Table 2.
Final results of deep learning networks performance
| Task | Network | AUC | Accuracy | Sensitivity | Specificity | PPV | NPV |
|---|---|---|---|---|---|---|---|
| 1 | AlexNet | 0.98 | 0.95 (0.94−0.96) | 0.98 (0.98−0.98) | 0.89 (90.88−0.90) | 0.96 (0.95−0.97) | 0.94 (0.93−0.95) |
| ResNet18 | 0.98 | 0.95 (0.94−0.96) | 0.96 (0.95−0.97) | 0.91 (0.90−0.92) | 0.96 (0.95−0.97) | 0.91 (0.90−0.92) | |
| ResNet34 | 0.98 | 0.95 (0.94−0.96) | 0.97 (0.96−0.98) | 0.9 (0.89−0.91) | 0.96 (0.95−0.97) | 0.91 (0.90−0.92) | |
| 2 | AlexNet | 0.94 | 0.87 (0.86−0.88) | 0.85 (0.84−0.86) | 0.89 (0.88−0.90) | 0.87 (0.86−0.88) | 0.88 (0.87−0.89) |
| ResNet18 | 0.88 | 0.80 (0.78−0.82) | 0.75 (0.73−0.77) | 0.85 (0.84−0.86) | 0.80 (0.78−0.82) | 0.80 (0.78−0.82) | |
| ResNet34 | 0.92 | 0.84 (0.83−0.85) | 0.84 (0.83−0.85) | 0.84 (0.83−0.85) | 0.81 (0.79−0.83) | 0.87 (0.86−0.88) |
95% confidence intervals in parentheses. Best performance in bold. AUC Area under the curve, NPV Negative predictive value, PPV Positive predictive value