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The mnemonic discrimination task (MDT) is a widely used cognitive assessment tool. Performance in this task is believed to

indicate an age-related deficit in episodic memory stemming from a decreased ability to pattern-separate among similar

experiences. However, cognitive processes other than memory ability might impact task performance. In this study, we in-

vestigated whether nonmnemonic decision-making processes contribute to the age-related deficit in the MDT. We applied a

hierarchical Bayesian version of the Ratcliff diffusion model to the MDT performance of 26 younger and 31 cognitively

normal older adults. It allowed us to decompose decision behavior in the MDT into different underlying cognitive process-

es, represented by specific model parameters. Model parameters were compared between groups, and differences were eval-

uated using the Bayes factor. Our results suggest that the age-related decline in MDT performance indicates a

predominantly mnemonic deficit rather than differences in nonmnemonic decision-making processes. In addition, this mne-

monic deficit might also involve a slowing in processes related to encoding and retrieval strategies, which are relevant for

successful memory as well. These findings help to better understand what cognitive processes contribute to the age-related

decline in MDT performance and may help to improve the diagnostic value of this popular task.

[Supplemental material is available for this article.]

By 2050, the global population over the age of 65 is projected
to nearly double from 12% to 22% (https://www.who.int/
news-room/fact-sheets/detail/ageing-and-health). While memory
decline is one of the hallmark cognitive changes observed with ag-
ing, episodicmemory in particular shows a clear and steady decline
with increasing age (Nilsson 2003). An evenmore severe decline in
episodic memory is a feature of the early stages of Alzheimer’s dis-
ease (AD) (Weintraub et al. 2012), which affects >6.5 million
Americans today (Alzheimer’s Association Report 2022). To ensure
successful early detection and diagnosis, it is crucial to understand
and distinguish episodic memory changes that are part of the nor-
mal aging process from those that may be an indication of patho-
logical aging.

Themnemonic discrimination task (MDT) (Fig. 1), a modified
object recognition memory task, has become a widely used digital
cognitive assessment tool in the learning and memory as well as
the aging and AD fields due to its sensitivity to detect early and
subtle changes in episodic memory (Leal and Yassa 2018). The util-
ity of this task is further indicated by its recent inclusion as a key
outcomemeasure in large-scale clinical trials in amnestic mild cog-
nitive impairment, a prodrome for AD (Rosenzweig-Lipson et al.
2021) as well as asymptomatic AD (Sperling et al. 2014).

In the MDT, participants undergo incidental encoding of ob-
ject stimuli and, after a brief delay, are administered an old/new
recognition test with exact repetitions (targets), novel items (foils),
and items perceptually similar to those viewed during the study
phase (lures). Participants’ capacity to correctly reject similar lure
items as “new” is taken as a measure of their mnemonic discrimi-
nation performance. This performance is thought to reflect their
capacity for pattern separation, a neural computation that reduces
mnemonic interference among similar experiences by creating and
storing nonoverlapping neural representations (Yassa and Stark
2011). A large body of evidence reviewed elsewhere (Leal and
Yassa 2018) has demonstrated empirically that this ability is highly
dependent on the hippocampus and in particular the dentate gy-
rus (DG) and CA3 subfields.

A large body of literature has now demonstrated that perfor-
mance on the MDT, specifically the lure discrimination perfor-
mance, is reliably diminished in older adults in comparison with
unaffected performance on repeated targets and novel foils. In oth-
er words, older adults are generally more likely to falsely recognize
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similar lure items and identify them as “old” rather than “new.”
This is in the absence of dementia or other comorbidities, which
could additionally affect performance in these other conditions.
The performance deficit in lure discrimination is believed to stem
mainly from a decreased ability to pattern-separate among similar
experiences owing to age-related circuit alterations in the DG and
CA3 regions of the hippocampus that have been investigated
across species (for reviews, see Wilson et al. 2006; Leal and Yassa
2015). Neuroimaging studies in humans have demonstrated that
lure discrimination deficits in older adults are linked to structural
and functional alterations in the DG/CA3 region and its input
pathways in the entorhinal cortex (Yassa et al. 2011a,b; Reagh
et al. 2018; Sinha et al. 2018).

Despite the abundance of work demonstrating performance
deficits in theMDT in older adults and linking this to neurobiolog-
ical underpinnings, an area that has receivedmuch less attention is
dissecting the cognitive processes that underlie the reported
age-related performance decline. It is increasingly appreciated
that the MDT is likely not a process-pure task and that cognitive
processes other than memory ability might impact the outcome
of task performance (i.e., the learning–performance distinction)
(Cahill et al. 2001). Nonmnemonic processes that contribute to
MDTperformancemay also declinewith age and thusmay obscure
what changes are truly driven by memory decline.

Earlier work attempted to systematically exclude other con-
founds that could contribute to the age-related decline in lure
discrimination performance in theMDT by assessing various alter-
ations in task design, instructions, and attentional and intentional
strategies during encoding (Stark et al. 2015). Consistency of the
age-related deficit across all manipulations led to the general con-
clusion that it is likely neurobiological changes in the hippocam-
pus that result in age-related deficits in mnemonic lure
discrimination. However, these manipulations in task design still
did not allow for the direct measurement and evaluation of the
mnemonic component. In addition, other processes that might
not have been challenged by the implemented task manipulations
could still contribute to performance differences. Therefore, it is
still difficult to conclude from this study whether it is a mnemonic
deficit in lure discrimination that underlies the age-related decline

in lure discrimination performance. A few recent studies have fur-
ther attempted to shed light on the possible contribution of other
component processes to MDT performance. For example, one
study showed that visual perceptual deficits in older adults are as-
sociated with mnemonic lure discrimination deficits (Davidson
et al. 2019). Another study showed that depending on the test for-
mat, perceptual ambiguity and executive function could play sig-
nificant roles in mnemonic discrimination performance in older
adults (Gellersen et al. 2021). A significant limitation of these stud-
ies is that they still leave the possibility of confounding factors, as
they all rely on linking performance to either standard neuropsy-
chological assessments of memory (e.g., verbal list recall) or other
aspects of cognitive function such as attention, perception, or ex-
ecutive function.

In the current study, we take a different approach to investi-
gate the potential contributions of nonmnemonic processes to
the age-related decline in MDT performance. We recognize that a
participant’s timed “old”/“new” endorsement of an image is the re-
sult of a decision-making process. This decision is based on several
cognitive processes that altogether contribute to the final decision.
A key contributor is the memory ability itself. However, the time
that the participant takes to respond also contributes to a decision.
This is termed response caution and is a key consideration in speed-
ed decision-making due to the speed–accuracy trade-off—the phe-
nomenon inwhich themore time a decision-maker takes tomake a
decision, the more likely it is to be accurate, and vice versa
(Wickelgren 1977; Bogacz et al. 2010). Another process that can
contribute to decision-making is the presence of a response bias
—the general tendency to respond more often with one of the re-
sponse alternatives (Stanislaw and Todorov 1999). Thus, individu-
al differences in response caution, response bias, or both can
confound interpretations of task performance.

To investigate the extent to which age-related decline inmne-
monic lure discrimination performance is driven by differences in
these nonmnemonic decision-making processes, we used the
Ratcliff diffusion decision model (Ratcliff 1978; Forstmann et al.
2016). The diffusion decision model (DDM) is a popular mathe-
matical process model that decomposes decision behavior in
speeded two-choice response tasks into the different underlying

Figure 1. Illustrative diagram of the mnemonic discrimination task (MDT). Pictures were shown one at a time. During the study phase, participants were
asked to give indoor/outdoor judgments. The test phase followed right after the study phase. In the test phase, participants were asked to give old/new
judgments.
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cognitive processes. It therefore allows us to measure directly the
psychological processes that underlie MDT performance. In con-
trast to previous MDT analysis methods that reduce performance
to a singular metric (e.g., “lure discrimination index [LDI],” “pat-
tern separation bias,” or “d′”) (Yassa et al. 2011a; Stark et al.
2015, 2019), thismodel presents amore sophisticated and compre-
hensive analysis of decision behavior. Although the previous mea-
sures attempt to account for a response bias as a potential
confound to overall performance, they cannot identify other un-
derlying cognitive processes that contribute to task performance.
This is chiefly because they are entirely based on decision accuracy
but do not consider the time a participant takes tomake a response
(reaction time [RT]). Decision accuracy and reaction time are relat-
ed to one another but carry important and distinct information
about the underlying cognitive processes. By disregarding the reac-
tion time, summary measures provide an incomplete, possibly
even inaccurate picture of behavior. For example, they do not con-
sider the speed–accuracy trade-off and are therefore confounded by
response caution.

In contrast, the DDM considers all aspects of the behavioral
data jointly—accuracy and the shapes of the RT distributions for
correct and incorrect responses. Another key advantage of the
model is that it inherently accounts for the speed–accuracy trade-
off and response caution (Forstmann et al. 2016). The model as-
sumes that two-choice decisions are based on the noisy accumula-
tion of information about a stimulus over time. Accumulation of
information starts from a specific starting point and accumulates
toward one of two decision boundaries. Each boundary represents
one of two possible responses (e.g., “old”/“new”). Once a boun-
dary is reached, a decision is made with the corresponding re-
sponse (Fig. 2; Ratcliff and McKoon 2008; Ratcliff et al. 2016).

The DDM estimates four latent parameters that can be inter-
preted in terms of specific cognitive processes that underlie the de-
cision behavior (Ratcliff 2002; Voss et al.
2004): drift rate (δ), boundary separation
(α), starting point (β), and nondecision
time (τ). The boundary separation param-
eter (α) represents response caution in the
model. It defines the amount of evidence
that one needs to accumulate before a re-
sponse can be made. The starting point
parameter (β) represents an a priori re-
sponse bias toward one of the two re-
sponse alternatives. We consider both of
these parameters as representing non-
mnemonic contributions to the decision-
making in the MDT. The drift rate param-
eter (δ), on the other hand, is the key pa-
rameter that is driving the mnemonic
decision and therefore represents the
mnemonic contribution to performance.
In the context of the MDT, the drift rate
can be understood as an index of mne-
monic discrimination ability. It reflects
the quality of evidence that a participant
can extract from a currently observed lure
image and from a stored memory and ac-
cumulate over time to identify a lure as
“new.” Last, the nondecision time param-
eter (τ) in the model represents the non-
decision component. It is not part of the
decision process and therefore does not
make any contribution to the choice
behavior in the model. It encompasses
themean duration of all nondecision pro-
cesses during encoding and motor re-

sponse execution. To improve the fit of the DDM to
experimental data, Ratcliff and colleagues (Laming 1968; Ratcliff
1978; Ratcliff and Rouder 1998; Ratcliff and Tuerlinckx 2002) in-
cluded an across-trial variability of the parameters δ, τ, and β.
Therefore, the DDMmodel is sometimes also called the Ratcliff dif-
fusion model.

In the current study, we applied the Ratcliff diffusion model
to the decision behavior of 26 young adults (ages 18–29 yr) and
31 older adults (ages 60–91 yr) (Table 1) performing the MDT.
We estimated the group difference between younger and older
adults for each of the model parameters (α, β, δ, and τ) that repre-
sented different cognitive processes. We then evaluated the
strength of the evidence for each parameter group difference based
on the Bayes factor by comparing the ratio of the likelihood that
the differencewas 0. A series ofmodelswas compared, and the best-
performing model was chosen based on the deviance information
criterion (DIC). Due to the many benefits of a hierarchical exten-
sion of the model, we implemented here a hierarchical Bayesian
version of the DDM (Fig. 3; Vandekerckhove et al. 2011). The hier-
archical approachhas been shown to be superior to standardmeth-
ods when the number of data points per participant is low, as
typically found in memory studies (Ratcliff and Childers 2015).
Instead of using any of the existing diffusionmodel fitting packag-
es, we used a custom-designedmodel that gave us full flexibility re-
garding parameter specification and model assumptions.

Results

Quality check of model performance
Our modeling procedure is shown in Figure 4 and described in de-
tail in the Materials and Methods. The comparisons between the
modeled and the observed data for the full model and the final

Figure 2. Graphical illustration of the main parameters in the Ratcliff diffusion model. (δ) Drift rate,
indicating the average amount of information that can be extracted from a stimulus and memory
and accumulated across time; (β) starting point, indicating an initial bias toward one of the two response
alternatives (a starting point at 0.5 indicates no response bias); (α) boundary separation, indicating the
amount of evidence that one needs to accumulate before a response can be made; (τ) nondecision time,
which encompasses all nondecision processes during encoding and response execution.
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reduced model indicate that the models fit the empirical data well.
Figure 5A shows the fit between the modeled and observed accura-
cy for the full model. Figure 5B shows the overlap in the modeled
and observed response types for the full model. Figure 6 shows the
overlap between the modeled and observed quantiles of the reac-
tion time distributions for the full model. The corresponding
graphs for the final reduced model are available in Supplemental
Figures S1 and S2. Specifically, Supplemental Figure S1a shows
the fit between the modeled and observed accuracy for the final re-
duced model. Supplemental Figure S1b shows the overlap in the
modeled and observed response types for the final reduced model.

Supplemental Figure S2 shows the overlap between the modeled
and observed quantiles of the reaction time distributions for the fi-
nal reduced model.

Group differences in diffusion model parameters

(full model)
Supplemental Figure S3 shows reaction times (RTs) (Supplemental
Fig. S3a) and lure discrimination index (LDI) (Supplemental Fig.
S3b) in each condition for the young and older group. Similar to
previous studies, older adults showed a significantly lower LDI in
the two lure conditions in comparison with younger adults, indi-
cating a poorer mnemonic lure discrimination performance in
older adults.

Table 2 shows the posterior group mean estimates for each of
the diffusion model parameters for the young and the old groups
and the Bayes factors for the corresponding group difference pa-
rameters for the full model.

We found evidence for a group difference in the nondecision
time parameter τ. A difference between the old and young groups
in the nondecision time was approximately four times more likely
after having observed the data (BF for τDiff = 4.44). The posterior
group mean estimates showed a 90-msec longer nondecision

Table 1. Characteristics of all participants included in this study

Group Old Young

N 31 26
Age (years) 73.3 (7.3) 24.1 (3.2)
Sex 21F 17F
Education (years) 16.1 (2.4) 16.1 (2.6)
RAVLT-delayed (A7) 10 (3.3)
MMSE 28.1 (1.3)

All data are reported as mean (SD). (RAVLT) Rey-Auditory Verbal Learning
Test, (MMSE) Mini-Mental State Examination.

Figure 3. A graphical representation of our hierarchical Bayesian diffusion model (full model) to investigate the difference in model parameters between
older and younger adults in the MDT. The shaded node indicates the observed (bivariate) data (response type [correct/incorrect] and response time).
Unshaded nodes indicate parameters that are being estimated in the model. The parameters β and τ are indexed for group (g), participant (s), and
trial (t), meaning that we allowed those parameters to be different for each group, participant, and trial. The parameter δ is additionally indexed for con-
dition (c), meaning that δ was also allowed to differ across conditions. The parameter α was allowed to differ across the two groups and participants.
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time in older adults in comparison with younger adults (0.80 vs.
0.71 msec).

More interestingly, for both lure conditions,we found evidence
for a group difference in the drift rate parameter δ, which is indexing
mnemonic discrimination ability in our task. The likelihood for a
group difference between old and young in drift rate for the lure
(HighSim) and the lure (LowSim) conditions was >10,000 times
more likely, respectively (BF for δDiffHighSim=10,310; BF for
δDiffLowSim=42,509), after having observed the data. A benefit of
the drift rate parameter is that it provides information about the
quality of evidence that a participant can extract from the stimulus
and frommemory and hence allows us to analyze the nature of the
age-related differences in more detail. A positive drift rate indicates
that, on average, the information accumulation drifts toward the up-
per boundary, corresponding to the “new” response. A negative drift
rate indicates information accumulation toward the lower boun-
dary, corresponding to the “old” response. The numerical value of
the drift rate, on the other hand, informs about the magnitude of
this drift. Higher drift rate values indicate a faster accumulationof in-
formation toward the boundary and hence a faster approaching of a
boundary. Higher drift rate values are typically observed in easier
task conditions and result in higher accuracy and faster RT.

Accordingly, we found that in the lure (LowSim) condition,
the drift rate in younger adults indicated that younger adults accu-
mulated evidence toward the correct “new” response, while a drift
rate close to 0 in the older adult group indicated that older adults
could not reliably accumulate evidence toward either one of the re-
sponse boundaries (group mean estimates δLure [LowSim]: 1.05
[young] vs. 0.06 [old]). When the similarity of the lures increased
in the lure (HighSim) condition, the drift rate close to 0 in younger
adults indicated that now younger adults could not accumulate ev-
idence toward either of the response boundaries. However, for the
older adult group, the drift rate indicated now that older adults ac-
cumulated, on average, information toward the incorrect “old” re-
sponse (group mean estimates δLure [HighSim]: 0.00 [young] vs.
−0.91 [old]). We did not learn anything new from the data in re-
gard to a group difference in drift rate for the foil condition, as in-
dicated by the BF for δDiffFoil of ∼1. However, the likelihood of no
group difference in the drift rate parameter for the target condition
was approximately four timesmore likely after having observed the
data (BF for δDiffTarget = 0.23) (see Fig. 7 for a comparison of all drift
rates across conditions and participant groups).

We further found evidence that the old and young groups did
not differ in the response caution parameter α and the response

Figure 4. General scheme of the steps of the modeling procedure. Model 7 (full model) allowed group differences in all parameters. The reduced model
was designed based on evidence from the full model and allowed group differences only in DDM parameters that we found evidence for in the full model
(final parameters). (BF) Bayes factor (calculated as the Savage–Dickey density ratio).

A B

Figure 5. Quality check of our model performance. (A) The modeled and observed accuracy for the full model. The modeled accuracy data fit the ob-
served accuracy datawell. Each cross (+) represents the accuracy of one participant averaged across all trials within each condition. (B) Overlap between the
modeled and observed response type (“old”/“new”). Individual data points represent the percentage of agreement in response type between the ob-
served and modeled data set for each participant and condition.
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bias parameter β. The likelihood of no difference between groups in
response caution was ∼13 times more likely (BF for αDiff = 0.08)
and in response bias was approximately six times more likely (BF
for βDiff = 0.16). Although the posterior group mean estimates
for the older and younger adults indicated a slight bias toward
the “old” response in both groups (posterior group mean estimate
β for old and young: <0.5), the 95% Bayesian credible intervals in-
cluded 0.5 (β at 0.5 indicates no response bias); hence, the probabil-
ity of no response bias in both age groups was still 95%. The two χ2

and the fast-dm fitting methods replicated the group differences
in τ, δLure (LowSim), and δLure (HighSim) (see Supplemental
Table S2).

Group differences in diffusion model parameters

(final reduced model)

Based on the results from the full model, we investigated in the fi-
nal reduced model evidence for the joint likelihood of a group dif-
ference in the δ parameters in the two lure conditions and τ
(δDiffHighSim, δDiffLowSim, and τDiff). Table 3 shows the posterior
group mean estimates of the final reduced model. The drift rate
and nondecision time estimates differed only marginally from
the estimates in the full model, confirming once again the group
differences that we describe in the full model. The 3D Bayes factor
for the joint likelihood of a group difference in δ (HighSim),

Figure 6. Quality check of model performance. Overlap between the modeled and observed 0.1, 0.5, and 0.9 quantiles of the modeled and observed
reaction time distributions for the full model. Each data point represents the RT of one participant per condition and response type (“old”/“new”).

Table 2. Posterior group mean estimates (means of the posterior distributions at the group level) of the diffusion model parameters for old
and young and the corresponding 95% Bayesian credibility intervals (95% probability that the population parameter lies in the interval) of
the full model

Model parameter Young Old Bayes factor group difference

Response caution (α) 1.42 [1.37, 1.47] 1.43 [1.37, 1.49] 0.08
Response bias (β) 0.48 [0.45, 0.52] 0.48 [0.46, 0.50] 0.16
Encoding/motor response (τ) 0.71 [0.67, 0.77] 0.80 [0.75, 0.84] 4.44
Discrimination ability (δ)
Target −2.56 [−2.99, −2.23] −2.35 [−2.69, −2.07] 0.23
Lure (HighSim) 0.00 [−0.29, 0.28] −0.91 [−1.18, −0.68] >10,000
Lure (LowSim) 1.05 [0.76, 1.37] 0.06 [−0.17, 0.30] >10,000
Foil 3.85 [3.45, 4.61] 3.30 [2.96, 3.93] 0.94

The last column shows the Bayes factor (BF; Savage–Dickey density ratio). A BF of k, when >1, indicates that it is k times less likely that a difference parameter
equals 0 after seeing the data. This is interpreted as evidence in favor of the hypothesis that there is a group difference. A BF of m, when <1, indicates that it is
1/m more likely that a difference parameter equals 0 after seeing the data. This is interpreted as evidence in favor of the hypothesis that there is no group differ-
ence. For drift rate interpretation, positive values are linked to the “new” response, which is represented by the upper threshold in the model. Negative values
are linked to the “old” response, which is represented by the lower threshold. A drift rate value of ∼0 indicates that no evidence could be extracted and the par-
ticipant is guessing.
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δ (LowSim), and τ was >10,000, indicating that the likelihood of a
group difference in all three parameters is >10,000 timesmore like-
ly after having observed the data.

Last, we decided to evaluate themagnitude of the group differ-
ence in the δ (HighSim), δ (LowSim), and τ parameters. For this, we
examined how much the parameter values would differ between a
representative oldparticipant anda representative youngparticipant
based on the estimated group mean differences and group standard
deviations in thefinal reducedmodel.We generated a representative
distribution for an old and a young participant for δ (HighSim), δ
(LowSim), and τ by sampling from the group mean and group stan-
dard deviation posterior distributions of the respective parameters
(we had different standard deviation distributions for each parame-
ter, but the standard deviation for δ was the same across conditions
but different for old and young). Using these representative partici-
pant posterior distributions, we calculated the probability that a rep-

resentative old participant would have a
higher τ, a lower δ (HighSim), and a lower
δ (LowSim) than a representative young
participant, respectively. The probability
was calculated by dividing the number of
samples that satisfy the criterion out of
all the samples from the representative
posterior distributions. Representative dis-
tribution parameters were sampled at the
same time while all other parameters dur-
ing the model estimation were sampled.

The representative participant distri-
bution indicated that the likelihood of a
representative older adult having a lower
drift rate in the lure (LowSim) condition
or lure (HighSim) condition was 87%, re-
spectively. The likelihood of a representa-
tive older adult having a higher τ than a
representative young adult was 70%.
These likelihoods suggest that despite in-
dividual variability within each age
group, the differences in group means,
which we found evidence for based on
the BFs, are also meaningful at the indi-
vidual participant level.

Discussion

In the current study, we used the Ratcliff
diffusion model to investigate whether differences in nonmne-
monic decision-making processes underlie the well-documented
age-related decline in lure discrimination performance in the
MDT or whether this decline is solely based on a deficit in mne-
monic ability. Our results from the full and the reduced models
provide supporting evidence that the age-related decline in lure
discrimination performance is largely driven by differences in
mnemonic discrimination abilities. In comparison with younger
adults, older adults showed a poorer mnemonic discrimination
ability in both lure conditions as measured by the drift rate param-
eter. In addition, we also found a slowing in the nondecision time
in older adults, indicating that older adults are slower in processes
such as the speed of encoding and executing the motor response.
Differences in nonmnemonic decision processes such as response
caution and response bias did not contribute to the decline in per-
formance in older adults.

Figure 7. (Left) Estimated drift rate (δ) group means (means of the posterior distributions at the group
level) for older and younger adults for all four conditions. A negative drift rate represents, on average,
“old” responses. A positive drift rate represents, on average, “new” responses. Older adults show a
drift rate of ∼0 for the lure (LowSim) condition, indicating, on average, that they were not able to accu-
mulate evidence toward either of the response boundaries (similar to younger adults in the lure
[HighSim] condition). A negative drift rate in the lure (HighSim) condition indicates, on average, that
older adults accumulate evidence toward the incorrect “old” response for highly similar lures. (Right)
Estimated nondecision time (τ) group means for older and younger adults. Older adults have a
90-msec longer nondecision time.

Table 3. Posterior group mean estimates (means of the posterior distributions at the group level) of the diffusion model parameters for old
and young and the corresponding 95% Bayesian credibility intervals (95% probability that the population parameter lies in the interval) of
the final reduced model

Model parameter Young Old 3D Bayes factor for group difference

Response caution (α) 1.43 [1.39, 1.46] 1.43 [1.39, 1.46]
Response bias (β) 0.48 [0.46, 0.50] 0.48 [0.46, 0.50]
Encoding/motor response (τ) 0.71 [0.66, 0.76] 0.80 [0.76, 0.85]
Discrimination ability (δ)
Target −2.45 [−2.71, −2.23] −2.45 [−2.71, −2.23]
Lure (HighSim) 0.00 [−0.28, 0.27] −0.94 [−1.23, −0.70]
Lure (LowSim) 1.01 [0.74, 1.30] 0.07 [−0.18, 0.31]
Foil 3.55 [3.26, 3.91] 3.55 [3.26, 3.91]
δLure (HighSim), δLure (LowSim), and τ >10,000

The last column shows the 3D Bayes factor (BF; Savage–Dickey density ratio) for the joint likelihood of a group difference for the parameters δLure (HighSim),
δLure (LowSim), and τ. The BF of 10,000 indicates that the likelihood of a group difference in all three parameters is >10,000 times more likely after seeing the
data. This is interpreted as evidence in favor of the hypothesis that there is a group difference in δLure (HighSim), δLure (LowSim), and τ. For drift rate interpreta-
tion, positive values are linked to the “new” response, which is represented by the upper threshold in the model. Negative values are linked to the “old” re-
sponse, which is represented by the lower threshold. A drift rate value of ∼0 indicates that no evidence could be extracted and the participant is guessing.
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Nonmnemonic decision-making processes do not

contribute to age-related decline in MDT performance

It has been proposed that in addition to a decline in hippocampal
pattern separation, an age-related decline in lure discrimination
performance in the MDT could be related to age-related changes
in decision-making processes during memory judgments
(Pishdadian et al. 2020). For example, a recent meta-analysis re-
ported a more liberal response bias (higher tendency toward
“old” responses) in older adults in recognition memory tasks
(Fraundorf et al. 2019). However, the presence of a response bias
in older adults was not consistently observed across different stud-
ies and varied as a function of study material, study task, and test
task. To our knowledge, the presence of an age-related response
bias in the MDT has never been systematically evaluated. Rather,
the focus was on comparing performance measures such as d′

and LDI across groups that were assumed to not be confounded
by a response bias. In the current study, we show that there is no
difference in response bias between older and younger adults
that contributes to the age-related decline in mnemonic lure dis-
crimination performance. This is also interesting because we
have a higher proportion of stimuli in our task for which the re-
sponse “new” is the correct response. Past studies have found evi-
dence for a response bias when manipulating stimulus proportion
(Criss 2010; Leite and Ratcliff 2011). While speculative, the ab-
sence of a response bias could be related to the specific task instruc-
tions, in which participants’ attention was drawn to the similarity
aspect of the task. This may have made them look at each stimulus
more carefully and consequently mitigated the impact of a re-
sponse bias. It is important to note that bias manipulation can
be modeled in two different ways in the diffusion model—by
changes to the response bias or the zero point of the drift rate. In
the study by Leite and Ratcliff (2011), manipulation of stimulus
proportion caused changes to the response bias parameter, butma-
nipulations in the decision cutoff in their task were reflected in
changes to the zero point position of the drift rate. Manipulating
both simultaneously led to changes in both parameters.
Similarly, Criss (2010) reported in her recognition memory study
effects of stimulus proportion increase on the response bias param-
eter and effects of list strength increase (words were presented ei-
ther one time or five times at study) on the zero point of the drift
rate. However, a simultaneous manipulation of both aspects was
not investigated in this study.

In addition to the stimulus proportion difference in our task,
we also have potentially another bias manipulation through the
different similarity levels of the stimuli (e.g., a higher bias to re-
spond with “new” for high-similarity lures than for low-similarity
lures). It is possible that in our specific task, the response bias was
reflected in changes to the zero point position of the drift rate rath-
er than by changes in the response bias parameter. The exact ef-
fects of different bias manipulations might be specific to a task
and task instructions. It will need to be further investigated what
model parameters are sensitive to what kind of bias manipulation
in memory tasks.

Response caution is another decision process that could con-
tribute to differences in mnemonic lure discrimination perfor-
mance in the MDT. Studies that used a diffusion model analysis
have often reported a higher response caution in older adults in
perceptual decision-making and standard recognition memory
(Ratcliff et al. 2004; Spaniol et al. 2006; McGovern et al. 2018). A
higher response caution typically results in slower but more accu-
rate decisions. Considering older adults are less accurate, more of-
ten incorrectly labeling lures “old,” we would instead expect a
lower response caution in older adults. PreviousMDT performance
measures were not able to take the influence of age-related differ-
ences in response caution on performance into account because

they did not consider the decision time. Using the DDM, we
show here for the first time that, at least in our study, older and
younger adults do not differ in their response caution during
MDT performance. Studies have shown that response caution
can be increased in an experiment when accuracy is emphasized
in the task instructions (Thapar et al. 2003; Voss et al. 2004). It is
therefore possible that we did not observe any group differences
in response caution due to our specific task instructions, which
asked participants to respond as fast and as accurately as possible.
Similarly, in a recognition memory task used by Spaniol et al.
(2006) in which participants received instructions that empha-
sized both accuracy and speed, no age-related difference in re-
sponse caution was found.

Drift rate reveals a memory bias toward “old” in older

but not in younger adults
In contrast to previous MDT performance measures that were used
to infer mnemonic lure discrimination ability, the drift rate mea-
sure from the DDM likely represents amore accurate index ofmne-
monic lure discrimination ability. This is because, unlike previous
measures that were based solely on accuracy data, the drift rate pa-
rameter is derived fromamodel that considers the accuracy and the
response time (including the shape of the RT distributions) and ac-
counts for both dependent measures simultaneously. This allows
for a consideration of the speed–accuracy trade-off and allowed
us to assess mnemonic ability that is not contaminated by differ-
ences in response bias or response caution (White et al. 2010).
Accordingly, we were able to show here with a more accurate mea-
sure—the drift rate—that the age-related decline inmnemonic lure
discrimination performance is driven by a deficit in mnemonic
abilities. Furthermore, because the drift rate informs about the
quality of the evidence that participants can extract from the cur-
rent lure and from a previously formedmemory representation, we
were also able to analyze the nature of the age-related deficit in
more detail. We found different mechanisms of older adults’mne-
monic lure discrimination deficit across the two lure conditions.
For lures that shared only low similarity with previously seen imag-
es, older adults showed poorer mnemonic discrimination ability
than younger adults because they were not able to extract mean-
ingful evidence from the lure images and from memory. The drift
rate indicated that decisions about the “old”/“new” status of low-
similarity lures in older adults were largely driven by noisy fluctu-
ations of information, resulting in correct decisions only at chance
level. However, for lures that had a high similarity to previously
seen images, the drift rate showed that the mnemonic discrimina-
tion deficit in older adults was predominantly characterized by ex-
tracting information that indicated incorrectly that a lure was an
old image. The tendency of older adults to extract evidence from
the current image andmemory thatmakes them recognize a highly
similar lure as an old image is characteristic of a memory bias to-
ward “old.” Note that a memory bias toward “old” is distinct
from a response bias toward “old.” A memory bias indicates that
the underlying reason for incorrect “old” judgments to lures is a
memory effect, while a response bias toward “old” indicates an ef-
fect at the response level—a tendency to respond more often with
“old” (Spaniol et al. 2008; White et al. 2010). Due to the method-
ological shortcomings of previous MDT performance measures as
discussed earlier, previous measures were not able to provide clear
evidence for a memory bias. These measures are more confounded
by other processes and are not a direct measure of the quality of ev-
idence that participants are able to extract.

The observation of a memory bias toward “old” is in agree-
ment with the prevailing hypothesis that older adults show a
decline in mnemonic lure discrimination due to an increased pro-
pensity toward overgeneralization. The underlying reason of this
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overgeneralization is thought to lie in an age-related shift in hippo-
campal network dynamics away from pattern separation and to-
ward pattern completion. Pattern completion describes a neural
computation that contributes to memory function by retrieving
a previously stored pattern based on a partial cue. In line with
this theory, we have previously shown, based on BOLD signal ac-
tivity changes, that signal to increases in lure similarity (consistent
with pattern separation) in the DG/CA3 subfields is attenuated in
older adults (Yassa et al. 2011b). For low-similarity lures, pattern
separation signals were observed similarly in young and older
adults. However, for high-similarity lures, pattern separation sig-
nals diminished in older adults (suggesting pattern completion)
while remaining high in younger adults. These findings supported
a theoretical prediction of how the input/output transfer functions
of the DG/CA3 in old and young adults are shifted (Yassa et al.
2011b). The transfer function describes pattern separation and
completion behavior in the hippocampus as a function of change
in input. It is suggested that in older adults, the transfer function is
shifted in a way in which larger amounts of change in input are re-
quired for the DG/CA3 to switch from pattern completion to pat-
tern separation. The requirement for larger changes was termed
representational rigidity and recapitulated findings in studies of
aged rats (Wilson et al. 2006).

There are some important differences between the current
study and the aforementioned neuroimaging work that did not al-
low us to directly relate our DDM behavioral results to the above-
described pattern separation signal behavior in the DG/CA3. In
contrast to the explicit instructions in the current study, where par-
ticipants were asked to give overt memory judgments, participants
in the Yassa et al. (2011b) study were instructed to give “indoor”
and “outdoor” judgments while viewing repeated, novel, and
lure images in a continuous presentation, and hence encoding of
the “old”/“new” status of an image was incidental. It has been
shown that BOLD signal activity patterns in the hippocampus dif-
fer between the overt and incidental task designs (Motley and
Brock Kirwan 2012; Stark et al. 2019), likely due to varying de-
mands on top–down feedback and decision-making processes.
Nevertheless, our findings are consistent with the theoretical pre-
diction of an age-related shift in the transfer function of the DG/
CA3 and a higher tendency for pattern completion resulting in
overgeneralization in older adults.

In our study, the discrimination ability in older adults for low-
similarity lures was comparable with the discrimination ability for
high-similarity lures in younger adults. This suggests that older
adults indeed need larger amounts of change to show amnemonic
discrimination ability comparable with that of younger adults.
Furthermore, our results suggest a higher tendency toward over-
generalization in older adults. Older adults went from poor dis-
crimination ability for low-similarity lures to an incorrect
memory bias toward “old” (consistent with the idea of pattern
completion) for high-similarity lures. In contrast, no indication
of a memory bias toward “old” and therefore no indication for
overgeneralization was observed in the younger adults for the
same similarity level. Instead, younger adults transitioned from
having good discrimination ability for low-similarity lures to
poor discrimination ability for high-similarity lures.

Slower nondecision time in older adults:

relevant for poor mnemonic ability?
In addition to an age-related decline in mnemonic ability as indi-
cated by lower drift rates, we also found that older adults had a lon-
ger nondecision time compared with young adults. An age-related
slowing in the nondecision time parameter is a reliable finding that
has been previously reported (Ratcliff et al. 2004; Spaniol et al.
2006). It is typically interpreted as reflecting an age-related slowing

in processes related to encoding and response execution. As an
extradecisional component, the nondecision parameter is as-
sumed to not influence the response choice and hence accuracy
(in the model, it mostly determines the location of the leading
edge of the reaction time distributions) (Ratcliff and Tuerlinckx
2002; Wagenmakers 2009). However, we argue that the age differ-
ence that we found here in the nondecision component could also
contribute to the decreased mnemonic discrimination ability in
older adults that is reflected in the lower drift rate parameter.

This is because the nondecision parameter is not well speci-
fied in the model, as it encompasses the sum of the duration of
any other process that does not contribute to the decision process.
This is not limited to encoding and response execution processes
but can also include processes related to accessing and evaluating
memory representations (Ratcliff and McKoon 2008; Wagen-
makers 2009). From a theoretical point of view, a slower nondeci-
sion time when reflecting a slowing in encoding and memory
access and evaluation could contribute to a decrease in mnemonic
lure discrimination ability, as these processes play an important
role in the successful formation and retrieval of memories. This
idea is also plausible from themodel’s perspective, as the DDMpa-
rameters are not independent, and correlations between the non-
decision parameter and the drift rate have been reported (Thapar
et al. 2003; Ratcliff and Smith 2004).

Indeed, it has been shown that strategic retrieval processes rel-
evant tomemory access and evaluation are contributing to success-
ful lure discrimination performance in the MDT. During overt
memory judgments, participants likely use a recall to reject strategy
(Kirwan and Stark 2007; Trelle et al. 2017; Stark et al. 2019). This
strategy involves retrieving the originally stored representation
from memory and comparing it with the currently presented im-
age to correctly identify the lure as an item not previously viewed.
The recall to reject strategy is thought to place significant demands
on cognitive control and strategic retrieval processes, which in-
clude accessing the details of a memory representation, construct-
ing a mental image, maintaining this image in working memory,
and mentally evaluating the details with the currently presented
image (Badre and Wagner 2007; Van der Linden et al. 2009).
These control processes are considered part of the executive func-
tions that are supported by the prefrontal cortex (PFC), a region
that is also affected by aging. Older adults have been shown to
be impaired in PFC-mediated executive functions and the recall
to reject strategy (Buckner 2004; Cohn et al. 2008; Trelle et al.
2017). A recent study by Gellersen et al. (2021) showed that strate-
gic retrieval ability indexed by tests of executive function best ex-
plained performance in a yes/no version of the MDT in older
adults. Another study by Wais et al. (2018) used transcranial mag-
netic stimulation to perturb the normal neural function of the
midventrolateral prefrontal cortex, a region implicated in cogni-
tive control of high-fidelity long-term memory retrieval. The per-
turbation led to a subsequent diminished discrimination of
similar lures in theMDT, indicating that PFC-mediated strategic re-
trieval processes are crucial for the retrieval of high-fidelity memo-
ry representations in the MDT (Wais et al. 2018). Consistent with
these reports, a recent investigation in aged rats using a Lego
object-based MDT showed that temporary inactivation of the pre-
frontal cortex (PFC) during test using the GABA agonist muscimol
impaired mnemonic discrimination performance, suggesting that
PFC-mediated retrieval processes play a critical role in this process
(Johnson et al. 2021).

The cognitive control and strategic retrieval processes that are
required for a successful recall to reject strategy are likely part of the
nondecision time in the DDM because, like general encoding and
response execution processes, they do not depend on the nature of
the currently presented stimulus (Wagenmakers 2009). In linewith
this idea, Spaniol et al. (2006) reported that the nondecision
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component was affected by the type of retrieval that participants
engaged in. The nondecision time was slower for episodic retrieval
in comparison with semantic retrieval. This effect was more pro-
nounced in older adults. Considering the lack of perceptual differ-
ences between episodic and semantic stimuli during the study
phase in this study, the differences in nondecision timewere likely
driven by differential processes during the test phase. The investi-
gators speculated that it could indicate an adaptive response to per-
ceived changes in task difficulty (e.g., a slowing of motor
operations during the more difficult episodic task). Alternatively,
the slowing in the nondecision time for episodic retrieval could
also indicate the recruitment of additional cognitive control and
retrieval processes more necessary for episodic than semantic re-
trieval (Moscovitch and Melo 1997). In summary, the age-related
slowing in the nondecision component in our study could indicate
an age-related slowing in cognitive control and strategic retrieval
processes, in addition to a slowing in encoding and response exe-
cution. This slowing in cognitive control and strategic retrieval
processes could put older adults at a disadvantage. When given
the same amount of time as the younger adults, it could make it
more difficult for older adults to successfully implement the recall
to reject strategy, thereby contributing to a poorer mnemonic dis-
crimination ability.

The slowing in the nondecision time could also reflect a slow-
ing in encoding processes during the test phase, which could also
contribute to poorermnemonic lure discrimination ability in older
adults. Recent evidence suggests that in addition to hippocampus-
dependent processes such as pattern separation, successful mne-
monic lure discrimination in older adults is also affected by pro-
cesses relevant to the perceptual processing and encoding of a
high-fidelity representation. For example, it has been shown that
visual perception and the ability to form detailed representations
correlate with MDT performance in older adults (Davidson et al.
2019). In addition, poorer mnemonic lure discrimination perfor-
mance in older adults can be at least partially accounted for by
an age-related slowing in processing speed during the study phase
of the MDT (Foster and Giovanello 2020). This could lead to older
adults being able to encode fewer details of an image when given
the same amount of time as younger adults. It stands to reason
that the construction and encoding of a high-fidelity representa-
tion at study phase and at test is a prerequisite for a correct endorse-
ment of a lure as “new.” The current analysis focused on data
during the test phase of the MDT. Therefore, the slower nondeci-
sion time reported in this work would instead indicate slower en-
coding processes for the test stimuli. However, it is reasonable to
assume that older adults would also be slower at encoding of the
stimuli during the study phase. This would put them at a time dis-
advantage in being able to encode high-fidelity representations,
which are needed for a correct judgment in the test phase.

Study limitations
A limitation of this study is that while the DDM identifies the com-
ponent processes that contribute to a memory judgment decision
as a whole, it cannot break down the distinct processes that con-
tribute to the mnemonic ability component. The use of the diffu-
sion model’s drift rate only informs whether a participant has a
good mnemonic ability (indicated by being able to extract a good
quality of evidence) or poor mnemonic ability (indicated by ex-
tracting a poor quality of evidence). However, the drift rate cannot
informaboutwhat specific processes determine a good or badmne-
monic ability. Although our drift rate findings are in line with the
idea of age-related changes in the hippocampus and a bias toward
overgeneralization, it has not been investigated whether the drift
rate measure in the context of the MDT is directly linked to hippo-
campus function and presumable pattern separation and comple-

tion. As discussed above, other processes related to retrieval
strategies and encoding of high-fidelity representations have
been shown to be relevant to successful mnemonic lure discrimi-
nation, and a slowing in these processes could be contributing to
the poor mnemonic ability and lower drift rates in older adults.
Although the slower nondecision time in older adults suggests
that these processes show an age-related slowing, we were not
able to identify individual degree to which the encoding and re-
trieval processes are slowed down because wewere not able to tease
the individual nondecision processes in the DDM apart. In sum,
while we were able to show that the age-related decline in mne-
monic lure discrimination performance is predominantly based
on an age-related deficit in mnemonic ability, we cannot identify
with the DDM exactly which memory-relevant processes underlie
the poorer mnemonic ability in older adults. Another limitation is
that we cannot make conclusions about what brain regions are in-
volved in the age-related decline in mnemonic ability. We cannot
provide any evidence that the poorer mnemonic ability in older
adults is driven by changes in the hippocampus, as we did not in-
vestigate brain regions or patterns of neural activity. As mentioned
above, it has not been investigated whether the drift rate is linked
to hippocampal function and what brain regions make contribu-
tions to the drift rate in the MDT. A meta-analysis of perceptual
decision-making studies identified a fronto–parietal network that
was related to the drift rate (Mulder et al. 2014). However, most
likely, the neural substrate of the drift rate will be specific to the
task and the type of evidence that is accumulated. It is therefore
not clear whether this extends tomnemonic tasks and requires fur-
ther study.

Future directions
Recently, the drift rate was suggested as a novel cognitivemarker of
preclinical AD due to its higher sensitivity in comparisonwith oth-
er more traditional performance measures. The drift rate has been
shown to distinguish healthy from pathological aging. Older cog-
nitively healthy adults with a family history of AD showed a de-
creased drift rate in comparison with older cognitively healthy
adults who did not have a family history of AD in an episodic rec-
ognition memory task (Aschenbrenner et al. 2016). Another study
found lower drift rates in memory-disordered patients in compari-
son with unimpaired controls using an item recognition and lexi-
cal decision task. Drift rates in mild Alzheimer’s disease patients
were also lower than in mild cognitive impairment (MCI)
(Ratcliff et al. 2022). Using statistical and machine learning meth-
ods, the same study found that the drift rate together with the
other model parameters was 83% accurate at distinguishing
memory-disordered adults fromunimpaired controls. This demon-
strates that the consideration of the performance in all component
processes together in the diffusion model might be particularly
beneficial to the diagnostics of pathological aging. Moreover, it is
likely that the relative sensitivity of the drift rate and the other dif-
fusion model parameters to preclinical AD processes will also
depend on the particular task that is administered. Considering
the high sensitivity of the MDT, drift rate measures derived from
this task may provide an even more sensitive cognitive marker to
identify early signs of pathological aging. Therefore, future studies
applying hierarchical Bayesian diffusion modeling to the MDT in
older adults at risk for AD may be very informative.

In summary, our study provides evidence that the underlying
source of the age-related decline in MDT performance is predomi-
nantly a deficit inmnemonic ability in older adults rather than dif-
ferences in nonmnemonic decision-making processes such as
response caution and response bias. Furthermore, an age-related
slowing in encoding or strategic retrieval processes could be in-
volved in this deficit. Further work is needed to identify what
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specific processes that are relevant to successful memory are con-
tributing to this mnemonic ability deficit and link it with neural
circuit changes with aging.

Materials and Methods

Participants
The study sample consisted of 26 young adults (ages 18–29 yr) and
31 older adults (ages 60–91 yr). These numbers account already for
five participants that had to be excluded as described later. See
Table 1 for demographics and neuropsychological test scores. Indi-
viduals in the young group were recruited from the community
and screened for major neurological or psychiatric conditions, as
well as a history of or current substance use disorder using an
in-house short medical screening questionnaire. If participants re-
sponded with “yes” to any of the substance use questions, a
follow-up phone interview was performed where the National
Institute on Drug Abuse (NIDA) Quick Screen (http://www
.drugabuse.gov/nidamed/screening) was administered to assess
the severity of substance involvement. Only subjects that were cat-
egorized as low or moderate risk (cutoff <26) were included in the
study. All older adults in this study were recruited from the com-
munity as well and enrolled in a large longitudinal study of
aging and preclinical Alzheimer’s disease (BEACoN Study, NIA
R01AG053555,M.A.Y.). Theywere thoroughly screened for history
of major health conditions, including but not limited to neurolog-
ical disorders, psychiatric disorders, chronic illnesses, medications,
history of recreational drug use, smoking, and alcohol use, and
were questioned about the intactness of visual and auditory abili-
ties (e.g.: “Do you wear a hearing aid?”). Additionally, the determi-
nation of “clinically normal” status was based on several levels of
evaluation that allowedus to exclude thosewithmild cognitive im-
pairment (MCI) or dementia. All participants had a clinical demen-
tia rating (CDR) score of 0, and a Mini-Mental State Exam (MMSE)
score of 27 or above. Performance on standardized neuropsycho-
logical assessments was all within 1 standard deviation of age-
based norms. All participants (young and old) were screened for
depression using the Beck Depression Inventory (BDI; cutoff <14)
(Beck et al. 1961) and insomnia using the Pittsburgh Sleep Quality
Index (PSQI; global score cutoff <8) (Buysse et al. 1989). They all
had normal or corrected-to-normal vision and were not color
blind. All participants gave written informed consent prior to par-
ticipation in the study. After completing the study, participants
were debriefed and compensated with electronic gift card pay-
ments. The study was approved by the Institutional Review Board
at the University of California, Irvine.

Testing procedures
The mnemonic discrimination task was administered to all partic-
ipants in this study in a testing session that lasted ∼15 min. The
task was programmed in PsychoPy 3 (Peirce et al. 2019) and pre-
sented on an Apple computer with a 24-inmonitor that was placed
∼27 in away fromparticipants. A keyboard, placed at a comfortable
distance, was used to enter responses. Paper index cards were
placed between the keyboard and the monitor to orient the partic-
ipants to the correct response button press.

The MDT procedure consisted of two phases (Fig. 2). During
the incidental study phase, participants were presented with 120
colored images of everyday objects displayed at the center of the
screen. Participants were instructed to quickly make “indoor” or
“outdoor” judgments for each image using the “F” and “J” keys, re-
spectively. Each image was presented for 2000 msec with a
500-msec interstimulus interval (fixation cross). The test phase fol-
lowed immediately after and included 160 images; 40 trials were
exact repetitions of previously seen images (targets), 40 trials
were novel images (foils), and 80 trials were images that were per-
ceptually similar but not identical to previously seen images
(lures). Lure trials were distributed into 40 high-similarity lures
and 40 low-similarity lures (with respect to the original object
items). Each itemwas presented for 2000msec with a 500-msec in-
terstimulus interval (fixation cross). Similarity rankings were based

on a prior study (Lacy et al. 2011). For each image, participants had
to quickly judge whether it was “old” or “new” using again the “F”
and “J” keys, respectively. Importantly, participants were instruct-
ed to answer “old” only for any image that they thought was the
exact image from the study session and to answer “new” to all oth-
er images, including any image thatmight have looked similar to a
study image butwas not exactly the same. Participants were further
instructed to always keep their fingers on the keys during the test
and to respond as fast and as accurately as possible. Only responses
made within the 2000-msec display time were recorded, and in
both study and test phase the images remained on the screen for
the full 2000 msec regardless of response time to ensure that expo-
sure time was matched across trials.

To ensure that participants understood task instructions, they
were first administered a short practice run prior to the actual task,
which included four trials, one from each category. A performance
of 75% correct had to be achieved to continue to the actual task. If
the performance was <75% task instructions were explained again
and the practice trial was repeated.

Quality control procedures
Prior to fitting the DDM, trials with no response were removed
from the data, resulting in the removal of 220 “no response” trials
in the older group (seven trials per participant) and 68 “no re-
sponse” trials in the younger group (2.6 trials per participant).
Note that Bayesian models consider the number of data points
while approximating parameter estimations. A lower number of
trials would be expressed in more uncertainty of the estimated pa-
rameters (see the next section). Next, RT data were preprocessed to
remove contaminants. Contaminants that were suspected to be
fast guesses were removed by using an exponentially weighted
moving average (EWMA) control method (see Vandekerckhove
and Tuerlinckx 2007). This method identifies the minimal RT
where responses start to deviate from what would be expected
when guessing. This minimal RT is then used as a lower cutoff
and all RTs below this cutoff are censored. This led to a removal
of 5% of the data for older adults and 5.55% for younger adults.
An upper cutoff was already implemented during the experiment
by not recording any RTs that were slower than 2000 msec.

To ensure that only data from participants that understood
and followed the task instructions was used, we excluded partici-
pants whose recognition memory performance for the foils and
targets was two or more standard deviations below the respective
group mean. Recognition memory performance for the foils was
assessed based on the correct rejection rate for the foil stimuli
(number of “new” responses for foils divided by the total number
of foil responses). Recognition memory for targets was assessed
based on the target hit rate (number of “old” responses for targets
divided by the total number of target responses). Based on those
criteria, two older and three younger participants were excluded.

Hierarchical Bayesian diffusion decision model
Accuracy and response time for each trial for each participant
were fit to a hierarchical Bayesian diffusion decision model
by using custom-designed models in JAGS version 4.3.0, an open
source program for the analysis of Bayesian models using Markov
chain Monte Carlo (MCMC; https://sourceforge.net/projects/
mcmc-jags). A series ofmodelswith increasing complexity in terms
of the number of hierarchical levels and the permitted variation of
parameters across those levels were specified and fit to the data.
There are two general characteristics of Bayesian hierarchical mod-
els that are also important features of the models specified in the
current study. They are hierarchical because lower levels are nested
in higher levels. Thismeans that each parameter estimate at a given
level is constrained by a normal distribution of that parameter at
the higher-order level. Each normal distribution is defined by a
mean µ and a standard deviation σ. The Bayesian aspect of the
model refers to the fact that each parameter is estimated by defin-
ing a prior distribution of the parameter’s likelihood, which is then
updated to a posterior distribution after observing the data
(Vandekerckhove et al. 2011). Accordingly, each parameter
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estimate in the model is represented by such a posterior distribu-
tion to account for the uncertainty associated with the estimation.
More uncertainty is reflected in a wider posterior.

The deviance information criterion (Spiegelhalter et al. 2014;
for a discussion of DIC, see Spiegelhalter et al. 1994), which evalu-
ates relativemodel performance based on a balance betweenmodel
complexity and model fit, was used to determine the model with
the best architecture. The model architecture with the smallest
DIC (indicating the best-fitting model) was chosen for diffusion
model parameter estimation (model 7). A list of all models and
their DICs is in Supplemental Table S1. We refer to model 7 below
as the full model, since it is comprehensive and exploratory. We
also estimated DDM parameters for the old and young groups
with two standard diffusion model fitting methods: the two χ2

method (for a description of the method, see Ratcliff and
Tuerlinckx 2002) and the publicly available diffusionmodel fitting
package fast-dm (see Supplemental Table S2; Voss and Voss 2007).
A comparison and discussion of these and other fitting methods is
in Ratcliff and Childers (2015).

The full model included four levels of hierarchy: a group level
(g), a participant level (s), a condition level (c; targets, foils, high-
similarity lures, and low-similarity lures), and a trial level (t). All
four DDM parameters (δ, β, τ, and α) were allowed to randomly
vary across groups and participants. Accordingly, each parameter
was estimated for each group and each participant. The parameters
δ, β, and τwere also allowed to vary across trials and were therefore
estimated for each trial. Furthermore, the drift rate parameter δ,
representing mnemonic discrimination ability in our model, was
also allowed to vary across conditions, as the discrimination ability
was expected to differ depending on the image type (foil, target,
and lure).

Although DDM parameters were estimated at each of the four
hierarchical levels, our primary objective was to determine the cog-
nitive decision-making processes in which the older and younger
groups differed. We therefore focused on comparing the means
of the DDM parameters (α, β, τ, δTarget, δFoil, δHighSim, and δLowSim)
at the group level. To facilitate a comparison of the group means,
we specified themodel to directly estimate group difference param-
eters. One group difference parameter was estimated for each of the
DDM parameters and represented the difference in the group
means between the older and younger adults (αDiff, βDiff, τDiff,
δDiffTarget, δDiffFoil, δDiffHighSim, and δDiffLowSim). For δ, a difference
parameter was estimated for each condition. To ensure comparable
variance of the estimated parameters in both groups, the group
means for each DDM parameter were derived from the following
linear combinations in the model:

GroupMeanxOLD=GroupMidx−0.5 ×Group Difference parameterx
and

GroupMeanxYNG=GroupMidx+0.5×GroupDifference parameterx,

where x is the DDM parameters (α, β, τ, δTarget, δFoil, δHighSim, and
δLowSim). The estimated GroupMid parameter was the same for
both groups and represented a DDM parameter value that was in
between the two group means.

Last, the upper boundary in our model was designated as the
“new” response and the lower boundary was designated as the
“old” response. For the interpretation of the drift rate values, it fol-
lows that positive values of the estimated δ group mean reflect an
average accumulation of evidence toward the “new” response
andnegative values reflect an average accumulation of evidence to-
ward the “old” response. A graphical representation of the full
model and the nesting of its levels is shown in Figure 3. The
JAGS code for this and all other models is available at https
://github.com/Yassa-TNL/diffusion-model-mdto/tree/master/jags_
files.

DDM parameter estimation
Parameterswere estimatedwith the joint probability of each choice
response (correct or incorrect) and its response time being distrib-
uted according to a Wiener distribution with four parameters:

Y(gsct)∼Wiener [α(gs), δ(gsct), β(gsct), τ(gsct)]. Estimationwas per-
formed according to the Bayesian approach. First, prior distribu-
tions were defined for all parameters, which were then updated
to posterior distributions. Accordingly, each parameter estimate
is described by a posterior distribution, which is a probability dis-
tribution that quantifies the uncertainty about the estimatedmod-
el parameter after having observed the data.

Posterior distributions were estimated simultaneously for all
model parameters through Markov chain Monte Carlo (MCMC)
methods. Data were sampled using six independent chains, each
containing 250,000 samples. The first 80,000 samples were dis-
carded as burn-in to ensure convergence of the chains. The R-hat
statistic was used to confirm convergence in all chains (Gelman
and Rubin 1992). Parameters with values below a threshold of
1.05 across all chains were considered as successfully converged.
The defined prior distributions for all parameters are listed in
Figure 3. All priors were uninformative but had theoretically in-
formed limits on the possible range of each parameter. For the
GroupMid and the difference parameters, we used uninformative
priors that were centered at 0 but still allowed for values other
than 0.

Evaluating evidence for group differences using

the Bayes factor
To evaluate the difference between the older and younger groups
for each of the DDM parameters individually in the full model,
we used the Savage–Dickey density ratio (Dickey and Lientz
1970) as a simplemethod to compute the Bayes factor (BF).We cal-
culated the BF for each group difference parameter by taking the ra-
tio of a difference parameter’s prior distribution value at 0 to the
difference parameter’s posterior distribution value at 0. This BF
thus compares how the likelihood of the group difference being
0 in a given difference parameter changes after having observed
the data. A BF of k, when >1, indicates that it is k times less likely
that a difference parameter equals 0 after seeing the data than be-
fore (prior). This can be interpreted as evidence in favor of the hy-
pothesis that there is a group difference. On the other hand, a BF of
m, when <1, indicates that it is 1/mmore likely that a difference pa-
rameter equals 0 after seeing the data than before. This can be in-
terpreted as evidence in favor of the hypothesis that there is no
group difference. Last, a BF of ∼1 indicates that observing the
data did not provide any additional information about how the
likelihood of a group difference being 0 changes, and we therefore
have no evidence in favor of either hypothesis.

Model optimization and selection of final reduced model
The full model allowed for group differences in all DDM parame-
ters, and the evidence for a group difference was evaluated for
each parameter individually. Therefore, this model can be viewed
as an exploratory model aiming to identify for which parameters
there is evidence for a group difference. Accordingly, evidence in
the full model considers the likelihood of a group difference for
each parameter individually and independent of the other param-
eters’ group difference likelihood and in the context of all DDMpa-
rameters being allowed to differ between groups. We then wanted
to re-estimate model parameters and re-evaluate the evidence for a
group difference from the exploratory model in a more proper
model context. We used the exploratory model to discover the un-
derlying data structure (e.g., in what parameters group differences
existed) and then used the reducedmodel to run parameter estima-
tions in the more accurate data structure. We therefore specified a
last model (final reduced model) that was informed by the results
of the full model. In contrast to the full model, in the final reduced
model, we allowed group differences only in those parameters that
we found evidence for in the full model (we refer to these parame-
ters as “final parameters”), while group differences in the remain-
ing parameters were set to 0. Evidence for the likelihood of a
group difference in the final reducedmodel is therefore considered
in the context of no other group differences being allowed.
Another important difference is that in the reduced model, the ev-
idence for the likelihood of the group differences was evaluated for
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all parameters jointly as opposed to individually. It is important to
note that the Bayes factor that was calculated in the final reduced
model is still valid, even when we tested in this case a hypothesis
that was inspired by previously looking at the data in the full mod-
el. The full model and the final reducedmodel did not differ in any
other respect.

To evaluate the joint likelihood of a group difference for the
final parameters in the final reduced model, we calculated a multi-
dimensional version of the Savage–Dickey density ratio. For this,
we defined onemultivariate normal distribution based on the prior
distributions for the final parameters. This resulted in a multidi-
mensional prior distribution with a mean at (0, 0, 0) (according
to the mean of each individual prior distribution at 0) and the co-
variancematrix corresponding to a diagonalmatrix that consists of
the variances of each of the individual priors. We then calculated
the value of this 3D prior distribution at (0, 0, 0). Next, we used
the sampled data from the posteriors of thefinal parameters (which
were sampled simultaneously) to create a 3D posterior distribution
and calculate the value at (0, 0, 0) in that distribution as well. Our
3D BF was then calculated by taking the ratio of the 3D prior distri-
bution value at (0, 0, 0) to the 3D posterior distribution value at (0,
0, 0). A general overview of the steps of the modeling procedure is
shown in Figure 4.

Evaluating model performance
To assess the quality of themodelfit, wemodeled reaction time dis-
tributions with correct and incorrect responses based on the esti-
mated model parameters. Responses were modeled for 40 trials
for each condition and participant and compared with the ob-
served data.

The modeled data were obtained by sampling from the poste-
rior distributions of each diffusion model parameter (δ, β, and τ
from posteriors at trial level and α from the posterior at participant
level) and entering the sampled diffusion model parameter values
into theWiener distribution. The sampling procedurewas repeated
250,000 times for each trial. This generated for each of the 40 trials
a posterior predictive distribution of 250,000 responses, with each
response being represented by a reaction time and accuracy (cor-
rect or incorrect).

We first compared the modeled and observed accuracy for
each participant and condition. For this, we calculated for every tri-
al in the modeled data set the percentage of “new” responses (cor-
responding to the correct response) in the samples of the posterior
predictive. We then averaged the accuracies across all trials in each
condition and participant and compared it with the accuracies in
the observed data set.

We additionally calculated the percentage of overlap between
the modeled and the observed response types. For this, we ob-
tained the modeled accuracy by determining the response type
(correct or incorrect) of a given trial based on a majority vote for
one of the two boundaries (corresponding to a response type) in
the samples of the posterior predictive. Trials that were “no re-
sponse” trials in the observed data set were not modeled. We
then calculated for each condition and participant the percentage
of trials where responses were matching between the modeled and
the observed trials.

Last, we compared howwell the modeled reaction time distri-
butions described the observed ones. For this, we approximated the
reaction time distributions by calculating the 0.1, 0.5, and 0.9
quantiles and compared the modeled and observed quantiles.
The observed quantiles were obtained by using the reaction time
distribution of all trials within a given response category (correct
and incorrect), condition, and participant and calculating the den-
sity function. The density function was then used to calculate a cu-
mulative distribution. The points where the probability was 0.1,
0.5, and 0.9 represent the corresponding reaction time quantiles.

The modeled quantiles were calculated by first determining
the response category (correct and incorrect) of a modeled trial
based on the response category in the observed data set of that cor-
responding trial. Then, only RTs of samples in the posterior distri-
bution that predicted the same boundary (corresponding to
response type) as in the observed data were used. Last, the RTs of

all modeled trials that belong to the same response category, con-
dition, and participant were put together, and quantiles were cal-
culated as in the observed data set described above.
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