Skip to main content
. 2023 Nov 7;7:69. doi: 10.1186/s41747-023-00384-3

Table 2.

Final results of deep learning networks performance

Task Network AUC Accuracy Sensitivity Specificity PPV NPV
1 AlexNet 0.98 0.95 (0.940.96) 0.98 (0.98−0.98) 0.89 (90.88−0.90) 0.96 (0.95−0.97) 0.94 (0.93−0.95)
ResNet18 0.98 0.95 (0.94−0.96) 0.96 (0.95−0.97) 0.91 (0.90−0.92) 0.96 (0.95−0.97) 0.91 (0.90−0.92)
ResNet34 0.98 0.95 (0.94−0.96) 0.97 (0.96−0.98) 0.9 (0.89−0.91) 0.96 (0.95−0.97) 0.91 (0.90−0.92)
2 AlexNet 0.94 0.87 (0.86−0.88) 0.85 (0.84−0.86) 0.89 (0.88−0.90) 0.87 (0.86−0.88) 0.88 (0.87−0.89)
ResNet18 0.88 0.80 (0.78−0.82) 0.75 (0.73−0.77) 0.85 (0.84−0.86) 0.80 (0.78−0.82) 0.80 (0.78−0.82)
ResNet34 0.92 0.84 (0.83−0.85) 0.84 (0.83−0.85) 0.84 (0.83−0.85) 0.81 (0.79−0.83) 0.87 (0.86−0.88)

95% confidence intervals in parentheses. Best performance in bold. AUC Area under the curve, NPV Negative predictive value, PPV Positive predictive value