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Abstract

The myocyte enhancer factor 2 C (MEF2C) gene encodes a transcription factor important for neurogenesis and synapse development and
contains common variants associated with intelligence (IQ) and educational attainment (EA). Here, we took gene expression data from
the mouse cortex of a Mef2c mouse model with a heterozygous DNA binding-deficient mutation of Mef2c (Mef2c-het) and combined
these data with MEF2C ChIP-seq data from cortical neurons and single-cell data from the mouse brain. This enabled us to create a set
of genes that were differentially regulated in Mef2c-het mice, represented direct target genes of MEF2C and had elevated in expression
in cortical neurons. We found this gene-set to be enriched for genes containing common genetic variation associated with IQ and EA.
Genes within this gene-set that were down-regulated, i.e. have reduced expression in Mef2c-het mice versus controls, were specifically
significantly enriched for both EA and IQ associated genes. These down-regulated genes were enriched for functionality in the adenylyl
cyclase signalling system, which is known to positively regulate synaptic transmission and has been linked to learning and memory.
Within the adenylyl cyclase signalling system, three genes regulated by MEF2C, CRHR1, RGS6, and GABRG3, are associated at genome-
wide significant levels with IQ and/or EA. Our results indicate that genetic variation in MEF2C and its direct target genes within cortical
neurons contribute to variance in cognition within the general population, and the molecular mechanisms involved include the adenylyl
cyclase signalling system’s role in synaptic function.
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Introduction
The myocyte enhancer factor 2 C (MEF2C) gene encodes a tran-
scription factor protein that regulates gene expression in the
brain across the lifespan from neurodevelopment, including
neurogenesis and synapse development, to adulthood [1].
Microdeletions on chromosome 5q14.3 encompassing MEF2C
plus truncating and missense mutations within the gene have
been described as causal for MEF2C haploinsufficiency syndrome
(MCHS) where typical clinical characteristics include severe
global developmental delay with absent speech, limited walking,
seizures, stereotypic movements and features of autism spectrum
disorder (ASD) [2]. MEF2C also contains common variants
associated with schizophrenia (SCZ) [3], intelligence (IQ) [4], and
educational attainment (EA) [5].

Multiple studies have used mouse models of Mef2c to
investigate its role in behaviour, cognition, and its influence
on the structure and function of the brain and constituent
cell types, in order to identify molecular mechanisms that
may underpin human phenotypes associated with MEF2C. As
constitutive Mef2c null mice have early lethality [6], models
have been based on conditional knockout (cKO) of the gene.

Homozygous postnatal deletion of Mef2c in the brain resulted
in a significant increase in spine numbers in the hippocampus,
plus alterations in locomotor activity and motor coordination
deficits [7]. Homozygous embryonic deletion of Mef2c in the
forebrain resulted in impairment in hippocampal-dependent
learning and memory, with Mef2c having a mediating role in
synapse formation during activity-dependent refinement of
synaptic connectivity [8]. Homozygous embryonic deletion of
Mef2c in cortical and hippocampal excitatory neurons reduced
cortical network activity with an imbalance of excitatory and
inhibitory synaptic transmission [9]. These Mef2c cKO mice
exhibited impairments in multiple behavioural phenotypes, e.g.
fear learning and memory, multiple social behaviours, socially-
motivated ultrasonic vocalizations, reward-related behaviours,
and repetitive motor behaviours [9]. As Mef2c is a transcription
factor, the latter study also used RNA sequencing (RNA-seq)
to study the effect of Mef2c cKO on gene expression in the
cortex. Differentially expressed genes (DEGs) were enriched for
genes involved in neuron differentiation and development (up-
regulated genes) and synaptic transmission and ion transport
(down-regulated genes), and were enriched for ASD risk genes [9].
In a subsequent study, we reported that these Mef2c cKO DEGs
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were also enriched for common genetic variation associated with
SCZ, IQ, and EA, as well as rare de novo mutations (DNMs) reported
in ASD and intellectual disability (ID) [10].

A weakness in the models described above in terms of their
construct validity for human phenotypes caused by mutation of
the MEF2C gene is that they are based on homozygous deletion
of Mef2c, whereas individuals affected by MCHS have a heterozy-
gous (Het) mutation. To address this, Harrington and colleagues
generated a global heterozygous Mef2c mutant mouse lacking
exon 2, which encodes a large portion of the DNA-binding MAD-
S/MEF2 domains that are often the sites for MCHS mutations
[11]. These DNA-binding deficient Mef2c-Het mice were found to
exhibit many of the symptoms associated with MCHS in humans,
including disturbances in social interaction and communication,
hyperactivity, repetitive behaviours, and reduced pain sensitivity
[11]. At a biological level, these mutant mice displayed deficits
in presynaptic and postsynaptic glutamatergic excitatory trans-
mission in the somatosensory cortex. RNA-seq was performed on
the whole cortex of 35–40 day postnatal Mef2c-het and control
mice, capturing hundreds of genes differentially expressed as a
result of the mutation. These genes were found to be significantly
enriched for ASD risk genes and genes expressed in excitatory
neurons [11].

Mef2c is expressed in both neurons and microglia. The Mef2c-
het mutation exhibited cell type specific behavioural effects. The
mutation solely in forebrain excitatory neurons reproduced most
of the global effects except for social deficits, whereas the muta-
tion in microglia reproduced most of the global effects except
for anxiety-like behaviours. The mutation solely in parvalbumin-
positive GABAergic interneurons and cerebellar Purkinje cells
showed no effects at all. Overall, this suggested that MEF2C reg-
ulates typical brain development and function through multiple
cell types [11].

Here, we sought to use gene expression data from the Mef2c-
het model to explore further the contribution of both common
and rare genetic variation within the set of genes regulated by
Mef2c to neurodevelopmental disorders and cognitive phenotypes
in a cell type specific manner. We integrated gene expression data
with chromatin immunoprecipitation sequencing (ChIP-seq) data
for MEF2C [12] and single cell RNA-seq (scRNA-seq) data [13] to
identify dysregulated genes in cortical and microglial cells and
direct transcriptional targets of MEF2C in cortical neurons. This
allowed for the cell type specific analysis of the set of genes
and biological processes that were directly dysregulated as a
consequence of Mef2c mutation.

Results
Generation of MEF2C gene-sets
The original set of DEGs from the Mef2c-het model contained 476
mouse genes (false discovery rate [FDR] < 0.05) [11] When con-
verted to human orthologues for analysis using human genetic
data, this “DEGs_All” gene-set contained 460 genes (Supplemen-
tary Table 1). By integrating the Mef2c-het gene expression data
with ChIP-seq data [12] and scRNA-seq data [13], we generated a
set of 139 DEGs (Supplementary Table 2) that are direct transcrip-
tional targets of MEF2C and highly expressed in cortical neurons.
We refer to this gene-set as “DEGs_Direct_Neuron”. As ChIP-seq data
was not available for microglial cells, our set of 222 DEGs that are
expressed in this cell type in the cortex, called “DEGs_Microglia”
was just based on integration of the Mef2c-het gene expression
data with scRNA-seq data (Supplementary Table 3).

Analysis of MEF2C gene-sets using GWAS data
Gene-set analysis was performed to test the DEGs_All, DEGs_Direct_
Neuron and DEGs_Microglia gene-sets for enrichment of com-
mon genetic variation associated with SCZ, IQ, and EA using
genome-wide association study (GWAS) data. The DEGs_All and
DEGs_Microglia gene-sets were not found to be significantly
enriched for genes associated with any of these phenotypes.
However, the DEGs_Direct_Neuron gene-set was found to be
significantly enriched for genes associated with IQ (P = 1.98 × 10−4)
and EA (P = 6.77 × 10−6) (Fig. 1A; Supplementary Table 4). In terms
of individual genes within DEGs_Direct_Neuron, 16 genes were
significantly associated with EA and 12 genes were associated
with IQ (with 9 genes associated with both IQ and EA) after
multiple testing correction (Supplementary Table 2).

To investigate if the results for IQ and EA were more
specifically due to genes negatively or positively regulated
by Mef2c, we split the DEGs_Direct_Neuron gene-set into DEGs
that were up- or down-regulated in Mef2c-Het mice versus
controls, creating DEGs_Direct_Neuron_Up (n = 61 genes) and
DEGs_Direct_Neuron_Down (n = 78 genes), respectively (Supple-
mentary Table 2). Gene-set analysis results indicated that the
enrichment signal is stronger and more significant for down-
regulated DEGs in Mef2c-Het mice compared to up-regulated DEGs
(Fig. 1B [IQ results] and Fig. 1C [EA results]).

Genes associated with cognition are known to be enriched
in multiple brain regions, including the cortex, as well as in
various neuronal cell types [4]. Therefore, it is possible that the
enrichments detected here could be due to direct target genes of
MEF2C in cortical neurons representing a subset of genes with
elevated expression in the brain or more specifically cortical
neurons. Conditioning the gene-set analysis on brain elevated
genes accounted for little of the detected enrichments for IQ
and EA, with negligible effect on the P values (Fig. 1B and C;
Supplementary Table 4). Conditioning on genes with elevated
expression in cortical neurons (n = 4114; listed in Supplemen-
tary Table 5) partially accounted for the enrichment of the
DEGs_Direct_Neuron gene-set for genes associated with IQ and
EA, although the enrichment for EA genes within this gene-
set remained significant below the original multiple testing
correction P value threshold (P = 0.00486 for EA; Fig. 1C). The
enrichments for the DEGs_Direct_Neuron_Down gene-set also
remained significant after conditioning on genes with elevated
expression in cortical neurons (P = 0.00548 for IQ; P = 0.00448 for
EA) (Fig. 1B and C).

There is known to be an overlap between Fragile X mental
retardation protein (FMRP) and MEF2C target genes. However,
conditioning on FMRP target genes had negligible effect on the
enrichments detected here (Supplementary Table 6). To examine
if the enrichments we detected for IQ and EA are a property of
polygenic phenotypes in general, we obtained GWAS summary
statistics for five other phenotypes and tested the MEF2C gene-
sets for enrichment in each one. These GWAS included child-
onset psychiatric disorders, other brain-related disorders, a non-
brain related disease, and height. Our MEF2C gene-sets were not
enriched for genes associated with any of these five phenotypes
(Supplementary Table 7).

Analysis of MEF2C gene-sets using data on De
novo mutations
To investigate the contribution of rare variants in the MEF2C gene-
sets to SCZ, ASD, ID, and developmental disorders (DD), we tested
if the gene-sets were enriched for synonymous (syn), missense
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Figure 1. Results from MAGMA gene-set analysis of MEF2C gene-sets using GWAS data. (A) Results from the initial analysis of MEF2C gene-sets using
GWAS data for SCZ, IQ and EA. The DEGs_Direct_Neuron gene-set was significantly enriched for common genetic variation associated with IQ and EA.
(B, C) Post-hoc results based on these two significant results observed in the initial analysis. DEGs_Direct_Neuron was used to create two more gene-
sets based on whether genes were up or down regulated upon MEF2C disruption. Each of the three gene-sets were tested for enrichment of common
genetic variation associated with IQ (B) and EA (C), conditioning on brain elevated genes and cortical neuron elevated genes. The vertical lines show the
significance threshold using the Bonferroni method to correct for the nine initial tests (P = 0.0056). Full results are detailed in Supplementary Table 4.
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(mis) and loss of function (lof) DNMs that have been reported
in trio-based exome sequencing studies of these disorders. The
expected number of each mutational class of DNM for each gene
is estimated using a mutational background model that takes into
account sequence context and gene size [14]. The observed versus
expected number of DNMs within each gene-set is compared
to the observed versus expected number of DNMs in all genes
outside of each gene-set using a two-sample Poisson rate ratio
test. The DEGs_Direct_Neuron gene-set was overrepresented for
genes containing missense and loss of function DNMs reported
for ID/DD at nominal significance levels. Similar to our analysis
of the GWAS data above, the enrichments for mis and lof DNMs in
ID/DD were stronger in the down-regulated DEGs compared to the
up-regulated DEGs. However, none of the P values survive multiple
testing corrections (P < 0.004; Supplementary Table 8).

Functional annotation analysis of gene-sets
We performed gene ontology (GO) enrichment analysis to
investigate the functionality of the DEGs_Direct_Neuron_Down
gene-set that was enriched for IQ and EA associated genes. Four
of the top five enriched GO terms from an initial analysis were
related to synaptic signalling (Fig. 2A; Supplementary Table 9).
However, similar to our gene-set analysis above, we wanted
to account for the potentially confounding effect of the origin
of this gene-set, i.e. all genes in this gene-set have elevated
expression in cortical neurons. Therefore, we performed a
competitive GO analysis of the DEGs_Direct_Neuron_Down gene-
set using all genes with elevated expression in cortical neurons
as the background gene-set. The previously identified GO terms
related to synaptic signalling remained significant but were
no longer among the top terms. Instead, the top four terms
are all related to adenylyl cyclase signalling activity (Fig. 2B;
Supplementary Table 10). Adenylyl cyclase is an enzyme that
synthesizes cyclic adenosine monophosphate (cAMP) from ATP
[15]. cAMP subsequently regulates a number of cellular processes,
including synaptic transmission [16] and has been shown to be
important for learning and memory [17–19]. The top two GO terms
were “activation of adenylate cyclase activity” (P = 1.1 × 10−4;
Q = 0.031) and “G protein-coupled receptor signalling pathway”
(P = 1.6 × 10−4; Q = 0.029). G protein-coupled receptors, upon
binding of a ligand, activate the adenylyl cyclase enzyme [20].
The third most significant term was “corticotropin-releasing
hormone (CRH) receptor activity” (P = 3.6 × 10−4; Q = 0.018). CRH
receptors are a family of G protein-coupled receptors that
bind corticotropin-releasing hormone and lead to activation of
adenylyl cyclase and thereby increased levels of cAMP [21]. The
fourth most significant term was “corticotrophin-releasing factor
(CRF) receptor activity” (P = 3.6 × 10−4; Q = 0.011). The CRF receptor
is also a G protein-coupled receptor that when activated leads to
elevated cAMP levels.

A total of 14 genes from the gene-set map to at least one of
these four terms (see Supplementary Table 11 for their P values
from the IQ and EA GWAS and a short summary of their function).
Corticotropin releasing hormone receptor 1 (CRHR1) maps to all four
GO terms and was individually significant in both the IQ and
EA GWASs at genome-wide significant levels (P = 5.5 × 10−7 for
IQ; P = 1.6 × 10−11 for EA). CRHR1 is the main CRH receptor in the
brain and genetic variants in this gene have also been found to be
significantly associated with several phenotypes including major
depressive episode, generalized anxiety disorder, antidepressant
response, stress and panic [22]. Two other genes within these GO
terms were genome-wide significant for EA; regulator of g pro-
tein signalling 6 (RGS6; P = 9.9 × 10−8) and gamma-aminobutyric acid

type a receptor subunit gamma 3 (GABRG3; P = 1.4 × 10−6). A meta-
analysis conducted by the Cross-Disorder Group of the Psychiatric
Genomic Consortium identified a SNP in RGS6 as one of 23 genetic
loci with pleiotropic effects on ≥ four out of the eight studies
psychiatric disorders [23]. GABRG6 was identified to contain SNPs
significantly associated with ASD using a family-based associa-
tion study and was enriched for rare variants observed in ASD
patients compared to controls [24].

The latest EA GWAS results [25] lists multiple independent
genome-wide significant SNPs at each of CRHR1, RGS6 and
GABRG3. We reviewed the Genotype-Tissue Expression (GTEx)
project data for these SNPs to link associated alleles with
effects on gene expression using expression quantitative trait
loci (eQTLs). At CRHR1, the T allele of the most associated
SNP (rs60814418) is associated with both lower EA and reduced
expression of CRHR1 in two brain regions following GTEx exper-
iment wide-correction (Caudate (basal ganglia), P = 6.43 × 10−5;
Hippocampus, P = 5.01 × 10−5). At RGS6, none of the genome-wide
significant SNPs are eQTLs in brain regions. However, the A allele
of the most associated SNP (rs12897542) is associated with both
lower EA and reduced expression of RGS6 in heart tissue following
GTEx experiment wide-correction (P = 4.3 × 10−7). Finally for
GABRG3, the C allele of the most associated SNP (rs891793) is
associated with both lower EA and but increased expression of
GABRG3 in two brain regions following GTEx experiment wide-
correction (Cerebellar Hemisphere, P = 3.4 × 10−6; Cerebellum,
P = 3.71 × 10−6).

Discussion
We have combined data from a genetic mouse model and GWAS
to investigate the network of genes regulated by the transcription
factor MEF2C, a causative gene for a rare neurodevelopmental dis-
order with associated cognitive deficits and a contributory gene to
variance in cognitive ability in the general population. We sought
to leverage gene expression data from the Mef2c-het mouse model
to investigate if the set of genes regulated by MEF2C are also loci
where common genetic variation influences cognitive ability, and
from there identify the biological functions that may be involved.
We report that direct target genes of MEF2C that have elevated
expression in cortical neurons and are differentially expressed as
a consequence of heterozygous mutation of MEF2C in the Mef2c-
het mouse model are significantly enriched for genes associated
with IQ and EA. MEF2C acts as both a transcriptional activator and
repressor with cell type specific functionality. MEF2C’s activator
function is more prominent in excitatory neurons and its repres-
sor function more prominent in microglia [11]. It can be inferred
that genes downregulated in Mef2c-het mice are activated or
positively regulated by MEF2C under normal conditions, whereas
genes upregulated in Mef2c-het mice are normally repressed or
negatively regulated by MEF2C. Our observation that IQ- and
EA-associated genes were concentrated in the neuronal genes
downregulated in Mef2c-het mice suggests that variation in genes
regulated by MEF2C that influences cognitive function in the
general population resides in genes that are ordinarily activated
by MEF2C and expressed in neurons rather than microglia. Func-
tional annotation of these genes point to a role for adenylate
cyclase activity in cognition where CRHR1, RGS6, and GABRG3
are functionally involved and are individually associated with
cognitive phenotypes by GWAS.

The adenylyl cyclases (ACs) catalyze the production of cAMP,
the ubiquitous second messenger in a crucial signalling pathway
for learning and memory in both invertebrates and vertebrates.
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Figure 2. Gene ontology over-representation analysis results for DEGs_Direct_Neuron_Down. Top 10 most significant GO terms resulting from
hypergeometric tests using all genes as the background gene-set (A) and using all genes with elevated expression in cortical neurons as the background
gene-set (B). Full results are detailed in Supplementary Tables 9 and 10.

Characterization of D. melanogaster memory mutants revealed
that several are due to defects in cAMP signalling. These include
rutabaga, which encodes a Ca2+-stimulated adenylyl cyclase [26],
amnesiac, which encodes an adenylyl cyclase–activating peptide
[27] and a gene that encodes a subunit of the cAMP-dependent
protein kinase A (PKA), the main cAMP target [28]. In another
model for learning and memory, the mechanosensory neurons of
Aplysia californica, cAMP/PKA signalling contributes to short- and
long-lasting forms of synaptic plasticity, learning, and memory
[29]. Gene disruption studies in mice have also demonstrated that
adenylyl cyclase activity is required for hippocampus-dependent
memory formation. For example, reduction of PKA activity in
transgenic mice expressing a dominant-negative R subunit, R
(AB), causes defects in late-phase long-term potentiation (L-LTP),
spatial memory, and long-term contextual fear conditioning [30].
Mice lacking the Ca2+/CaM-stimulated adenylyl cyclase (AC1)
display presynaptic and postsynaptic functional defects at tha-
lamocortical synapses and have impaired spatial memory [17,31].
Furthermore, mice that lack both type 1 and 8 adenylyl cyclases
(AC1 and AC8) ablate L-LTP and long-term memory (LTM) for
contextual and passive avoidance learning [32]. It is hypothe-
sized that L-LTP and LTM are both dependent upon a Ca2+
signal generated through activation of NMDA receptors. NMDA
receptors trigger various signal transduction pathways, including
the Erk/MAPK and PKA pathways, by stimulating the activity of
adenylyl cyclases. These pathways activate CREB transcriptional
pathways, resulting in the expression of genes essential for L-LTP
and LTM [33]. It has also been demonstrated that learning in the
bar-pressing task increased adenylyl cyclase activity [34], and that
learning in an inhibitory avoidance learning task increased cAMP
content [35]. However, recent studies indicate that increases in
cAMP signalling may not necessarily lead to memory enhance-
ment. In D. melanogaster, expression of constitutively active Gsα,
a general activator of adenylyl cyclases, disrupts learning and
memory [36]. Gene ablation of Gi, a general inhibitor of adeny-
lyl cyclases, disrupts hippocampus-dependent memory in mice,
emphasizing that continuous increases in adenylyl cyclase activ-
ity in the brain might have a negative impact on memory [37].
These findings show that memory formation depends upon a bal-
ance between mechanisms for increasing and decreasing cAMP.

An imbalance in excitatory and inhibitory synapses is thought
to contribute to many neuropsychiatric phenotypes, including
SCZ, for which a deficit in cognition is a core symptom. Many
studies have observed reduced dendritic spine density (used
to measure excitatory synapses) in postmortem brain samples
from SCZ patients (reviewed in [38]). Overexpression of Mef2c in

prefrontal projection neurons of mice resulted in improved
cognitive performance of these mice. Interestingly, overexpression
of adenylyl cyclase subtype 1 (AC1) in the forebrain of mice
also enhances memory formation [39]. It was shown that
when KCl concentrations are high enough to elicit membrane
depolarization in cerebellar granular neurons, the cAMP-PKA
pathway stimulates MEF2-dependent DNA-binding activity and
gene expression by direct phosphorylation to promote neuronal
survival [40]. Further studies would be needed to investigate if
these effects are mediated by the alteration of similar molecular
pathways. Nevertheless, these studies, as well as our findings
implicate MEF2C and the adenyl cyclase signalling pathway as
being dysregulated in cognition.

Reviewing individual associated genes, CRH functions via two
different G protein-coupled receptors (GPCRs), CRHR1 and CRHR2.
CRHR1 mediates adrenocorticotropic hormone (ACTH) release in
the anterior pituitary in response to CRH [41]. The binding of
CRH to CRHR1 induces adenylate cyclase activity, which raises
cAMP levels in anterior pituitary corticotrophs. Through the cAM-
P/PKA pathway, CRH is responsible for both enhanced proopiome-
lanocortin (POMC) transcription and ACTH release [42]. Studies
have shown that stress hormones (particularly CRH) mediate
morphological alterations of hippocampus spines and synapses
via CRHR1 activation [43–45].

RGS6 is a member of the R7 subfamily of RGS proteins and
functions as a GTPase-activating protein for Gα and Gβγ subunits
of G protein-coupled receptors (GPCRs), thereby play a critical role
in regulating the duration and magnitude of signalling initiated
by GPCRs [46,47]. One class of GPCRs regulated by RGS6 are
serotonin 1A (5-HT1A) receptors in the cortical and hippocampal
neurons and mediate the antidepressant and anxiolytic effects of
serotonin. RGS6 influences anxiety and depression in rodents by
inhibiting the 5-HT1A heteroreceptor—adenylyl cyclase signalling
axis at postsynaptic sites. By direct activation of adenylyl cyclase
signalling, RGS6 facilitates cAMP accumulation and subsequent
activation of PKA and CREB, which contribute to rodent anxiety
and depression-related behaviours [48]. RGS6 is also essential for
adult maintenance of dopaminergic (DA) neurons in the ventral
substantia nigra (SN) where RGS6 functions as a critical survival
factor for SN DA neurons, and its loss results in their late-age
degeneration [49]. RGS6 suppresses D2-autoreceptor signalling in
substantia nigra compacta (SNc) DA neurons to promote proper
DA homeostasis and neurotransmission and prevent abnormal
α-synuclein accumulation. By inhibiting SNc D2-autoreceptor-
Gαi/o signalling, RGS6 promotes DA packaging/release by prevent-
ing vesicular DA transporter downregulation and DA transporter
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upregulation. In addition, RGS6 inhibition of D2-autoreceptor-
Gαi/o signalling promotes adenylyl cyclase signalling, increasing
DA synthesis and suppressing α-synuclein expression [50].

The multimeric transmembrane GABA receptor exists as
hetero-pentameric (five different subunits: alpha, beta, gamma,
delta and rho) ligand-gated ion channels and conducts chloride
ions following activation by GABA, which results in neuronal
hyperpolarization and inhibition of neuronal signalling [51,52].
The protein encoded by GABRG3 is a gamma subunit of GABA
receptor. Most of the cytogenetic abnormalities associated
with various neurodevelopmental disorders like Prader–Willi
syndrome and Angelman syndrome occur as result of genetic
lesions in the chromosome 15, particularly the 15q11-13 locus.
This region contains a number of GABA receptor subunit genes
including GABRG3 [53], making them important candidates for
various neurodevelopmental disorders. These receptors have
received considerable attention because decreased GABA receptor
density is observed in the hippocampus of autistic patients,
and suppressed GABAergic inhibition has been implicated in
ASD’s aetiology [54,55]. An imbalance of the inhibitory GABAergic
pathways leads to overstimulation in the brain and an inability
to filter out excess stimuli from environmental and intrinsic
resources [55].

Harrington et al. [11] reported that MEF2C DEGs, mainly the
downregulated genes, were enriched in genes associated with ASD
risk. In contrast, we did not observe significant enrichment of
DNMs observed in ASD cases in our gene-sets. We did observe up
to a 3-fold excess of loss of function DNMs in ASD cases in our
gene-sets. However, we conservatively tested this against the rate
of DNMs in ASD cases in all other genes in the genome, which is
elevated above expectations based on natural rates of mutation.
As a result, for ASD cases, the rate of DNM in MEF2C-regulated
genes is not significantly higher than the rate in non-MEF2C-
regulated genes.

Our study has several limitations. Firstly, we were unable to
source ChIP-seq data for MEF2C from microglial cells, thereby
inhibiting us from identifying and analysing direct targets of
MEF2C in that cell type. Secondly, the RNA-seq data available
just captured gene expression from whole cortex in control and
Mef2c-het mice at postnatal day 35–40. Therefore, we did not have
the opportunity to investigate the impact of MEF2C disruption
on gene expression at different developmental timepoints, in
different brain regions or at the level of single cell data. Thirdly,
our study of eQTLs at CRHR1, RGS6, and GABRG3 was limited to
tissues from adult samples so again we were unable to study the
effect of GWAS-associated SNPs at these genes on their expres-
sion at different developmental timepoints or with single cell
resolution.

In conclusion, we have found that positively regulated, direct
target genes of MEF2C that are elevated in expression in cortical
neurons are enriched in genes containing common genetic vari-
ation associated with IQ and EA. These genes are enriched for
functionality in the adenylyl cyclase signalling system, which is
known to positively regulate synaptic transmission. Other stud-
ies have found that adenylyl cyclase is required for appropriate
synaptic function and its deficits lead to impaired learning and
memory. We further implicate the master regulator, MEF2C, as
being involved in this system. Further studies are required to
understand the exact molecular mechanisms by which MEF2C
functions in this system and to investigate the potential of tar-
geting this system in cortical neurons to treat, for example, the
cognitive symptoms of SCZ and ASD and associated neuropsychi-
atric disorders that exhibit cognitive deficits.

Materials and Methods
Ethics statement
Data were directly downloaded from published studies and no
additional ethics approval was needed. Each study is referenced
and details on ethics approval are available in each manuscript.

Generation of MEF2C gene-sets
Integrated RNA- and ChIP-seq analysis
Differential expression data was obtained from a published
RNA-sequencing study [11]. Raw binding data was obtained
from a ChIP-sequencing study [12] that performed Mef2c ChIP-
sequencing in cortical neurons dissected from E15.5 mouse
embryos. There was one replica available. ChIP-seq of input DNA
in cortical neurons was used as a control. The raw files were
downloaded from the Gene Expression Omnibus (GEO) database
repository (GEO accession: GSE66710) using fastq-dump and fastq
(Andrews, S. 2010; http://www.bioinformatics.babraham.ac.uk/
projects/fastqc/) was run to assess the quality. Fastp [56] was
used to trim reads with a cut window size of 2. BWA [57] was
used for alignment to the genome; this tool was chosen because
of its high accuracy and suitability for short reads [58]. First, an
index was created using the mus_musculus.grcm38.dna.primary
assembly.fa data file as reference. Alignment was then run to
create .sai files, followed by Bwa samse to convert the .sai files
to .sam format for the single-end reads. Postprocessing was
performed using samtools which involved converting the sam
files to bam format, sorting the bam file, removing possible PCR
duplicates and finally creating a file with mapping statistics.
Peaks were called using macs2 [59] and a Q value threshold of
0.01.

Binding and Expression Target Analysis (BETA); http://cistrome.
org/BETA/ [60] was used to integrate the RNA-seq and ChIP-seq
data and infer direct target genes. Input files consisted of the
differential expression data, which was in the format of a table
with three columns (gene name, fold change and FDR), and the
binding data (output of macs2), which had five columns (chrom,
chromStart, chromEnd, name, score). A rank product (RP) was
calculated for each gene based on 1) differential expression false
discovery rate (FDR; genes with FDR < 0.1 were considered) and 2)
binding potential based on the number of binding sites and how
far away they are from the transcription start site. Genes with an
RP < 0.01 were considered to be direct target genes.

Identification of cell-type specific genes
Single-cell RNA sequencing data was available for 690 000 indi-
vidual cells (565 distinct cell populations) across 9 regions of the
adult mouse brain [13] http://dropviz.org/). These data are in the
format of an expression matrix, where column names are the cell
types and row names are genes. Each cell in the matrix contains
the number of unique molecular identifier (UMI) counts for each
gene in each of the 565 cell populations. We first scaled the expres-
sion data by cell type using transcripts per million (TPM), where
each UMI count was multiplied by 1 M and divided by the sum of
UMI counts in that cell type. We removed genes with a sum TPM
of less than 1000 across all cell types. We then used the metric
of expression specificity described in Trubetskoy et al. [3] where
the UMI count for each gene is divided by the total expression of
that gene in all 565 cell types, resulting in values ranging from
0 to 1 for each gene. The matrix was then restricted to the cell
types of interest. We were interested in genes specific to neuronal
and microglial cells in the cortex, of which there are 114 and 6
cell types, respectively. The sum of expression specificity values

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://cistrome.org/BETA/
http://cistrome.org/BETA/
http://dropviz.org/
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for each gene across these cell types of interest was calculated
and the median value was used as a threshold for identifying
genes elevated in our cell types of interest, i.e. genes with a sum
of expression specificity values across neuronal or microglial cell
types greater than the median value were identified as being
elevated in expression in that cell type. A background gene set
was also created for both microglial and neuronal specific genes,
consisting of all genes in the expression matrix with a sum of
expression specificity values across that cell type greater than the
same threshold as used for the test sets (median).

Conversion of MGI gene symbols to human
orthologues
All gene-sets were converted to human orthologue genes (HGNC
gene symbols or NCBI gene IDs) using mouse and human ensembl
databases via Biomart in R.

Overlap between gene-sets
Seventy-six percent of the genes in the DEGs_Direct_Neuron gene-
set are present in the DEGs_All gene-set. The unique genes in
DEGs_Direct_Neuron (n = 33) are present due to different methods
being used to generate these gene-sets, including different criteria
(RP < 0.1 for all genes with FDR < 0.1). The less stringent FDR
threshold of 0.1 was used in creation of this gene-set because we
were more tolerant of differential expression false positives on
account of also considering results from ChIP-seq analysis to call
MEF2C target genes. We also wished to include genes with high
MEF2C binding, but with slightly less significant differential gene
expression.

Gene-set analysis
A gene-set analysis (GSA) is a statistical method for simultane-
ously analysing multiple common genetic markers in order to
determine their joint effect. We performed GSA using region-
based multi-marker analysis of genomic annotation (MAGMA)
http://ctg.cncr.nl/software/magma [61] and summary statistics
from published GWAS on SCZ (69 369 cases and 236 642 controls)
[3], intelligence (IQ; n = 269 867) [4] and educational attainment
(EA) n = 766 345 [5]. An analysis involves three steps. First, in the
annotation step, SNPs with available GWAS results are mapped
on to genes (GRCh37/hg19 start-stop coordinates ±20 kb). Second,
in the gene analysis step, gene P values are computed for each
GWAS dataset. This gene analysis is based on a multiple linear
principal components regression model that accounts for linkage
disequilibrium (LD) between SNPs in each gene, number of SNPs
in each gene, inverse of the mean minor allele count of variants
in each gene and the GWAS sample size. The European panel of
the 1000 Genomes data was used as a reference panel for LD.
Third, a competitive GSA based on the gene P values, also using a
regression structure, was used to test if the genes in each gene-
set were more strongly associated with either phenotype than
other genes in the genome. The condition modifier was used to
include cortical elevated genes as covariates in the regression
model. MAGMA was chosen because it corrects for LD, gene size
and gene density (potential confounders) and has significantly
more power than other GSA tools [62].

The multiple testing corrected P value threshold for associated
gene-sets was calculated using the Bonferroni method by dividing
the standard P value threshold (0.05) by the number of tests
performed (three gene-sets multiplied by three GWAS pheno-
types = 9). This same threshold was used for post-hoc analysis,
including conditional gene-set analysis [63]. The multiple testing
corrected P value thresholds for individually associated genes was

also calculated using the Bonferroni method by dividing 0.05 by
the number of genes tested (19 110 for IQ and 18 388 for EA).

Analysis of De novo mutations
Enrichment of de novo mutations (DNMs) in our gene-sets was
tested using the R package, denovolyzeR http://denovolyzer.org/
[64]. This package implements the mutational background model
proposed in [14], which estimates the expected number of each
mutational class of DNM for each gene based on sequence con-
text and gene size. We tested for enrichment of synonymous,
missense, and loss of function (included nonsense, frameshift,
and splice) DNMs. Enrichment of DNMs in gene sets is tested
using a two-sample Poisson rate ratio test. The background rate
is the number of observed to expected DNMs in genes within the
denovolyseR probability table that are outside the gene-set being
tested.

The major source of SCZ trio data was from Howrigan et al.
[65]. This study combined DNMs from a new sample of Taiwanese
SCZ trios with previously published DNMs from other SCZ studies
[66–72] to give a total of 2772 trios. We combined these data with
SCZ DNMs from Rees et al. [73] number of trios [n] = 613), Wang
et al. [74] (N= 45) and Ambalavanan et al. [75] (N= 17). In total, we
had data on 3447 SCZ trios. ASD trio data was sourced from [76].
Intellectual disability and developmental disorder trio data was
sourced from multiple studies. The first is Genovese et al. [77]
which includes data on 192 trios with ID sourced from multiple
studies. Hamdan et al. [78] contained data on 309 trios with ID
and/or developmental delay. Chevarin et al. [79] contained data
on 60 trios with marfanoid habitus and intellectual disability
and finally, the Deciphering Developmental Disorders Study [80]
performed exome sequencing of 4293 trios with developmental
disorders. Chevarin and colleagues did not report syn DNMs,
therefore we did not test for enrichment of syn DNMs for the
DD/ID phenotype.

For each study, the data was downloaded from the Supple-
mentary Information. For the Deciphering Developmental Dis-
orders data, we filtered out DNMs with a posterior probability
score < 0.00781 as they reported to do the same [80]. DNM anno-
tations were re-coded to match the variant classes in the Den-
ovolyzeR built-in probability table (syn [synonymous], mis [mis-
sense], non [nonsense], frameshift and splice [canonical splice
site]). DNM annotations that did not fit into any of these classes
were removed (inframe, start-loss, and stop-loss).

Gene ontology overrepresentation analysis
GO overrepresentation analysis was performed using the meta
Database ConsensusPathDB web interface (http://cpdb.molgen.
mpg.de/). This tool determines P values by a hypergeometric test
using all HGNC symbols that are present in at least one GO
category as background. Q values are calculated using the false
discovery rate method [81].

Supplementary data
Supplementary data is available at HMG Journal online.
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2. Vrečar I, Innes J, Jones E. et al. Further clinical delineation of
the MEF2C haploinsufficiency syndrome: report on new cases
and literature review of severe neurodevelopmental disorders
presenting with seizures, absent speech, and involuntary move-
ments. J Pediatr Genet 2017;06:129–41.

3. Trubetskoy V, Pardiñas AF, Qi T. et al. Mapping genomic loci
implicates genes and synaptic biology in schizophrenia. Nature
2022;604:502–8.

4. Savage JE, Jansen PR, Stringer S. et al. Genome-wide asso-
ciation meta-analysis in 269,867 individuals identifies new
genetic and functional links to intelligence. Nat Genet 2018;50:
912–19.

5. Lee JJ, Wedow R, Okbay A. et al. Gene discovery and polygenic
prediction from a genome-wide association study of educa-
tional attainment in 1.1 million individuals. Nat Genet 2018;50:
1112–21.

6. Phan D, Rasmussen TL, Nakagawa O. et al. BOP, a regulator of
right ventricular heart development, is a direct transcriptional
target of MEF2C in the developing heart. Development 2005;132:
2669–78.

7. Adachi M, Lin P-Y, Pranav H. et al. Postnatal loss of Mef2c results
in dissociation of effects on synapse number and learning and
memory. Biol Psychiatry 2016;80:140–48.

8. Barbosa AC, Kim M-S, Ertunc M. et al. MEF2C, a transcription
factor that facilitates learning and memory by negative regu-
lation of synapse numbers and function. Proc Natl Acad Sci U S A
2008;105:9391–96.

9. Harrington AJ, Raissi A, Rajkovich K. et al. MEF2C regulates cor-
tical inhibitory and excitatory synapses and behaviors relevant
to neurodevelopmental disorders. Elife 2016;5:e20059.

10. Cosgrove D, Whitton L, Fahey L. et al. Genes influenced by MEF2C
contribute to neurodevelopmental disease via gene expression
changes that affect multiple types of cortical excitatory neu-
rons. Hum Mol Genet 2021;30:961–70.

11. Harrington AJ, Bridges CM, Berto S. et al. MEF2C Hypofunction in
neuronal and neuroimmune populations produces MEF2C hap-
loinsufficiency syndrome-like behaviors in mice. Biol Psychiatry
2020;88:488–99.

12. Telese F, Ma Q, Perez PM. et al. LRP8-Reelin-regulated neuronal
enhancer signature underlying learning and memory formation.
Neuron 2015;86:696–710.

13. Saunders A, Macosko EZ, Wysoker A. et al. Molecular diversity
and specializations among the cells of the adult mouse brain.
Cell 2018;174:1015–1030.e16.

14. Samocha KE, Robinson EB, Sanders SJ. et al. A framework for the
interpretation of de novo mutation in human disease. Nat Genet
2014;46:944–50.

15. Taussig R. Adenylyl cyclases. In William J. Lennarz and M.
Daniel Lane (eds.) Encyclopedia of Biological Chemistry. Elsevier,
pp. 42–46.

16. Bailey CP, Nicholls RE, Zhang X. et al. (2008) Gαi2 inhibition of
adenylate cyclase regulates presynaptic activity and unmasks
cGMP-dependent long-term depression at schaffer collateral-
CA1 hippocampal synapses. Learn Mem 2013;15:261–70.

17. Wu ZL, Thomas SA, Villacres EC. et al. Altered behavior and long-
term potentiation in type I adenylyl cyclase mutant mice. Proc
Natl Acad Sci 1995;92:220–24.

18. Zars T, Fischer M, Schulz R. et al. Localization of a short-term
memory in drosophila. Science (1979) 2000;288:672–75.

19. Martel G, Millard A, Jaffard R. et al. Stimulation of hippocam-
pal adenylyl cyclase activity dissociates memory consolidation
processes for response and place learning. Learn Mem 2006;13:
342–48.

20. Ritter SL and Hall RA. Fine-tuning of GPCR activity by receptor-
interacting proteins. Nat Rev Mol Cell Biol 2009;10:819–30.

21. Grammatopoulos DK. Insights into mechanisms of
corticotropin-releasing hormone receptor signal transduction.
Br J Pharmacol 2012;166:85–97.

22. Ramoz N, Hoertel N, Nobile B. et al. Corticotropin releasing
hormone receptor CRHR1 gene is associated with tianeptine
antidepressant response in a large sample of outpatients from
real-life settings. Transl Psychiatry 2020;10:378.

23. Cross-Disorder Group of the Psychiatric Genomics Consortium,
Electronic address: plee0@mgh.harvard.edu and Cross-Disorder
Group of the Psychiatric Genomics Consortium Genomic rela-
tionships, novel loci, and pleiotropic mechanisms across eight
psychiatric disorders. Cell 2019;179:1469–1482.e11.

24. Wang L, Li J, Shuang M. et al. Association study and muta-
tion sequencing of genes on chromosome 15q11-q13 identified
GABRG3 as a susceptibility gene for autism in Chinese Han
population. Transl Psychiatry 2018;8:152.

25. Okbay A, Wu Y, Wang N. et al. Polygenic prediction of educational
attainment within and between families from genome-wide
association analyses in 3 million individuals. Nat Genet 2022;54:
437–49.

26. Livingstone MS, Sziber PP and Quinn WG. Loss of calcium/
calmodulin responsiveness in adenylate cyclase of rutabaga, a
Drosophila learning mutant. Cell 1984;37:205–15.

27. Feany MB and Quinn WG. A neuropeptide gene defined by the
Drosophila memory mutant amnesiac. Science 1995;268:869–73.

28. Skoulakis EM, Kalderon D and Davis RL. Preferential expression
in mushroom bodies of the catalytic subunit of protein kinase A
and its role in learning and memory. Neuron 1993;11:197–208.

29. Castellucci VF, Nairn A, Greengard P. et al. Inhibitor of adenosine
3′:5′-monophosphate-dependent protein kinase blocks presy-
naptic facilitation in Aplysia. J Neurosci 1982;2:1673–81.

30. Abel T, Nguyen PV, Barad M. et al. Genetic demonstration of a
role for PKA in the late phase of LTP and in hippocampus-based
long-term memory. Cell 1997;88:615–26.

31. Iwasato T, Inan M, Kanki H. et al. Cortical adenylyl cyclase 1 is
required for thalamocortical synapse maturation and aspects of
layer IV barrel development. J Neurosci 2008;28:5931–43.

32. Wong ST, Athos J, Figueroa XA. et al. Calcium-stimulated adeny-
lyl cyclase activity is critical for hippocampus-dependent long-
term memory and late phase LTP. Neuron 1999;23:787–98.

33. Ferguson GD and Storm DR. Why calcium-stimulated adenylyl
cyclases? Phys Ther 2004;19:271–76.

34. Guillou J-L, Micheau J and Jaffard R. The opposite effects on
cysteamine on the acquisition of two different tasks in mice
are associated with bidirectional testing-induced changes in
hippocampal adenylyl cyclase activity. Behav Neurosci 1998;112:
900–8.

35. Bernabeu R, Bevilaqua L, Ardenghi P. et al. Involvement of
hippocampal cAMP/cAMP-dependent protein kinase signaling
pathways in a late memory consolidation phase of aversively
motivated learning in rats. Proc Natl Acad Sci 1997;94:7041–46.

36. Connolly JB, Roberts IJ.H, Armstrong JD. et al. Associative learning
disrupted by impaired Gs signalling in drosophila mushroom
bodies. Science 1996;274:2104–7.

37. Pineda VV, Athos JI, Wang H. et al. Removal of Giα1 constraints on
adenylyl cyclase in the hippocampus enhances LTP and impairs
memory formation. Neuron 2004;41:153–63.



3202 | Fahey et al.

38. Obi-Nagata K, Temma Y and Hayashi-Takagi A. Synaptic func-
tions and their disruption in schizophrenia: from clinical evi-
dence to synaptic optogenetics in an animal model. Proc Jpn Acad
Ser B Phys Biol Sci 2019;95:179–97.

39. Wang H, Ferguson GD, Pineda VV. et al. Overexpression of type-
1 adenylyl cyclase in mouse forebrain enhances recognition
memory and LTP. Nat Neurosci 2004;7:635–42.

40. Wang X, Tang X, Li M. et al. Regulation of neuroprotective
activity of myocyte-enhancer factor 2 by cAMP-protein kinase
A Signaling pathway in neuronal survival. J Biol Chem 2005;280:
16705–16713.

41. Risbrough VB and Stein MB. Role of corticotropin releasing factor
in anxiety disorders: A translational research perspective. Horm
Behav 2006;50:550–61.

42. Soto-Rivera CL and Majzoub JA. Adrenocorticotrophin. In:
Shlomo Melmed (ed) The Pituitary. Elsevier, pp. 47–83.

43. Chen Y, Dube CM, Rice CJ. et al. (2008) Rapid loss of den-
dritic spines after stress involves derangement of spine dynam-
ics by corticotropin-releasing hormone. J Neurosci 2017;28:
2903–11.

44. Maras PM and Baram TZ. Sculpting the hippocampus from
within: stress, spines, and CRH. Trends Neurosci 2012;35:
315–24.

45. Andres AL, Regev L, Phi L. et al. NMDA receptor activation and
Calpain contribute to disruption of dendritic spines by the stress
neuropeptide CRH. J Neurosci 2013;33:16945–16960.

46. Dohlman HG and Thorner J. RGS proteins and signalling by
heterotrimeric G proteins. J Biol Chem 1997;272:3871–74.

47. Anderson GR, Posokhova E and Martemyanov KA. The R7 RGS
protein family: multi-subunit regulators of neuronal G protein
signaling. Cell Biochem Biophys 2009;54:33–46.

48. Stewart A, Maity B, Wunsch AM. et al. Regulator of G-protein sig-
naling 6 (RGS6) promotes anxiety and depression by attenuating
serotonin-mediated activation of the 5-HT1Areceptor-adenylyl
cyclase axis. FASEB J 2014;28:1735–44.

49. Bifsha P, Yang J, Fisher RA. et al. Rgs6 is required for adult
maintenance of dopaminergic neurons in the ventral substantia
Nigra. PLoS Genet 2014;10:e1004863.

50. Luo Z, Ahlers-Dannen KE, Spicer MM. et al. Age-dependent nigral
dopaminergic neurodegeneration and α-synuclein accumula-
tion in RGS6-deficient mice. JCI Insight 2019;5:e126769. https://
doi.org/10.1172/jci.insight.126769.

51. Yang S, Guo X, Dong X. et al. GABAA receptor subunit gene poly-
morphisms predict symptom-based and developmental deficits
in Chinese Han children and adolescents with autistic spectrum
disorders. Sci Rep 2017;7:3290.

52. Menold MM, Shao Y, Wolpert CM. et al. Association analysis
of chromosome 15 GABAA receptor subunit genes in autistic
disorder. J Neurogenet 2001;15:245–59.

53. Sutcliffe JS and Nurmi EL. Genetics of childhood disorders:
XLVII. Autism, part 6: duplication and inherited susceptibility of
chromosome 15q11-q13 genes in autism. J Am Acad Child Adolesc
Psychiatry 2003;42:253–56.

54. Blatt GJ, Fitzgerald CM, Guptill JT. et al. Density and distri-
bution of hippocampal neurotransmitter receptors in autism:
an autoradiographic study. J Autism Dev Disord 2001;31:
537–43.

55. McCauley JL, Olson LM, Delahanty R. et al. A linkage disequilib-
rium map of the 1-Mb 15q12 GABAA receptor subunit cluster and
association to autism. Am J Med Genet 2004;131B:51–59.

56. Chen S, Zhou Y, Chen Y. et al. fastp: an ultra-fast all-in-one
FASTQ preprocessor. Bioinformatics 2018;34:i884–i890.

57. Li H and Durbin R. Fast and accurate short read alignment with
Burrows-Wheeler transform. Bioinformatics 2009;25:1754–60.

58. Keel BN and Snelling WM. Comparison of Bburrows-Wheeler
transform-based mapping algorithms used in high-throughput
whole-genome sequencing: application to illumina data for live-
stock genomes. Front Genet 2018;9:35.

59. Zhang Y, Liu T, Meyer CA. et al. Model-based analysis of ChIP-Seq
(MACS). Genome Biol 2008;9:R137.

60. Wang S, Sun H, Ma J. et al. Target analysis by integration of
transcriptome and ChIP-seq data with BETA. Nat Protoc 2013;8:
2502–15.

61. de Leeuw CA, Mooij JM, Heskes T. et al. MAGMA: gener-
alized gene-set analysis of GWAS data. PLoS Comput Biol
2015;11:e1004219.

62. de Leeuw CA, Neale BM, Heskes T. et al. The statistical properties
of gene-set analysis. Nat Rev Genet 2016;17:353–64.

63. de Leeuw CA, Stringer S, Dekkers IA. et al. Conditional and
interaction gene-set analysis reveals novel functional pathways
for blood pressure. Nat Commun 2018;9:3768.

64. Ware JS, Samocha KE, Homsy J. et al. Interpreting de novo varia-
tion in human disease using denovolyzeR. Curr Protoc Hum Genet
2015;87:7.25.1–7.25.15.

65. Howrigan DP, Rose SA, Samocha KE. et al. Exome sequenc-
ing in schizophrenia-affected parent-offspring trios reveals risk
conferred by protein-coding de novo mutations. Nat Neurosci
2020;23:185–93.

66. Girard SL, Gauthier J, Noreau A. et al. Increased exonic de
novo mutation rate in individuals with schizophrenia. Nat Genet
2011;43:860–63.

67. Xu B, Roos JL, Dexheimer P. et al. Exome sequencing supports a de
novo mutational paradigm for schizophrenia. Nat Genet 2011;43:
864–68.

68. Xu B, Ionita-Laza I, Roos JL. et al. De novo gene mutations high-
light patterns of genetic and neural complexity in schizophre-
nia. Nat Genet 2012;44:1365–69.

69. Gulsuner S, Walsh T, Watts AC. et al. Spatial and temporal map-
ping of de novo mutations in schizophrenia to a fetal prefrontal
cortical network. Cell 2013;154:518–29.

70. Guipponi M, Santoni FA, Setola V. et al. Correction: exome
sequencing in 53 sporadic cases of schizophrenia identifies 18
putative candidate genes. PLoS One 2015;10:e0141630.

71. McCarthy SE, Gillis J, Kramer M. et al. De novo mutations in
schizophrenia implicate chromatin remodeling and support a
genetic overlap with autism and intellectual disability. Mol Psy-
chiatry 2014;19:652–58.

72. Fromer M, Pocklington AJ, Kavanagh DH. et al. De novo mutations
in schizophrenia implicate synaptic networks. Nature 2014;506:
179–84.

73. Rees E, Han J, Morgan J. et al. De novo mutations identified by
exome sequencing implicate rare missense variants in SLC6A1
in schizophrenia. Nat Neurosci 2020;23:179–84.

74. Wang Q, Li M, Yang Z. et al. Increased co-expression of
genes harboring the damaging de novo mutations in Chinese
schizophrenic patients during prenatal development. Sci Rep
2015;5:18209.

75. Ambalavanan A, Girard SL, Ahn K. et al. De novo variants in
sporadic cases of childhood onset schizophrenia. Eur J Hum Genet
2016;24:944–48.

76. Satterstrom FK, Kosmicki JA, Wang J. et al. Large-scale exome
sequencing study implicates both developmental and func-
tional changes in the neurobiology of autism. Cell 2020;180:
568–584.e23.

https://doi.org/10.1172/jci.insight.126769
https://doi.org/10.1172/jci.insight.126769


Genes positively regulated by Mef2c | 3203

77. Genovese G, Fromer M, Stahl EA. et al. Increased burden of ultra-
rare protein-altering variants among 4,877 individuals with
schizophrenia. Nat Neurosci 2016;19:1433–41.

78. Hamdan FF, Srour M, Capo-Chichi J-M. et al. De novo muta-
tions in moderate or severe intellectual disability. PLoS Genet
2014;10:e1004772.

79. Chevarin M, Duffourd Y, A. Barnard R. et al. Excess of de novo
variants in genes involved in chromatin remodelling in patients

with marfanoid habitus and intellectual disability. J Med Genet
2020;57:466–74.

80. Deciphering Developmental Disorders Study Prevalence and
architecture of de novo mutations in developmental disorders.
Nature 2017;542:433–38.

81. Benjamini Y and Hochberg Y. Controlling the false discovery
rate: A practical and powerful approach to multiple testing.
J R Stat Soc B Methodol 1995;57:289–300.


	 Genes positively regulated by Mef2c in cortical neurons are enriched for common genetic variation associated with IQ and educational attainment
	 Introduction
	 Results
	 Discussion
	 Materials and Methods
	 Supplementary data
	 Funding


