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H. Weyll recently proved the following theorem:
THEOREM. Let A be a linear transformation in the n-dimensional unitary

space C,. Let the eigenvalues of A and A *A be denoted by X, and ,(1 <
i < n), respectively, which are so arranged that

1X1 2 IX21> >_2 Xn 1 1K1 . K2. ... 2 Kn (1)
For any non-decreasing function w(t) on t > 0 such that c(e') is a convex
function of t and w(O) = lim w(t) = 0, Xi and Kj satisfy the inequalities:

I*0

qQ

E W( IX, 12) < L W(Kt) (1< q < n). (2)

In the present note, we prove three related theorems. Theorem 1
gives an extremum property of the sum of the first q eigenvalues for
Hermitian transformations. This property furnishes a recurrent charac-
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terization of successive eigenvalues without referring to any eigenvector.
Theorem 2 gives a similar but stronger property for all normal transforma-
tions. For an arbitrary linear transformation A and for a positive integer
s, we have in Theorem 3 inequalities comparing the eigenvalues of (A') *AS
with those of A *A. Finally we shall see that Weyl's theorem in the most
important case w(t) = tl (s = 1, 2, 3, . . . ) can be derived from Theorems
1 and 3. The general case of Weyl's theorem will be discussed in a forth-
coming note.2 All linear transformations considered here are assumed
to be in the n-dimensional unitary space C., but the results can be
easily carried over to completely continuous linear operators in Hilbert
space, especially to continuous kernels of linear integral equations.
THEOREM 1. Let the eigenvalues Xi of a. Hermitian transformation H be

so arranged that X1 2 2 2> ... > X,. For any positive integer q < n, the
q q

sums XXi and X n are, respectively, the maximum and minimum of
i= 1 s=-1i

, (Hxj, x;), when q orthonormal vectors xj (1 < j < q) vary in the space.'

Proof: Let po(l < i < n) be an orthonormal set of eigenvectors of
H: He, = Xivi. For each j, we write

n Q

(Hxj, xj) = Xq FE I(Xj, Ot) 12 + Xq(At-A) I(Xj, V1) 12 +
i=1 i=-1

, (Xi - Xq)I(x, P,) 12. (3)iq +1

If l1xj1I = 1, then
q

(HxJ, Xj) . Xq+ (Xi- Xq)) I(xI, (P) 12

and therefore

q q q q

E A1- , (HxJ, Xj) > , (Xi - q) It1- ZI (X, Vp) 121. (4)
i=l1 j=l1 i=1.j=1

q

If xi (1 < j < q) are orthonormal, then E I(xj, (pi) I2 < IkrlI|2 = 1, so
j = I

that the right-hand side of (4) is > 0. But the left-hand side vanishes for
xi = 'Pi (1 < j < q). This proves the maximum property.
THEOREM 2. Let Xi be the eigenvalues of a normal transformation N so

arranged that 1X1 . 1X2X1 2 ... > Xn 1 Let s, q be two positive integers
q

(q < n). Then Ix 1J2s is the maximum of i ll(UN)xj112, when U runs

over all unitary transformations and xj (1 < j < q) runs over all sets of q
orthonormal vectors in C".
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Proof: We need only prove the inequality

E II(UN)SXjIII< 1s28.(5

As IUNx1 112 = (N*Nxj, xj), the case s = 1 of (5) follows from Theorem 1.
We proceed by induction, assuming that (5) is true for s. Let (Pi(1 < i< n)
be an orthonormal set of eigenvectors of N: NXp, = Xwp. Consider a
unitary transformation U and q orthonormal vectors xj (1 < j < q). We

n

have jj(UN)Y+1xu1l2 = E X12. 1((UN)8xP, (p°) 12. If we split this sum
i-i

into three parts in a way similar to (3), we see that for each j:

q

II(UN)S+lXJ 112 < lXq 12. Il(UN)8XJ112 + E IX: 12- XQ 12)- ((UN)8X1 so) 12.
(6)

As xj(l < j < q) are orthonormal, we have for each i:

q

E I((UN)x,, s) 12.< II(N*U*)8,piII2 =j(U*N*)*U*(p4|l2. (7)

Using first (6), then (7) and our assumption of induction (i.e. (5) is true
for s), we get

E IX, 128+2 - E II(UM8+JXJ 12 . . I(IXt 12 - lXe 12) [ IX, 12_
II(U*N*)8 U*(pi 1121. (8)

Denote by dq the expression on the right-hand side of (8), we have

dq+l -d = ( lXq 12- IXq+1 12)[ EII X12* - _II(U*N*)8U*9OiII2]. (9)

As U*Vpi(l < i < q) are orthonormal, our assumption of induction shows
that the right-hand side of (9) is > 0, and dq+l . de. But di = 0, hence
dc > 0. This proves that (5) is also true for s + 1.
THEOREM 3. Let A be an arbitrary linear transformation and s be any

positive integer. Let the eigenvalues of (A') *AS be denoted by Ki(8) =
Kt) and so arranged that Ki(8) > K2(8) . ... > Kn (8). Then for any positive
integer q < n, we have

q q

EKj( ) < EKt . (10)

Proof: Let A = UH be the polar decomposition of A, where U is uni-
tary and H is the non-negative square root of A *A. The eigenvalues of
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H are Kj" . By Theorem 2, any q orthonormal vectors xj(l < j < q)
satisfy

q q q

E((As)*Asxj, xj) = E J(UH)8Xj lJ< EKig. (1
j=l j=l i=l

But by Theorem 1, Ki(s) is the maximum of the first E sum in (11),

when the q orthonormal vectors xj vary. Thus (10) is proved.
We now prove the case w(t) = tP(s = 1, 2, 3, ...) of Weyl's theorem.

Here we use the same notation as in the theorem stated at the beginning
of this note. Using Schur's superdiagonal form of matrices, it is clear
that there exist n orthonormal vectors yi(l < i < n) such that IX, 12 <

q q

JAyII12(1 < i < n) and therefore EI jX 12 < E IlAyij11. But applying
i =1 = 1

q q
Theorem 1 to A*A, we find E IlAy 112 < E Ki. Hence

q q

E jX, 12 < Ki. (12)

As in Theorem 3, we denote by Ki(8) the eigenvalues of (A8) *As arranged in
descending order (in particular, Ki()1 = K,). Applying (12) to the trans-
formation A8, we get

q q

E 1X, 123 < EKi(s)y

which together with (10) gives the case w(t) = t" of (2).
* This work was supported in part by the Office of Naval Research.
1 Weyl, H., "Inequalities between the Two Kinds of Eigenvalues of a -Linear Trans-

formation," these PROCEEDINGS, 35, 408-411 (1949).
2 Fan, K., "On a Theorem of Weyl concerning Eigenvalues of Linear Transforma-

tions. II," to be published in these PROCEEDINGS.
q

An alternative form of Theorem 1: LX and LXn+1-i are, respectively, the
i=l i=1

maximum and minimum of the trace of HP, when P runs over all projections on q-
dimensional linear subspaces. There is also a similar alternative form of Theorem 2.
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