one of the previously proposed ligands.

4 Discussion

In this work we developed a tool for the prediction of zinc(II)
MBSs in the 3D structure of proteins, by combining an NN
and a post-processing geometry filter. By design, the mini-
mum number of metal ligands in the site is three, implying
that the tool is most suited for the prediction of intra-chain

Figure 1. Validation of MOM against the S.cerevisiae proteome. (A)

correct (dark gray, “positive”) and wrong (light gray, “negative”)

predictions (outer doughnut) based on yeast proteins with deposited

structure (77 proteins, inner doughnut, yellow), or on the structures of

homologous proteins as well as visual inspection (114 proteins, inner

doughnut, light blue); (B) breakdown of the validation based on the 114

proteins in the light blue wedge of panel (A), as a function of their

characteristics (inner doughnut, compare to the columns of Table 2),

showing correct and wrong predictions (outer doughnut; light and dark

colors, respectively) for each group. The total number of positives in panel

(A) is 145, whereas the total number of negatives is 46

Table 2. Results of the inspection of the structural models of the 114 predicted zinc(II) proteins lacking an experimental structure.a

Unreliable Good/partial match Perfect match Total

Homologs with zinc 7 (15%) 7 (15%) 32 (70%) 46
Homologs with different metals 7 (44%) 4 (25%) 5 (31%) 16
Apo homologs 10 (77%) 3 (23%) n.a. 13
Distant homologs n.a. 2 (25%) 6 (75%) 8
No homologs or no corresponding region 7 (23%) 13 (42%) 11 (35%) 31
Total 32 (28%) 28 (24%) 54 (47%) 114

a Distant homologs are the proteins identified by BLAST in the PDB with an e-value > 10�5 or a sequence identity to the yeast protein of interest <30%.
Partial matches occur when at least two predicted metal-binding residues overlapped properly in the structural comparison, as opposed to complete matches,
which occurred when all predicted metal-binding residues overlapped correctly.
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sites (Tran and KreR _zel 2021). The role of the NN is to extract
from the input 3D structure all the groups of residues of the
CHED type (Cys, His, Asp, Glu) (Babor et al. 2008) that con-
stitute potential binding sites. We trained the NN on an exten-
sive dataset of physiological zinc(II) MBSs. For the validation
process, we clustered homologous proteins so that their sites
would not be present in the training and validation sets at the
same time; 20% of the experimental MBSs were kept as the
independent validation dataset. Each of the candidate sites
identified by the NN in the input 3D structure is filtered for
geometrical similarity to all known MBSs with the same
metal-binding pattern, by comparing their distance matrices
for the Ca and Cb atoms. By fixing a threshold for the devia-
tion between the matrices (d_min), FP sites are significantly
reduced. The application of this similarity filter is justified by
our previous work demonstrating that for zinc(II) (Andreini
et al. 2011) as well as iron-sulfur proteins (Andreini et al.
2009), the same metal-binding motifs can occur in completely
different folds. In fact, the MBSs of about 77% of all zinc(II)-
protein superfamilies can be grouped in just 10 clusters
(Andreini et al. 2011). In a similar fashion, related

metal-binding structural motifs (which are similar to the MBS
concept used here) can be identified within different, evolu-
tionarily distant protein structures (Bromberg et al. 2022).

The recall of our predictor was nearly 92% with a d_min
value of 0.35 Å. We applied the trained predictor to a dataset
of apo-sites [i.e. sites extracted from the 3D structure of
zinc(II)-proteins experimentally determined in the absence of
their metal cofactor]. For this group of structures, there is no
preorganization of the protein residues surrounding the metal
ion, as it is instead the case for MBSs taken from holo struc-
tures after removing the ion from the coordinate file. Indeed,
we observed a lower recall, of about 79%, which is still quite
satisfactory. Notably, it is known that backbone rearrange-
ments are typically modest upon metalation of apo-sites
(Babor et al. 2005, Bazayeva et al. 2023), which we exploited
in the design of MoM as well as of other related tools
(Nguyen and Kleingardner 2021, Sánchez-Aparicio et al.
2021). To obtain an indication of the FPR of the predictor,
we examined 500 structures of proteins with no reported in-
teraction with metal ions of physiological relevance. MoM
proposed the presence of an MBS in 14% of them.

Figure 2. Examples of structure predictions by MOM. (A) a correct prediction, validated by superimposition to a distant homolog structure [PDB ID 5ZLQ

(Furukawa et al. 2018)]; (B) a partial match, with two out of three residues correctly superimposed to the metal ligands of the manganese(II) ion of a

distant homolog structure [PDB ID 5M45 (Mus et al. 2017)]; (C) an inaccurate prediction [superimposed to the 1BM6_2 (Li et al. 1998) MetalPDB site], in

which two of the three predicted His have a plausible spatial disposition, but the third His cannot be regarded a putative ligand since its positioning in the

a-helix prevents any movement to form an MBS in the presence of the metal ion; (D) a correct prediction for a protein lacking a homolog with known

structure, validated by superposition of the AlphaFold structural model to the closest MetalPDB site [3BVO_1 (Bitto et al. 2008)] identified by MoM; (E) a

correct prediction for two zinc(II) sites in spatial proximity, validated by superimposition to a homolog structure [PDB ID 2P18 (Sousa Silva et al. 2008)],

which contains a dinuclear zinc(II) cluster; (F) a partial match, where MoM predicted only one site containing a subset of the ligands to the two

manganese(II) ions present in a homolog structure (1WVB). The color code is as follows: gray, AlphaFold structural models; fuchsia, predicted ligand

residues; cyan, homolog structures or closest MetalPDB site. The zinc(II) ions are shown as olive green spheres, whereas all other metal ions are shown

as grey spheres
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Our method may be used to predict all the zinc(II) proteins
of a given organism starting from its proteome sequence. To
demonstrate this, we investigated the proteome of the yeast
S.cerevisiae. We decided to focus on this organism also be-
cause of the availability of a combined bioinformatics and
proteomics analysis that provided a list of yeast zinc(II) pro-
teins with experimental validation (Wang et al. 2018). Our
tool predicted the occurrence of a zinc(II) MBS in 191 pro-
teins out of 1500 analysed, of which 77 had a deposited ex-
perimental structure. This allowed us to calculate an
independent estimate of the precision (i.e. the percentage of
predicted sites that are actually correct), namely 80.5%.
Further validation of MoM resulted from the analysis of the
remaining 114 predicted yeast zinc proteins against the exper-
imental structures of homologous proteins from other organ-
isms; the precision in this subgroup of proteins was 72%. By
combining the two datasets, we obtain an overall estimate of
the precision of the MBS predictions for the yeast proteome at
about 76% and a false discovery rate of 24%. Finally, for a
previously reported list of yeast zinc(II) proteins obtained by a
combination of bioinformatics methods and mass spectrome-
try, we had a recall of 86%. These results are in between the
recall measured for holo- and apo-sites at the 0.35 Å thresh-
old that we used here.

Our tool can be compared with other software that per-
form the same task, developed or updated in the past few
years. In particular, a deep-learning approach recently has
been implemented in Metal3D (Dürr et al. 2023). With a
value of the p parameter of Metal3D equal to 0.75, the latter
tool achieves a recall close to 80% and a precision of about
82% for sites containing at least three ligands. The recall and
precision of Metal3D have been estimated only on crystallo-
graphic structures of the holo form of zinc(II) proteins, hence
only for sites already in the metal-bound conformation. We
thus checked whether the structural rearrangements possibly
occurring upon metalation reduced the software performance
of Metal3D by using apo-structures as input, without finding
any compelling evidence for such a trend. However, we noted
that Metal3D seems more sensitive than our method to in-
complete structures or to changes in the rotameric state of the
metal ligands between the apo- and holo-structure, possibly
because for such inputs the voxelized site computed by
Metal3D is not a correct representation of the holo-MBS. An
intriguing example is that of PDB entry 1T38 (Daniels et al.
2004), whose zinc(II) site is unoccupied due to the additional
tag present in the construct (Daniels et al. 2004), leading to a
significant rotation of the SC of His29 as compared with the
corresponding holo- structure [PDB code 1YFH (Duguid
et al. 2005)]; in addition, the most N-terminal ligand, Cys5, is
not observed in 1T38. Our tool but not Metal3D could iden-
tify the site in the 1T38 apo-structure. However, the
AlphaFold model of the protein structure contained a prop-
erly preorganized apo-site, which Metal3D could detect with
very high confidence. MoM featured a recall of about 90%
on crystallographic structures of holo-zinc(II) proteins and of
about 83% for the corresponding apo-structures, whereas the
analysis of the predictions for the AlphaFold models of all
yeast proteins indicated a recall in the range 75%–85%,
depending on the chosen reference dataset, and precision of
around 76%. We can thus conclude that our tool has a per-
formance practically aligned with that of Metal3D despite its
simpler architecture. Its simplicity allows the present method
to achieve comparatively faster calculations, enabling the

analysis of a full proteome, such as yeast, in a matter of
hours.

Other related tools are BioMetAll (Sánchez-Aparicio et al.
2021) and MIB2 (Lu et al. 2022). Besides their different meth-
odologies, these tools are not appropriate for high-
throughput applications to entire proteomes. MIB2 is avail-
able only as a web server designed for testing individual struc-
tures, whereas BioMetAll outputs for each input structure
multiple possible sites, with no quantitative ranking of the
predictions. AlphaFill instead fills the apo-sites in the
AlphaFold models by docking the ions present in homologous
proteins with a deposited PDB structure (Hekkelman et al.
2023), thus relying strictly on the detection of a homology
relationship.

In summary, we developed the MoM tool for the identifica-
tion of potential zinc(II) MBSs in 3D structural models. MoM
can be conveniently run on entire proteomes, in order to ob-
tain a prediction of any organism’s entire zinc(II) proteome.
The tool is available at https://github.com/cerm-cirmmp/
Master-of-metals. MoM has been applied to the yeast prote-
ome, and the predictions validated against different datasets.
Besides the precision, which we discussed in the previous
paragraphs, our approach featured a false discovery rate of
24% with a threshold of 0.35 Å, which corresponds to three
predicted MBSs in four being correct. When necessary, this
aspect can be improved by applying a more stringent filter: us-
ing a threshold of 0.30 Å reduces the recall by less than one
tenth while reducing FP by about one-third (Table 1). In any
case, visual inspection of the results is strongly recommended.
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