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Unappreciated subcontinental admixture in
Europeans and European Americans and
implications for genetic epidemiology
studies

Mateus H. Gouveia 1, Amy R. Bentley 1, Thiago P. Leal2,
Eduardo Tarazona-Santos3, Carlos D. Bustamante4, Adebowale A. Adeyemo 1,
Charles N. Rotimi 1 & Daniel Shriner 1

European-ancestry populations are recognized as stratified but not as
admixed, implying that residual confounding by locus-specific ancestry can
affect studies of association, polygenic adaptation, and polygenic risk scores.
We integrate individual-level genome-wide data from ~19,000 European-
ancestry individuals across 79 European populations and five European
American cohorts. We generate a new reference panel that captures ancestral
diversity missed by both the 1000 Genomes and Human Genome Diversity
Projects. Both Europeans and European Americans are admixed at the sub-
continental level, with admixture dates differing among subgroups of Eur-
opean Americans. After adjustment for both genome-wide and locus-specific
ancestry, associations between a highly differentiated variant in LCT
(rs4988235) andheight or LDL-cholesterolwere confirmed tobe false positives
whereas the association between LCT and body mass index was genuine. We
provide formal evidence of subcontinental admixture in individuals with
European ancestry, which, if not properly accounted for, canproduce spurious
results in genetic epidemiology studies.

Human genetic studies have primarily considered admixed popula-
tions to have resulted from interbreeding between two or more con-
tinentally separated populations1–3. However, continental ancestry is
not necessarily a single homogenous component of genetic diversity,
but rather can be a composite of diverse subcontinental ancestries4,5.
In some instances, differentiation between intra-continental popula-
tions is on par with or higher than differentiation between inter-
continental populations1,6. Also, there are examples from pharmaco-
genetics of variants that are differentiated at the intra-continental
level, such as in the case of abacavir hypersensitivity syndrome, for

which the causal allele (HLA-B*5701) has a prevalence of 13.6% among
Maasai in Kenya but a prevalence of ~0% among Yoruba in Nigeria7.

Despite genetic studies highlighting a clear pattern of North-to-
South genetic variation in Europe8–10 and strong evidenceof admixture
within Europe by ancient DNA analysis11,12, European-ancestry popula-
tions are generally treated in associationmodels as stratified but not as
admixed at the subcontinental level. As a result, genetic epidemiology
studies of Europeans or European Americans usually control for
potential confounding effects of population stratification using
genome-wide ancestry estimated by principal components analysis13,
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but do not control for locus-specific ancestry, which is inherent to
admixed populations14. Potential consequences are that detection of
causal genetic variation is hampered and estimation of effect sizes can
be biased, leading to further negative consequences such as mis-
estimation of polygenic adaptation15 and poor predictive performance
of polygenic risk scores16.

Recently developed approaches have enabled the use of genome-
wide data (either array-based genotype or whole genome sequence
data) to assess admixture at two levels: genome-wide ancestry (also
known as global ancestry)13,17,18, which is the individual’s ancestry
averaged across the entire genome, and locus-specific ancestry (also
known as local ancestry)19–21, which allows for inference of an indivi-
dual’s ancestry at each locus. The power, resolution, and specificity of
disease or trait mapping studies can be improved by leveraging both
genome-wide and locus-specific ancestries3,22,23. To assess both
genome-wide and locus-specific ancestries in admixed individuals,
present-day populations are used as proxies for ancestral populations
that serve as references for ancestry estimation. Considering that ~96%
of participants in genome-wide association studies (GWAS) have Eur-
opean ancestry24, a comprehensive analysis is needed to evaluate the
adequacy of European reference panels for ancestry analysis using
European-ancestry individuals.

The prevalence of lactase persistence varies widely across Eur-
ope and the most strongly associated variant rs4988235 in the lac-
tase gene (LCT) has been reported to be under positive selection and
associated with height, body mass index (BMI), and low-density
lipoprotein (LDL)25–28. The SNP rs4988235 is one of the most highly
differentiated variants in Europe29, with derived allele (A) frequencies
ranging from 93.1% in Swedes to 2.9% in Sardinians30. Importantly,
rs4988235 and height are well known to covary following a north-to-
south axis31, and the association between rs4988235 and height has
been suggested to be spurious based on attenuation following
adjustment for genome-wide ancestry27. Nonetheless, there are no
association studies in European-ancestry populations that control for
confounding at both the genome-wide and locus-specific ancestry
levels to test the validity of the association between rs4988235 and
reported associated traits.

To test for the existence of subcontinental ancestries within Eur-
ope, we integrated genome-wide data from 1,216 individuals across 79
European populations. Then, to examine population structure and
admixture, we integrated genome-wide data from 17,669 European
Americans fromfive genetic epidemiology cohorts in theUS. Finally, to
illustrate the potential implications of confounding by subcontinental
ancestry and admixture, we interrogated the association between
rs4988235 and height, LDL-cholesterol, and BMI.

We found that the 1000 Genomes and Human Genome Diversity
Projects provided incomplete coverage of European ancestries, so we
generated a new reference panel to capture additional European
ancestral diversity. Our admixture analyses yielded formal evidence
that European-ancestry individuals are admixed at the subcontinental
level, with admixture dates differing among European American sub-
groups. After adjustment for both genome-wide and locus-specific
ancestry, previously reported associations between rs4988235 and
height or LDL were no longer statistically significant, strongly sup-
porting that they are false positives due to uncorrected stratification.
We observed that better fits can be obtained when models were
adjusted for principal components (PCs) derived from projection of
EuropeanAmericans onto our new referencepanel, rather than for PCs
derived from study-specific unsupervised analysis. Altogether, this
study indicates that full adjustment for subcontinental European
admixture (at both genome-wide and locus-specific levels) should
become best practice in genetic association studies using European-
ancestry individuals, including the UK Biobank32 in Europe and the All
of Us Research Program33 and the VA Million Veteran Program34 in the
United States.

Results
Reference panels of European diversity
We generated a new reference panel capturing genetic diversity from
79 European populations from five population genetics studies: the
1000 Genomes Project35, the Human Genome Diversity Project
(HGDP)36, the Human Origins dataset37, a study of the Caucasus
Mountains38, and a study of the Jewish Diaspora39 (Fig. 1A and Sup-
plementary Data 1). After quality control to reduce batch effects, our
European panel included 1,216 unrelated individuals and 104,414
genotyped SNPs. Principal component analysis (PCA)13 showed that
North Europeans (e.g., Finnish, Lithuanian, and Estonian) vs Southeast
Europeans (e.g., Armenian, Georgian Jew, and Georgian Megrel)
represented the extremes along thefirst principal component (Fig. 1B).
Along the second principal component, Southwest Europeans (e.g.,
Sardinian, Basque, and Spanish) vs Southeast Europeans (e.g., South
Caucasus) represented the extremes. Subsequent principal compo-
nents separated population-specific genetic variability (Fig. S1). To
compare our panel with commonly used European reference panels
from the Human Genome Diversity Project (HGDP)36 and the 1000
Genomes Project35,36, we calculated convex hull areas40 defined by the
first twoprincipal components (Fig. 1B, C),which captured 1.06%of the
genetic variance. Compared to our panel, the 1000 Genomes Project
and the HGDP covered 26.8% and 61.3% of European diversity,
respectively, while the combination of the 1000 Genomes Project and
the HGDP covered 77.3% (Fig. 1C). These results indicate that the 1000
Genomes Project and the HGDP, separately and combined, provide
incomplete coverage of European genetic diversity.

Subcontinental stratification in individuals with European
ancestry
To expand and refine our understanding of subcontinental stratifica-
tion and admixture in European-ancestry populations, we integrated
genome-wide genotype data from approximately 19,000 European-
ancestry individuals (Fig. 2). These data included our European panel
(1216 unrelated individuals) and 17,669 European Americans from five
genetic epidemiology cohorts in the US: Atherosclerosis Risk in
Communities (ARIC, n = 9633), Coronary Artery Risk Development in
Young Adults (CARDIA, n = 1675), Framingham Heart Study (FHS,
n = 2451), Genetic Epidemiology Network of Arteriopathy (GENOA,
n = 1384), and Multi-Ethnic Study of Atherosclerosis (MESA, n = 2526).
To assess continental-level structure, we evaluated our European-
ancestry dataset with a worldwide reference panel (Fig. S2). Most
Europeans formed a discrete cluster along the first two principal
components, as previously observed35,36. Similarly, by projecting Eur-
opean Americans (Supplementary Data 2) onto the worldwide refer-
ence panel, we observed that >99% of European Americans clustered
with European reference individuals, with few individuals distributed
along the first principal component (European-African gradient) or the
second principal component (European-Asian gradient). These results
suggest that the Europeans included in our panel represent a cluster in
relation to worldwide genetic diversity and that European Americans
in genetic epidemiology cohorts in the US have small to negligible
population stratification at the inter-continental scale.

Next, to evaluate European subcontinental stratification in Eur-
opean American cohorts, we projected individuals from each Eur-
opean American cohort onto our European reference panel,
represented by the first two principal components. We calculated that
European American cohorts collectively covered 68.2% of European
diversity in our panel (Fig. 2), with differential coverage by cohort:
55.7% inMESA, 51.2% in ARIC, 44.1% in CARDIA, 28.4% in FHS, and 9.7%
in GENOA. The ARIC, CARDIA, FHS, and MESA individuals formed at
least three clusters: one with North Europeans (e.g., British and Scan-
dinavian), one with Southeast Europeans (e.g., Ashkenazi Jew and
Romanian Jew), and one overlapping Finnish individuals. GENOA
individuals mostly overlapped British or Scandinavian reference
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individuals, with few individuals overlapping South Europeans. Most
FHS samples overlapped with or were between North and South Eur-
opeans, with a large number of individuals clustering with Italian
reference individuals. Most European Americans clustering with Fin-
nish reference samples were from the ARIC cohort.

Subcontinental admixture in individuals with European
ancestry
Unsupervised analysis with ADMIXTURE17 using our European refer-
ence panel identified the most likely number of ancestry clusters as
three (Fig. 3A), suggesting that Europeans have three-way admixture
among North, Southwest, and Southeast Europeans. The stacked bar
plot of mixture proportions showed that the North European-
associated ancestry cluster decreased along the north-to-south

geographic direction (Fig. 3A). Formal correlation tests between
population ancestry means and geographic coordinates revealed that
latitude was significantly correlated (p < 2.85 × 10−8) with the North
European-associated ancestry cluster (Spearman’s rho =0.814), and
longitude was correlated with Southwest- (Spearman’s rho = −0.859)
and Southeast-associated (Spearman’s rho =0.579) European ancestry
clusters (Fig. 3B). We observed similar levels of genetic differentiation
(FST) between the inferred European ancestry clusters: FST = 0.033
between North and Southwest, FST = 0.032 between North and
Southeast, and FST = 0.028 between Southwest and Southeast. For
these comparisons, European-associated ancestry clusters are geneti-
cally homogeneous populations identified by ADMIXTURE, not real-
world populations. To put these amounts of genetic differentiation
into perspective, FST estimates between European ancestry clusters are

Fig. 1 | European reference panels and coverage of European genetic diversity.
A) Map of Europe showing the geographic location of samples from 79 European
populations. The map was drawn using the R package “maps” version 3.4.1. B) The
first two principal components (PC1 and PC2) of genetic diversity and the percent

variance explained. C) Coverage of genetic diversity over the first two principal
components (convex hull area). 1000G = 1000 Genomes Project, HGDP Human
Genome Diversity Project.
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comparable to FST between British (GBR) and either Mexican (MXL,
which have ~50% Native American ancestry, FST = 0.031) or Punjabi in
Pakistan (PJL, who have >70% South Asia Ancestry, FST = 0.027) sam-
ples (Supplementary Data 3). Additionally, FST estimates between
European ancestry clusters are at least three-fold higher than FST
betweenMandenka fromGambia inWest Africa and Luhya fromKenya
from East Africa (FST = 0.011, Supplementary Data 3). Even when
comparing real-world European populations, FST estimates between
Finnish in North Europe and Armenians or Georgians in South Europe
are approximately twofold higher (FST ~ 0.02) than FST between Man-
denka and Luhya (FST = 0.011), i.e., betweenWest andEastAfricans, and
not as high as FST between inferred European ancestry clusters. The FST
estimates in our analysiswere in agreementwith FST values reportedby
the 1000 Genomes Project35.

Supervised ADMIXTURE17 analysis of European Americans (using
individuals with ≥90% of one of three geography-associated European
ancestry clusters as parentals) showed patterns of European ancestry
clusters that differed by cohort (Fig. 4 and Supplementary Data 4).
GENOA had the highest mean proportion of the North European
ancestry cluster (44%, SE = 3.9%) and the lowest proportion of the
Southeast European ancestry cluster (7%, SE = 3%), while FHS had the
lowest mean proportion of the North European ancestry cluster
(29.9%, SE = 3.7%). MESA had the highest proportion of the Southeast
European ancestry cluster (25.4%, SE = 3.1%), followed by FHS (19.7%
SE = 3%). The admixture patterns in the European American cohorts
were consistent with the projection analysis (Fig. 2), e.g., the GENOA
individuals clustered tightly with British and Scandinavian individuals
on the first principal component. By testing genetic admixture using f3

statistics41, using Europeans as admixture sources and European
Americans as admixture targets, we obtained formal evidence for
admixture in the history of European Americans (Supplementary Data
5A–E). Also, we observed positive correlation between FST (a mea-
surement of North-South European differentiation) and FIT (a mea-
surement of inbreeding) at SNPs throughout the genome in European
American cohorts, consistent with subcontinental ancestry-related
assortative mating in European Americans (Supplementary Data 6).
Our results confirm the presence of subcontinental population struc-
ture in both Europeans and European Americans, that this structure
reflects mixed ancestry in the vast majority of individuals, and that
mixed ancestry reflects admixture rather thandiscrete subpopulations
in Europe.

Admixture dating in European Americans
Todate admixture in EuropeanAmericans, we first applied a clustering
approach42 to the first two principal components and inferred that
European Americans likely cluster within three subgroups of indivi-
duals (Fig. 5A and Fig. S3). Projection analysis of European Americans
onto our European reference panel revealed that European Americans
were widely distributed across a north-south axis, with centroids of
inferred subgroups related to North (Subgroup N), Southwest (Sub-
group SW), and Southeast (Subgroup SE) Europeans (Fig. 5B). The
highest proportion of ancestry in Subgroup N individuals was North
European ancestry (54.5%). Similarly, the highest proportions of
ancestry in Subgroup SWand Subgroup SE individualswere Southwest
European ancestry (53.7%) and Southeast European ancestry (71.2%),
respectively. Next, we used MALDER43 to infer admixture times for

Fig. 2 | Projection analysisof EuropeanAmericans ontoour European reference
panel.We plotted the convex hull area for all cohorts combined and for each
European American cohort. The full legend as well as the geographic location of
samples from 79 European populations can be found in Fig. 1. Convex hull area =
Coverage of genetic diversity over the first two principal components. European

Americans cohorts in the US: Atherosclerosis Risk in Communities (ARIC), Cor-
onary Artery Risk Development in Young Adults (CARDIA), Framingham Heart
Study (FHS), Genetic Epidemiology Network of Arteriopathy (GENOA), and Multi-
Ethnic Study of Atherosclerosis (MESA).
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individualswithin each of the three subgroups of EuropeanAmericans.
We observed significant admixture dating for all three subgroups, with
subgroup SE yielding an admixture date ~10 generations more recent
(42.00 generations, SE = 6.82) than admixture dates for subgroup SW
(54.28 generations, SE = 10.43) and subgroup N (50.89 generations,
SE = 14.26). As a confirmatory analysis, we used LaNeta44 for admixture
dating in European Americans, and we observed similar admixture
times as inferred by MALDER (Supplementary Data 7).

Implications of subcontinental admixture for association
analysis
To understand the impact of subcontinental admixture in association
studies and approaches to correct potential confounding, we investi-
gated the classical association between LCT (rs4988235) and height,
which has been claimed to be a false positive result due to
stratification27. In addition, we evaluated the associations of rs4988235
with BMI and LDL, which were recently identified in large GWASmeta-
analyses using primarily European-ancestry individuals (up to 500K
samples)14,25,26. These studies either adjusted association models for
genome-wide ancestry using the first 10 principal components26 or

there was no evidence of adjustment for European population
stratification25. Using our integrated set of EuropeanAmerican cohorts
(Supplementary Data 2), we replicated the previously reported asso-
ciations between rs4988235 and height, LDL, and BMI when models
were not adjusted for principal components, i.e., genome-wide
ancestry (Fig. 6 and Supplementary Data 8). Different levels of
adjustment for population structure (the genetic relatedness matrix,
genome-wide ancestry [PCs], and/or locus-specific posterior prob-
abilities of subcontinental European ancestry) attenuated the asso-
ciations of rs4988235 with height and LDL (Fig. 6A, B and
Supplementary Data 8). Importantly, when models were fully adjusted
for both genome-wide and locus-specific subcontinental European
ancestry, the associations of rs4988235 with height and LDL were
completely eliminated, indicating that the unadjusted associations
were false positives. In contrast, the association between rs4988235
and BMI remained weakly significant after adjustment for both
genome-wide and locus-specific ancestry (Fig. 6C and Supplemen-
tary Data 8).

We also performed cohort-specific association analysis between
rs4988235 and height, LDL, and BMI, (Supplementary Data 9–11).

Fig. 3 | Subcontinental ancestries in Europe and correlation of ancestry with
geography. A) Bar plot showing ancestry proportions in the European populations
and a cross-validation plot supporting K = 3 as the most likely number of ancestry
clusters. Purple, orange, and cyan colors represent ancestry clusters associated
with North, Southwest, and Southeast European populations, respectively.

Individual Bar plots were sorted in descending order of the amount of North Eur-
opean ancestry (Purple), and populations are sorted in descending order of the
average of North European ancestry.B) Correlation plots depicting Spearman’s rho
between ancestry proportions and geographic coordinates. Colored lines repre-
sent fitted linear regressions. p value was derived from a two-sided test.
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When models were not adjusted for population stratification, the
association between rs4988235 and height was significant in ARIC,
CARDIA, FHS, and MESA but not in GENOA (Supplementary Data 9).
The lack of association in GENOA might be explained by a small
amount of ancestral heterogeneity and/or by small sample size. After
adjustment for genome-wide ancestry, we observed association
between rs4988235 and height in CARDIA but not in the other four
cohorts. After adjustment for genome-wide and locus-specific

ancestry, weobservedno association between rs4988235 andheight in
all five European American cohorts (Supplementary Data 9). Similarly
for LDL, we observed some cohort-specific associations when models
were not fully corrected, and that full adjustment attenuated or
eliminated significance in all cohorts (Supplementary Data 10). These
results imply that full ancestry adjustment (genome-wide and locus-
specific subcontinental ancestry) may facilitate correction for residual
stratification and avoidance of false positives in single studies.

Fig. 5 | Substructure and admixture dating in European Americans. A) The
number of clusters (k) was estimated using gap statistics (the error bars represent
95% confidence intervals), based on the first two principal components (PCs)
derived from the B) projection analysis of European Americans (15,917 unrelated
individuals). We estimated that European Americans are distributed across three
subgroups representing North (N), Southwest (SW), and Southeast (SE) Europeans.

C) Bar plot representing ancestry profiles within each estimated cluster of Eur-
opean Americans. The error bars represent standard deviation. D) Admixture
dating across clusters of European Americans. Point estimates and standard errors
(represented by the error bars) of statistically significant admixture dates are
shown on the horizontal axis.

Fig. 4 | Ancestry proportions in European Americans. Bar plot representation of
individual ancestry proportions inferred from supervised analysis. Purple, orange,
and cyan colors represent ancestry clusters associated with North, Southwest, and
Southeast European populations, respectively. Individual Bar plots were sorted in
descending order of the amount of North ancestry cluster (Purple). European

Americans cohorts in the US: Atherosclerosis Risk in Communities (ARIC), Cor-
onary Artery Risk Development in Young Adults (CARDIA), Framingham Heart
Study (FHS), Genetic Epidemiology Network of Arteriopathy (GENOA), and Multi-
Ethnic Study of Atherosclerosis (MESA).
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To evaluate if subcontinental admixture could affect associations
at other genetic loci, we performed genome-wide association analysis
(GWAS) of height using models unadjusted and adjusted for genome-
wide and locus-specific subcontinental ancestry (Fig. S4). As with
rs4988235, we found that the associations with height for SNPs that
were highly differentiated within Europe29 were attenuated after
adjustment for subcontinental admixture (Supplementary Data 12).
Also, we identified 27 loci with signals of association with height in
models unadjusted for locus-specific ancestry that were no longer
statistically significant after adjustment for locus-specific ancestry
(Supplementary Data 13 and Fig. S5). After interrogating the GWAS
Catalog45, noneof these27 lociwerepreviously identified as associated
with height. The additional adjustment for locus-specific ancestry in
models accounting for genome-wide ancestry did not show a sig-
nificant impact as assessed by genomic control (Fig. S4), but did
control for confounding due to population stratification at genetic loci
with locus-specific ancestry effects.

It is commonpractice in genetic association studies to account for
genome-wide ancestry using principal components derived from
study-specific unsupervised analysis (population-specific PCA). Here,
we tested the approach of deriving principal components from pro-
jection of target individuals onto an external reference panel (projec-
tion or supervised PCA). To evaluate the similarity between these two
approaches using our European American data, we performed Man-
tel’s correlation test between individuals’ genetic distances computed
from the top twenty principal components obtained from the unsu-
pervised and projection approaches. We observed moderate correla-
tion in four studies (Mantel’s rho from 0.46 to 0.53, p <0.001), with
GENOA not showing a significant correlation (Supplementary Data 14).
Differences between these two PCA approaches may have led to dif-
ferences in howwell confoundingwas controlled. During testing of the
association between rs4988235 and height, we observed better model
fits (ΔAIC up to 12.45)46 for some cohorts when models were adjusted
for projection-derived principal components compared to study-
specific principal components (Supplementary Data 9). For the inte-
grated data set, study-specific principal components yielded better
model fits than projection-derived principal components (Supple-
mentary Data 8).

Discussion
The existence of subcontinental-level ancestries hasbeen documented
within Africa and Asia4,47–49, yet the presence of subcontinental
ancestries within Europe is not well appreciated. We compiled
genome-wide genotype and sequence data from geographically
diverse Europeans and European Americans to investigate
subcontinental-level ancestries and admixture in European-ancestry
individuals. We also explore the consequences of different strategies
for addressing ancestry in genetic epidemiology studies. Our study has
four major results, described below.

First, we created a new reference panel of European genetic
diversity by combining five genome-wide data sets35–39. We showed
that panels based on the 1000 Genomes Project and the Human
GenomeDiversity Project, separate or combined, provided incomplete
coverage of genetic diversity among Europeans or the European
component of European Americans compared to our new reference
panel. To facilitate genome-wide ancestry estimates, we provide as a
research resource a reference SNP matrix of subcontinental ancestry-
specific allele frequencies (https://github.com/mateushg1/CRGGH/).
This resource allows for estimation of subcontinental ancestry pro-
portions by projection analysis based on publicly available, aggre-
gated, andnon-identifiabledata. The end-user does not need to access,
clean, integrate, or analyze individual-level reference data. Addition-
ally, we made available a detailed tutorial for performing ADMIXTURE
and PCA projection analyses and using locus-specific ancestry pos-
terior probabilities as covariates in GWAS analysis using PLINK 2.350.

Second, our admixture analyses yielded formal evidence that
European-ancestry individuals are admixed at the subcontinental level.
Moreover, our results support the occurrence of subcontinental
ancestry-related assortative mating as a social factor that shaped the
genetic structure of European Americans in the US51. Using multiple
approaches to infer admixture, we showed that European-ancestry
individuals are three-way admixed with wide variation in ancestry
proportions. The demonstration that European Americans are ances-
trally heterogeneous may have implications for calibrating locus-
specific ancestry analysis19 with respect to the number of generations
since admixture began. Most recent admixture dates estimated for
European Americans corresponded to the large-scaleMigration Period
in Europe (300–800 AD)52, and were consistent with gene flow after
the end of Roman Empire described in ancient DNA studies of the
Viking Age11 and Anglo-Saxon migrations12. A limitation of our study is
that currentmethods for dating admixture have a limit of resolutionof
approximately 100 generations and tend to be biased toward more

Fig. 6 | Forest plots showing the association between rs4988235 and multiple
traits, accounting for different levels of control of population stratification. A)
Height, B) LDL, and C) BMI. Forest plots show β values (95% confidence intervals
represented by the error bars) and two-sided p values derived from linear mixed
models. GRM genetic relatedness matrix, Ref_PCs PCs derived from a projection of
individuals onto an ancestral reference panel, Pop_PCs PCs derived from within-
population unsupervised PCA analysis, Local_Anc locus-specific ancestry.
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recent admixture events. Another limitation of our study is a lack of
ancestrally homogeneous reference populations or individuals corre-
sponding to the Southeast European ancestry component.

Previous work has described projection analyses of ancient DNA
samples in terms of present-day ancestries53. Southeastern European
ancestry mainly represents descent from early Neolithic farmers from
Anatolia who carried predominantly Y chromosome haplogroup G2a.
Southwestern Europeanancestrymainly represents descent fromEarly
to Middle Bronze Age southern steppe peoples (north and east of the
Black Sea)who carried predominantly Y chromosomehaplogroupR1b.
Northern European ancestry mainly represents descent from Late
Bronze Age northern steppe peoples (north and east of the Caspian
Sea) who carried predominantly Y chromosome haplogroup R1a.
Other ancestries not of European origin, such as Arabian, North Afri-
can, and North Asian ancestries, have contributed to lesser extents to
present-day Europe. Additionally, we have reconstructed the phylo-
geny of present-day ancestries47. One key inference from that recon-
struction is that the ancestry reflected in early Neolithic farmers from
Anatolia is likely the most recent common ancestor of present-day
Southwestern European and Southeastern European aswell as Arabian
and North African ancestries.

Third, studies of European-ancestry individuals have reported
that genetic variants, principally rs4988235, in the lactase gene (LCT)
are associated with height, BMI, and LDL25,26,54. However, the associa-
tion between rs4988235 and height has been suggested to be spurious
due to uncorrected genome-wide ancestry27. Adjustment for genome-
wide ancestry may not be sufficient to avoid false positive results and
canmask true associations if ancestry is associatedwith the outcome55.
Consistent with known potential confounding effects of ancestry3,56,
we demonstrated that the lack of adjustment for both genome-wide
and locus-specific ancestry can produce false positives in association
studies using European-ancestry individuals. By adjusting our models
for locus-specific ancestry in addition to genome-wide ancestry,
associations of rs4988235 with height and LDL were eliminated. In
contrast, the association between rs4988235 and BMI remained after
correcting for both genome-wide and locus-specific ancestry, sug-
gesting an effect on weight but not on height. These results suggest
that residual confounding by subcontinental European ancestry can
produce spurious associations in genetic association studies, with
consequences for estimation of polygenic adaptation15 and polygenic
risk scores16 and for fine-mapping of genetic associations. Importantly,
our results warrant further analyses on the impact of unmodeled
European admixture on GWAS, polygenic adaptation, and polygenic
risk scores in European-ancestry individuals, including those in large
biobanks suchas theUKBiobank32 in Europe and the All ofUs Research
Program33 and the VA Million Veteran Program34 in the United States.

Fourth, for small studies, we tended to observe better model fit
with adjustment for principal components derived from supervised
analysis based on a common reference panel rather than for principal
components derived from study-specific unsupervised analyses.
However, the performance of unsupervised analysis approached or
exceeded the performance of supervised analysis as the genetic
diversity covered by the sample data approached or exceeded the
genetic diversity covered by the external reference panel. European
genetic diversity in our full panel covered by European American
cohorts ranged from 9.7% to 55.7% whereas coverage reached 68.2%
when all cohorts were combined. This result indicates that GWAS
meta-analyses in which individual-level data cannot be or are not
shared across studies should consider supervised analysis given a
common reference. This recommendation does not dependon sample
size, as even data sets on the scale of large biobanks do not necessarily
cover a large proportion of ancestral diversity.

In conclusion, we demonstrated that European-ancestry indivi-
duals are admixed at the subcontinental level. Subcontinental admix-
ture in Europeans and European Americans, if not properly accounted

for, can produce false positive associations in genetic epidemiology
studies due to incomplete correction for confoundingbyancestry.Our
study highlights the need for full control, at both genome-wide and
locus-specific ancestry levels, for confounding in Europeans and Eur-
opean Americans. Potential consequences of residual confounding by
subcontinental ancestry include the misestimation of polygenic
adaptation and poor performance of genetic or polygenic risk scores.

Methods
Samples
We compiled genome-wide data from five different studies: the 1000
GenomesProject35, theHumanGenomeDiversity Project (HGDP)36, the
Human Origins dataset37, a study of the Caucasus Mountains38, and a
study of the Jewish Diaspora39 (Fig. 1A and Supplementary Data 1).
Using these data, we created a data set that included 4796 individuals
(worldwide reference panel), fromwhichwe extracted 1216 individuals
from 79 European populations (European reference panel). We ana-
lyzed genome-wide array and phenotypic data from 17,684 European
Americans from five genetic epidemiology cohorts, for which
access was granted through dbGaP57: ARIC (phs000090.v1.p1),
CARDIA (phs000285.v3.p2), FHS (phs000007.v32.p13), GENOA
(phs000379.v1.p1), and MESA (phs000209.v13.p3).

Data curation
To reducebatch effects due to the integration of array-based genotype
data and whole genome sequence data, we performed quality control
analysis within and between datasets using PLINK 1.9, filtering by
minor allele frequency (--maf 0.01), per genotype missingness (--geno
0.05), per individual missingness (--mind 0.05), and deviation from
Hardy Weinberg equilibrium (--hwe 1 × 10−6). We also pruned strand-
ambiguous SNPs and SNPs in high linkage disequilibrium (--indep-
pairwise 50 10 0.8).

Population structure and relatedness
We used PLINK 1.9 to estimate the probability that individuals i and j
share 0, 1, or 2 alleles identical by descent (IBD) (δ0

ij, δ
1
ij, and δ2

ij,
respectively)50. Based on these IBD probabilities, we calculated the
pairwise kinship coefficient (Φij) as a function of IBD-sharing, Φij = 1/
2δ2

ij + 1/4δ1
ij. We modeled the genetic relationships among indivi-

duals as networks58, in which pairs of individuals were linked if they
had a Φij threshold ≥0.0884 (i.e., first- and second-degree
relatives59). Then, we excluded related individuals using the max-
imum clique graph approach to minimize sample loss58. We per-
formed unsupervised principal components analysis13 and
unsupervised ADMIXTURE analysis17 on the European reference data.
We performed unsupervised and supervised PCA and ADMIXTURE
analyses using the reference data combined with the European
American data. For supervised analysis in ADMIXTURE, we used as
the ancestral references the European individuals with ≥90% of one
of three ancestries based on unsupervised ADMIXTURE analysis. To
evaluate the coverage of European diversity, we used the first two
principal components to calculate convex hull areas40. We calculated
ƒ3 statistics as implemented in ADMIXTOOLS41 to formally test
admixture. We tested all possible combinations of two European
sources and a target European American cohort, following the form
f3(EUR_POP_X, EUR_POP_Y; EA_Cohort). All ƒ3 statistics with z ≤ −3
were considered significant evidence of admixture. We used the top
20 principal components from population-specific and projection
PCA approaches to calculate Euclidean distances. Then, we com-
pared the correlation between the genetic distance matrices using
Mantel’s test implemented in the R package vegan60.

Admixture dating
We first combined all European American cohorts and performed
supervised PCA by projecting the European Americans onto the
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European reference panel. We then used gap and elbow statistics42 to
calculate the most likely number of clusters. To estimate the origin
dates of admixture events, we calculated two-locus weighted LD
decay statistics using MALDER43 within each cluster of European
Americans. Given that background LD can have a confounding effect
on the weighted LD curves, we used as reference populations North
European (Lithuanian and Estonian) and South European (Cyprus,
Azerbaijani Jew, and Georgian Jew) populations that did not show
high LD correlation with the tested target populations. For con-
firmatory analysis for admixture dating in European Americans, we
calculated three-locus weighted LD decay using LaNeta44. Because
LaNeta requires larger reference sample sizes to fit LD decay curves
than MALDER, we included additional North European (Finnish in
Finland [FIN]) and South European (Tuscans from Italy [TSI]) refer-
ence populations.

Phasing and imputation
Togenerate valid VCFfiles beforephasing, imputation, and association
tests, we checked and corrected for monomorphic sites, consistency
of reference alleles with the reference genome, variants with invalid
genotypes, and non-SNP sites using the checkVCF.py Python script
(https://github.com/zhanxw/checkVCF). We phased and imputed the
genotype data using EAGLE2.461 andMinimac62, respectively, using the
TOPMed panel available through the TOPMed imputation server63.
After imputation, we retained high quality SNPs with minor allele fre-
quency ≥0.01 and with either high imputation quality (info ≥0.95) or
empirically determined genotype data.

Locus-specific ancestry analysis
Given that rs4988235 is highly differentiated betweenNorth and South
European populations30 and varies following a north-to-south
gradient27, we inferred two-way locus-specific ancestry using RFMix
(version 1.5.4)19. Locus-specific ancestry estimates were performed
using high quality imputed data. For ancestral references, we selected
individuals with ≥90% North or South European ancestry as estimated
in the unsupervised ADMIXTURE analysis. We performed inference in
the PopPhased mode to correct possible phase errors. We set the
number of generations since the admixture event (argument -G) at 50,
the number of expectationmaximization (EM) iterations (argument -e)
at 2, and the window size (argument -w) at 0.2 cM. All other arguments
were set at default values.

Association analysis
To perform association analyses between rs4988235 and height, LDL,
and BMI, accounting for different levels of control of population
stratification, we used linearmixedmodels implemented inGENESIS64.
Our analyses were focused on unrelated European Americans, with
relatedness determined by the maximum clique graph approach58.
Models were adjusted for the genetic relationship matrix as a random
effect and the four first principal components (PCs that were sig-
nificantly associated with the outcome and explained between-
population structure) and/or locus-specific ancestry as fixed effects.
Genome-wide ancestry was accounted for using principal components
derived from one of two approaches: study-specific unsupervised
analysis or supervised (projection) analysis of individuals onto an
external reference panel. To account for the uncertainty of locus-
specific ancestry estimates, models were adjusted for locus-specific
ancestry dosages calculated from the posterior probabilities of locus-
specific ancestry. Similarly, we used genotype dosages to account for
imputation uncertainty. We performed genome-wide association
analysis (GWAS) of height using models unadjusted and adjusted for
locus-specific ancestry using PLINK 2.3, which allows for the inclusion
of SNP-specific covariates. For the GWAS, we adjusted models for the
top 12 PCs significantly associated with height.

Ethics statement
All dbGaP studies (dbGaP Study Accession described in the “Methods”
section) obtained ethical approval from the relevant institutions and
written informed consent from each participant prior to participation.
We obtained approval for controlled access (protocol number: 12-HG-
N185) of each of the dbGaP studies.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The genome-wide and phenotypic data used in this manuscript are
publicly available. Access to the European Americans from five
genetic epidemiology cohorts was granted through dbGaP57: ARIC
(phs000090.v1.p1), CARDIA (phs000285.v3.p2), FHS (phs000007.
v32.p13), GENOA (phs000379.v1.p1), and MESA (phs000209.v13.p3).
We provide as a research resource a reference SNP matrix of sub-
continental ancestry-specific allele frequencies (https://github.com/
mateushg1/CRGGH/). Publicly available data were retrieved from
http://hgdownload.cse.ucsc.edu/gbdb/hg19/1000Genomes/phase3/,
ftp://ngs.sanger.ac.uk/production/hgdp/hgdp_wgs.20190516/, https://
reich.hms.harvard.edu/sites/reich.hms.harvard.edu/files/inline-files/
EuropeFullyPublic.tar.gz, https://evolbio.ut.ee/caucasus/, and https://
evolbio.ut.ee/jew/.

Code availability
We have provided a pipeline on GitHub (https://github.com/
mateushg1/CRGGH/)65 for how to perform GWAS accounting for
local ancestry, as well as how to perform ADMIXTURE and PCA pro-
jection analyses.
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