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Abstract

Background and aims: Cocaine use disorder (CUD) is a significant public health issue for 

which there is no Food and Drug Administration (FDA) approved medication. Drug repurposing 

looks for new cost-effective uses of approved drugs. This study presents an integrated strategy to 

identify repurposed FDA-approved drugs for CUD treatment.
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Design: Our drug repurposing strategy combines artificial intelligence (AI)-based drug 

prediction, expert panel review, clinical corroboration and mechanisms of action analysis being 

implemented in the National Drug Abuse Treatment Clinical Trials Network (CTN). Based 

on AI-based prediction and expert knowledge, ketamine was ranked as the top candidate for 

clinical corroboration via electronic health record (EHR) evaluation of CUD patient cohorts 

prescribed ketamine for anesthesia or depression compared with matched controls who received 

non-ketamine anesthesia or antidepressants/midazolam. Genetic and pathway enrichment analyses 

were performed to understand ketamine’s potential mechanisms of action in the context of CUD.

Setting: The study utilized TriNetX to access EHRs from more than 90 million patients world-

wide. Genetic- and functional-level analyses used DisGeNet, Search Tool for Interactions of 

Chemicals and Kyoto Encyclopedia of Genes and Genomes databases.

Participants: A total of 7742 CUD patients who received anesthesia (3871 ketamine-exposed 

and 3871 anesthetic-controlled) and 7910 CUD patients with depression (3955 ketamine-exposed 

and 3955 antidepressant-controlled) were identified after propensity score-matching.

Measurements: EHR analysis outcome was a CUD remission diagnosis within 1 year of drug 

prescription.

Findings: Patients with CUD prescribed ketamine for anesthesia displayed a significantly 

higher rate of CUD remission compared with matched individuals prescribed other anesthetics 

[hazard ratio (HR) = 1.98, 95% confidence interval (CI) = 1.42–2.78]. Similarly, CUD patients 

prescribed ketamine for depression evidenced a significantly higher CUD remission ratio 

compared with matched patients prescribed antidepressants or midazolam (HR = 4.39, 95% CI 

= 2.89–6.68). The mechanism of action analysis revealed that ketamine directly targets multiple 

CUD-associated genes (BDNF, CNR1, DRD2, GABRA2, GABRB3, GAD1, OPRK1, OPRM1, 

SLC6A3, SLC6A4) and pathways implicated in neuroactive ligand-receptor interaction, cAMP 

signaling and cocaine abuse/dependence.

Conclusions: Ketamine appears to be a potential repurposed drug for treatment of cocaine use 

disorder.
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INTRODUCTION

As of 2020, more than 1.3 million adults suffer from cocaine use disorder (CUD) in the 

United States [1]. CUD has been a significant public health problem associated with elevated 

morbidity and mortality [2, 3]. However, there is no Food and Drug Administration (FDA)-

approved medication to treat CUD [4, 5]. The standard treatment course for CUD involves 

psychosocial counseling and support, which may have limited efficacy or implementation in 

practice on its own. The discovery of medical treatments to supplement behavioral therapies 

for treatment of CUD is a high public health priority [6].
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The traditional drug discovery process for medication development is lengthy and costly 

[7, 8]. Drug repurposing is a technique that discovers new indications for approved drugs 

in cost-effective ways [9–11]. There are some successful examples of drug repurposing, 

such as the use of rituximab for rheumatoid arthritis [12], metformin for various cancers 

[13, 14] and topiramate for obesity [15]. With the explosion of large-scale biomedical 

databases, numerous computational approaches have been developed to systematically 

analyze biological data to identify new treatments for various diseases [16, 17]. These 

approaches can be broadly categorized into network-based models [18, 19], structure-based 

approaches [20, 21] and artificial intelligence (AI)-based approaches [22, 23]. While these 

methods generate many repurposing signals, there have also been many repurposing drug 

candidates that have failed in clinical trial testing due to lack of efficacy [11, 24]. Thus, 

candidate drugs should undergo additional vetting prior to being tested in a clinical trial, 

which can be accomplished by integrating data from electronic health records (EHR) and 

input from experts in pharmacology and biomedical research [25].

The National Drug Abuse Treatment Clinical Trials Network (CTN) is conducting the ‘Drug 

Repurposing for cocaine use disorder (CUD)’ study using a combined strategy of AI-based 

prediction and retrospective clinical corroboration (CTN-0114). In this study, we developed 

a drug repurposing strategy that combined AI-based drug prediction, expert panel review, 

clinical corroboration through EHR-based testing and data-driven mechanisms of action 

analysis. Our drug repurposing strategy is highly generalizable and dynamic, and can be 

used for drug discovery for other substance use disorders. The present paper describes the 

outcome for a top candidate that completed the process: ketamine, a small synthetic organic 

molecule used clinically as an anesthetic and as a depression treatment.

MATERIAL AND METHODS

Our study consisted of the following steps (Figure 1). (1) We identified potential drug 

candidates from 1430 FDA-approved drugs using KG-Predict, a knowledge-driven AI-based 

system that we previously developed for general purpose drug discovery and disease 

gene prediction [26, 27]. (2) The CTN-0114 advisory committee reviewed the top 35 

drug candidates ranked by KG-Predict. (3) We performed retrospectives control studies to 

evaluate the potential efficacy of a single drug (ketamine) for CUD treatment using EHR 

data from 90 million patients. (4) We performed genetic analysis and Kyoto Encyclopedia of 

Genes and Genomes (KEGG) pathway enrichment analysis [28] to understand the potential 

mechanisms of action of ketamine in the context of CUD.

Knowledge graph-based drug discovery system

Knowledge graph, a powerful AI technology to abstract, organize and integrate knowledge 

extracted from multiple data sources, has become an emerging technology for biomedical 

discovery. We constructed a knowledge graph-based prediction system, KG-Predict, that 

prioritizes candidate drugs for a given input disease by modeling the interconnections 

between drugs, genes, diseases and phenotypical annotations from publicly available 

phenome-level databases, genome-level databases and text-mined knowledge bases [26, 

27]. In KG-Predict, the associations between drugs and their corresponding phenotypes 
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were obtained from the Phenomebrowser [29] database. The associations between genes 

and their functions were obtained from Gene Ontology Annotation (GOA) [30], Mouse 

Genome Informatics (MGI) [31] and Genotype-Tissue Expression (GTEx) [32] databases. 

The associations between diseases and phenotype ontologies were obtained from the human 

phenotype ontology (HPO) database [33]. The associations between drugs and genes 

were obtained from the DrugBank database [34]. We extracted disease–gene interactions 

from the MGI database. The drug–disease interactions were mined by natural language 

processing (NLP) techniques from records of patients in FAERS, FDA drug labels, 

MED-LINE abstracts and clinical trial studies [35, 36]. The knowledge graph in KG-

Predict was composed of seven types of entities (e.g. drugs, genes, diseases, phenotypical 

annotations) linked by nine types of semantic relations (e.g. drug–target–gene, gene–

associate–GOA). More details are provided in Supporting information, Table S1 in the 

supporting information.

In this study, the input to KG-Predict is a list of CUD-associated genes. The output is 

a list of candidate drugs prioritized based on their genetic, genomic and phenotypical 

relevance to CUD. To collect CUD-associated genes, we first obtained 383 genes that are 

associated with cocaine-related diseases (cocaine dependence, cocaine abuse and cocaine-

related disorder) from DisGeNet [37], a discovery platform with one of the largest publicly 

available collections of genes and variants associated with human diseases. We used the 

median score of 0.5 as the threshold. At a cut-off score of 0.5, 19 genes were associated with 

cocaine-related diseases. We also obtained three CUD-associated genes from the published 

literature [38–40]. The CUD-associated gene list included DRD3, GABRA2, CAMK4, 

MECP2, OPRK1, COMT, CREB1, CARTPT, CRH, CNR1, CRHR1, OPRM1, SLC6A4, 

NPY, PDYN, DRD2, HTR1B, SLC6A3, EGR1, GAD1, GABRB3 and BDNF.

Expert panel review from pharmacology or biomedical research fields

The names of the CTN-0114 advisory committee members are listed in the 

Acknowledgements section. The committee includes experts in data science, addiction 

psychiatry and addiction treatment. All seven members are seasoned CTN investigators, 

with the majority boasting more than 20 years’ experience conducting addiction trials, 

including multiple trials testing medications for the treatment of CUD. The role of the 

advisory committee was to provide feedback on the potential clinical utility of the identified 

candidates with the investigative team making the decision about which candidates to submit 

to EHR analysis. A REDCap [41] survey was created to obtain input from each advisory 

committee member. For each drug, the advisory committee member was asked whether 

the candidate should be included in the EHR analysis taking into account: ‘(1) existing 

pre-clinical and clinical trials evidence, (2) likely challenges with clinical utilization, (3) 

the potential to address co-occurring substance use and/or to phenotypes which patients 

frequently report as being prominent barriers to their recovery and (4) on-going (or soon to 

start investigations)’.
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EHR-based large-scale clinical corroborations for CUD remission using the expert panel-
selected medication (ketamine)

Study setting—This study utilized TriNetX [42], a federated health research network, 

to access EHRs from approximately 90 million unique patients across the United States. 

TriNetX Analytics provides web-based secure access to patient EHR data from hospitals, 

primary care clinics and specialty treatment providers, covering demographics, diagnoses, 

procedures, medications, laboratory testing, vital signs and genomic information. The 

platform features built-in functions that allow for cohort selection, matching incidence 

and prevalence analysis and comparison of characteristics and outcomes between matched 

cohorts. TriNetX only uses aggregate counts and statistical summaries of deidentified 

patients, so no protected health information or personal data are available to users. 

Consequently, the MetroHealth System, Cleveland Ohio, Institutional Review Board has 

determined that any research using TriNetX is not Human Subject Research and is therefore 

exempt from review. We previously used the TriNetX Analytics network platform to perform 

large-scale cohort studies in patients with CUD and other diseases [43–54], including 

evaluating potential clinical efficacy of repurposed drugs in real-world populations [55, 56].

Ketamine exposure information was obtained from pharmacy data in TriNetX, including the 

drug name, issue dates of prescription and order records. Ketamine was coded as National 

Drug Code (NDC, the FDA drug identification system) 6130. In addition, we collected drug 

information for 10 widely utilized anesthetics for analysis as comparison drugs: propofol 

(NDC 8782), methohexital (NDC 6847), thiopental (NDC 10493), isoflurane (NDC 6026), 

desflurane (NDC 27340), etomidate (NDC 4177), sevoflurane (NDC 36453), fospropofol 

(NDC 828682), enflurane (NDC 3920) and midazolam (NDC 6960). Midazolam and the 

class of antidepressants (NDC CN600) were also used as comparison drugs in a subsequent 

analysis.

The status of CUD was based on the International Classification of Diseases 10th revision 

(ICD-10) diagnosis code for ‘cocaine-related disorder’ (ICD F14). The status of anesthesia 

was based on the Current Procedural Terminology (CPT) relevant codes for ‘Anesthesia’ 

(CPT 1002796) and the ICD-10 diagnosis code for ‘Anesthesia of skin’ (ICD R20.0). The 

status of depression was based on the ICD-10 diagnosis code for ‘depressive episode’ (ICD 

F32) and ‘major depressive disorder, recurrent’ (ICD F33). The outcome ‘remission from 

CUD’ was based on the diagnosis of ‘cocaine abuse in remission’ (ICD F14.11) or ‘cocaine 

dependence in remission’ (ICD F14.21).

Study population—Using the TriNetX database, we identified a total of 379 409 patients 

diagnosed with CUD between January 2007 and June 2022. Among the population with 

CUD, 16 754 patients were prescribed ketamine.

The following studies were conducted:

1. We first investigated if patients with CUD who were prescribed ketamine for 

anesthesia have a higher CUD remission rate compared with patients prescribed 

other anesthetics. The exposure group was composed of patients who were 

prescribed ketamine within 1 year of their initial CUD diagnosis but who were 
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never in remission from CUD prior to ketamine prescription. The control group 

included patients who were never prescribed ketamine but who were prescribed 

another anesthetic within 1 year of their initial CUD diagnosis; they had also 

never experienced remission from CUD prior to this anesthetic prescription.

2. We investigated if CUD patients with unipolar or major depression who were 

prescribed ketamine (75% of patients received a single prescription and 25% 

received two or more prescriptions) displayed higher CUD remission rates 

compared with individuals prescribed other drugs to treat depression, such as 

antidepressants or midazolam (midazolam was used as a control in the real-life 

clinical trials that have investigated ketamine administration for CUD [57–59]). 

The exposure group included CUD patients with depression who were prescribed 

ketamine within 1 year of their initial CUD diagnosis but who were never in 

remission from CUD before ketamine prescription. The control group included 

CUD patients with depression who were never prescribed ketamine but who 

were prescribed either midazolam or antidepressants within 1 year of their initial 

CUD diagnosis; they also never experienced remission from CUD before their 

midazolam or antidepressant prescription.

3. As there is a 25% overlap between CUD patients who received anesthesia and 

those with unipolar or major depression, we performed additional analyses to 

examine potential effects of ketamine on CUD remission in two non-overlapping 

cohorts of CUD patients. (a) The exposure group included CUD patients who 

were never diagnosed with depression but prescribed ketamine for anesthesia. 

The control group included patients who were never prescribed ketamine and 

never diagnosed with depression but who were prescribed another anesthetic 

for anesthesia within 1 year of their initial CUD diagnosis; they had also never 

experienced remission from CUD prior to this anesthetic prescription. (b) The 

exposure group was composed of CUD patients who never received anesthesia 

and were prescribed ketamine for depression. The control group included CUD 

patients with depression who were never prescribed ketamine and never received 

anesthesia, but who were prescribed either midazolam or antidepressants within 

1 year of their initial CUD diagnosis; they also never experienced remission from 

CUD before their midazolam or antidepressant prescription.

The index event for each study was the date of drug prescription (either ketamine, other 

anesthetics or antidepressant/midazolam). Patients who experienced remission from CUD 

prior to drug prescription or those whose initial CUD diagnosis was more than 1 year before 

drug prescription was excluded (Figure 2).

Propensity score-matching

To balance the cohorts, the TriNetX built-in propensity score-matching function was used, 

which involves 1:1 matching using a nearest-neighbor greedy matching algorithm with a 

caliper of 0.1 standardized mean differences (SMD) to account for potential confounding 

variables [45, 46, 60]. The purpose of propensity score-matching was to render the exposure 

and control groups more comparable by accounting for and reducing the bias of covariates 

that may act as confounding variables.
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The list of covariates, as well as their standardized name codes and data types used 

in TriNetX, is described in the Supporting information, Table S2. These covariates 

included demographics (age, gender, race/ethnicity): socio-economic and psychosocial 

status (ICD Z55–Z65 for ‘Persons with potential health hazards related to socio-

economic and psychosocial circumstances’), which denotes problems with employment, 

housing, education and economic circumstances; mental and behavioral disorders due to 

psychoactive substance use (ICD F10–F19), encompassing opioid-related disorders, alcohol-

related disorders, cannabis-related disorders, nicotine dependence and hallucinogen-related 

disorders; schizophrenia and other non-mood psychotic disorders (ICD F20–F29); mood 

disorders (ICD F30–F39), including depression and bipolar disorder as well as anxiety, 

dissociative, stress-related, somatoform and other non-psychotic mental disorders (ICD 

F40–F48); attention-deficit/hyperactivity disorder (ICD F90); conduct disorders (ICD F91); 

and relevant life-time comorbidities (hypertension (ICD I10-I16), heart disease (ICD I20–

I25, I30–I5A), cerebrovascular disease (ICD I60–I69) and acute kidney disease (ICD N17). 

These covariates are all implicated in the development and severity of CUD [61–65].

Statistical analyses

Comparisons between cohorts were made using Cox’s proportional hazards model (a 

built-in function in TriNetX). The diagnosis of remission from CUD within 1 year of 

drug prescription was the outcome of interest. Hazard ratios (HR) and 95% confidence 

intervals (CI) were calculated to compare the outcome of interest between cohorts based on 

comparison of time to event rates. The proportional hazard assumption was tested using the 

generalized Schoenfeld approach [66]. We examined the overall HR of CUD remission in 

patients prescribed ketamine compared with matched patients prescribed other anesthetics 

or antidepressants/midazolam (Figure 2). We also stratified the analysis by gender and 

race. The analysis was not pre-registered, and therefore the results should be considered 

exploratory rather than confirmatory.

Genetic- and functional-level analyses of ketamine in the context of CUD

Genetic-level analysis—We used the STITCH (Search Tool for Interactions of 

Chemicals) database to obtain the protein-coding genes associated with ketamine. STITCH 

contains data on the interactions between 500 000 small molecules and 9.6 million proteins 

from 2031 organisms [67]. The scores of associations between chemicals and protein-

encoding genes range from 0.001 to 0.999. The median score of 0.5 is used as the cut-off 

value. We then determined how many genes were associated with both ketamine and CUD.

Functional-level analysis—We identified the CUD-associated pathways that ketamine 

directly targets to more clearly understand the potential causal relationship between 

ketamine use and CUD remission. Genetic pathways for each CUD gene (listed in the 

Results section) were first obtained from the KEGG database, which stores high-level 

functions and utilities of biological systems [28]. For each pathway, we assessed its 

probability of being associated with the given set of CUD-associated genes at a significance 

threshold of P < 0.01. Genetic targets of ketamine were also obtained from the STITCH 

database. Genetic pathways that are significantly associated with ketamine-associated 

genes were identified from the KEGG database [28]. For each pathway, P-values ≥ 0.01 
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were discarded. Finally, we intersected ketamine-associated pathways with CUD-associated 

pathways to determine which pathways are implicated in both CUD and ketamine.

RESULTS

Top repurposed candidate drugs for treating CUD identified by the knowledge graph-based 
drug discovery system

The top 10 drugs ranked by our knowledge graph-based drug discovery system are listed 

in Table 1. Three of these (aripiprazole, ketamine and quetiapine) have been evaluated as 

CUD treatments in clinical trials (https://clinicaltrials.gov/), and clozapine was implicated as 

CUD treatments in published literature [68]. All 10 drugs are approved for treating either 

depression or schizophrenia, which are frequently comorbid with CUD [61].

Expert panel ratings

Based on the enrichment of potential anti-CUD drugs from clinical trials (https://

clinicaltrials.gov/) and evidence from PubMed, the top 35 (2.5% of 1430) FDA-approved 

drugs identified by our knowledge graph-based drug discovery system were provided to 

the advisory committee (Supporting information, Table S3). The advisory committee ratings 

of the 35 candidate drugs are provided in Supporting information, Table S4. Ketamine 

ranked sixth among top 35 candidate drugs and was the only drug candidate that all 

advisory committee members recommended for inclusion in the EHR analysis; based on 

this consensus, the investigative team decided to complete the EHR-based evaluation of 

ketamine.

EHR-based analysis evaluating ketamine for CUD treatment

Ketamine is associated with significantly greater remission from CUD in 
patients prescribed ketamine as an anesthetic—The cohort of CUD patients 

prescribed ketamine differed from the unmatched sample prescribed other anesthetics in 

age, race, comorbidities and socio-economic and psychosocial status. As can be seen in 

Table 2, the matching procedure created comparable matched groups of 7742 CUD patients 

who received anesthesia (3871 ketamine-exposed and 3871 anesthetic-controlled), with no 

significant differences on patient characteristics. Patients prescribed ketamine displayed 

a significantly higher ratio of CUD remission compared with propensity score-matched 

individuals prescribed other anesthetics without ketamine (HR = 1.98, 95% CI = 1.42–2.78) 

(Figure 3). Similar findings were observed in patients stratified by gender with an HR of 

2.32 (95% CI = 1.47–3.65) for women and 2.35 (95% CI = 1.33–4.16) for men and in 

populations stratified by race with an HR of 1.71 (95% CI = 1.09–2.68) for White and 2.12 

(95% CI = 1.24–3.63) for Black patients. In addition, we found that no significant gender 

or race disparities for CUD remission in patients taking ketamine (Supporting information, 

Figure S1).

Ketamine is associated with significantly greater remission from CUD in 
patients prescribed ketamine as an antidepressant—The characteristics of CUD 

patients prescribed ketamine versus antidepressants or midazolam are shown in Table 3. 

As can be seen in Table 3, the matching procedure created comparable matched groups 
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of 7910 CUD patients with depression (3955 ketamine-exposed and 3955 antidepressant-

controlled), with no significant differences on patient characteristics. Patients prescribed 

ketamine displayed a significantly higher CUD remission ratio compared with patients in 

matched antidepressant groups with an HR of 4.39 (95% CI = 2.89–6.68). Similar findings 

were observed in population stratified by gender and race (Figure 4). There were also 

no significant gender or race disparities for CUD remission in patients taking ketamine 

(Supporting information, Figure S2).

Ketamine is associated with significantly greater remission from CUD in 
two non-overlapping cohorts of patients—To further clarify the impact of overlap 

between the anesthesia and depression patient samples, we stratified the analysis by dividing 

CUD patients into two non-overlapping cohorts (Figure 5). The patient characteristics 

were provided in Supporting information, Tables S5 and S6. For the anesthesia group, 

we identified an EHR cohort of CUD patients who were never diagnosed with depression 

and prescribed ketamine for anesthesia. The result showed that patients with CUD who 

were administered ketamine displayed higher rates of remission from CUD compared with 

matched individuals prescribed other anesthetics (HR = 2.23, 95% CI = 1.02–4.91). For 

the depression group, we identified an EHR cohort of CUD patients who never received 

anesthesia and were prescribed ketamine for depression. The result similarly displayed 

higher rates of remission from CUD compared with matched individuals prescribed other 

antidepressants or midazolam (HR = 3.37, 95% CI = 1.45–7.83).

Ketamine is involved in CUD at the genetic and functional levels

We analyzed how ketamine relates to CUD at the genetic and functional levels. At the 

genetic-level, we obtained 154 genes associated with ketamine, among which 10 genes are 

implicated in CUD, including BDNF, CNR1, DRD2, GABRA2, GABRB3, GAD1, OPRK1, 

OPRM1, SLC6A3 and SLC6A4. The complete list of CUD- and ketamine-associated genes 

is provided in Supporting information, Table S7.

We then analyzed the functional relationship between ketamine and CUD. We identified 

13 genetic pathways that are significantly enriched for the 24 CUD-associated genes 

from the KEGG database. The most enriched CUD pathways involve neuroactive ligand–

receptor interaction, alcoholism, cAMP signaling and cocaine addiction (see Supporting 

information, Table S8 for the full list). A total of 78 significantly enriched pathways for 

the 154 ketamine-associated genes were obtained from the KEGG database. We identified 

significantly enriched pathways for ketamine and the shared pathways between ketamine 

and CUD. As shown in Table 4, 12 pathways were significantly enriched for both CUD 

and ketamine (92% of 13 CUD pathways). Several pathways that were shared by CUD- 

and ketamine-associated genes, but not significantly enriched for either CUD or ketamine, 

included apelin signaling pathway and synaptic vesicle cycle.

DISCUSSION

In this study, we implemented a drug repurposing strategy for CUD treatment by combining 

AI-based drug prediction, expert panel review, large-scale clinical corroboration based 

on EHRs and data-driven mechanism of action analysis. The AI system generated a list 
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of candidates based on a large amount of genetic, genomic and phenotypical data from 

both human and mouse models. Experts refined the list of candidates based on probable 

clinical utility and unanimously selected ketamine for further EHR and mechanism of action 

analyses, the results of which suggest that ketamine has the potential to improve remission 

rates in patients with CUD.

Ketamine is a rapid-acting general anesthetic that is typically administered as a single 

injection [69]. We identified an EHR cohort of CUD patients prescribed ketamine 

for anesthesia and found that patients with CUD who were administered ketamine 

displayed higher rates of remission from CUD compared with individuals prescribed other 

anesthetics. Another indication for ketamine is treatment-resistant depression, for which 

subanesthetic doses of ketamine can trigger rapid antidepressant-like effects [70, 71]. An 

HER-identified cohort of CUD patients who were prescribed ketamine for depression 

similarly displayed higher rates of remission from CUD compared with individuals 

prescribed other antidepressants or midazolam. While the absolute rates of remission 

were quite modest (1–3% in ketamine-treated patients), these data nevertheless provide a 

convincing signal for potential clinical efficacy in CUD.

The present results, which suggest a role for ketamine in the treatment of CUD, are 

consistent with several clinical trials evaluating ketamine in patients with CUD [57–59, 72]. 

These trials enrolled between eight and 50 individuals with CUD, utilizing either lorazepam 

(an anti-anxiety medication) or midazolam (a benzodiazepine) for the control group. These 

studies revealed that, compared with the control group, CUD patients administered ketamine 

experienced a significant reduction in cocaine craving [57, 59] and self-administration [58] 

shortly after taking ketamine and were three times as likely to remain abstinent from 

cocaine use during the last 2 weeks of a 5-week trial [72]. The combined results from these 

trials point to ketamine’s potential to treat CUD more effectively than other psychiatric 

medications. The trials conducted to date have included small homogenous samples limiting 

the generalizability of the findings [57–59, 72]. The results from the present study found 

that ketamine exposure was associated with CUD remission in patients with significant 

medical and psychiatric comorbidities and did not find differential effects by gender or race, 

suggesting that ketamine may show efficacy with more heterogeneous samples.

The mechanisms by which ketamine may impact cocaine use have not been delineated, 

although there is some evidence that the mystical-type experience that can arise from 

single-dose ketamine exposure might be important for ketamine’s impact [59, 73]. It 

is also important to consider the biochemical pathways that could explain ketamine’s 

potential as a treatment for CUD, considering the shared pathways we identified between 

ketamine and CUD. Ketamine targets a multitude of proteins in the brain implicated in 

the pathogenesis of addiction [74]. NMDA receptors are ketamine’s major target for its 

physiological effects; ketamine non-competitively antagonizes NMDA receptors by binding 

to them allosterically [75]. Cocaine affects NMDA receptors in various ways, although the 

specific biochemical linkages of this relationship have not been fully elucidated. Cocaine 

triggers changes to NMDA receptor subunits, DNA transcription downstream of NMDA 

receptor binding and re-assembly of protein complexes involved in the NMDA receptor 

pathway [76]. Cocaine also modulates cross-talk between NMDA and dopamine receptors, 
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which is notable, as dopamine signaling in the mesocorticolimbic dopamine system is 

critical for the neurochemical development of addiction [77]. In addition to its interactions 

with NMDA receptors, ketamine influences the activity and expression of brain-derived 

neurotrophic factor (BDNF) [78], eukaryotic elongation factor 2 and mechanistic target 

of rapamycin (mTOR), which modulate synaptic plasticity, a process implicated in the 

pathogenesis of depression [79] and addiction [75]. Much work remains to be conducted 

to elucidate any causal relationship between ketamine use and CUD remission, both on the 

subjective patient and molecular levels. Future work should focus upon animal studies to 

define ketamine’s biochemical effects more concretely on the addicted brain, as well as 

larger-scale randomized clinical trials, to definitively demonstrate the benefits of ketamine 

for CUD patients.

We previously developed KG-Predict for general purpose drug discovery and disease 

genetic prediction [26, 27]. In the present project, we applied KG-Predict for CUD drug 

repurposing. Among top 35 AI-generated candidates reviewed by the expert panel, only 

one (ketamine) was unanimously selected for further evaluation, with most of the other 

candidates given a low rating based on probable adherence issues. Ketamine has previously 

been studied for treating CUD [57–59] and thus, in this case, the AI system was of limited 

utility in terms of generating truly novel candidates for treating CUD based on the top 

35 candidates reviewed. However, the present study reinforces the importance of vetting 

AI-generated candidates with experts familiar with their clinical profiles. In addition, the 

selection of ketamine through the AI system lends further support to ketamine’s promise as a 

potential CUD treatment.

Our study has several limitations. First, information on drug usage duration, dosage 

and patient adherence is limited in the EHR database; for example, prescriptions may 

be obtained from outside providers that were not recorded in TriNetX. Due to these 

limitations, we could not evaluate how the duration, dosage and compliance of drug use 

affect CUD remission. Secondly, although widely used and accepted for observational 

studies on health-care utilization, drug utilization, epidemiology, risk factors and safety 

surveillance, the observational, retrospective nature of this study could introduce selection, 

information, testing and follow-up biases. Patient EHR data may suffer from underdiagnosis/

overdiagnosis/misdiagnosis and do not include all possible confounding factors. One 

potential limitation may come from propensity score-matching. Although patient matching 

can make distributions of covariates more balanced to avoid many confounders, we could 

still miss some unobserved and unmeasured confounders due to the observational nature 

of the study design, which could increase data imbalance and bias. Thirdly, while our 

study used standard statistical analyses for cohort studies, it would benefit from additional 

sensitivity analysis as well as negative control analysis. Fourthly, although the TriNetX 

EHR database collects de-identified data from 90 million unique patients across the United 

States, patients in the EHR database represent people who had medical encounters with 

healthcare systems and do not necessarily represent the entire US population. While patients 

with CUD probably have medical encounters, the generalizability of the results from the 

TriNetX platform remains unknown and needs to be validated in other populations. Finally, 

the characterization of the genes and pathways involved in the pathogenesis, etiology and 
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biochemistry of CUD is probably incomplete. In the future, newly identified CUD-related 

genes and pathways will improve the identification of potential drugs for CUD.

In conclusion, the results from our drug repurposing strategy combining AI-based drug 

prediction, expert panel review, clinical corroboration and mechanisms of action analysis 

support ketamine as a potential repurposed drug to treat CUD. These findings, taken 

together with findings from the small clinical trials that have tested ketamine for CUD, 

suggest that additional clinical trials are warranted.
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ACKNOWLEDGEMENTS

This work was supported by the National Institute on Drug Abuse (UG1DA013732, CTN-0114) and the Clinical 
and Translational Science Collaborative (CTSC) of Cleveland (UL1TR002548–01). U.E.G. was substantially 
involved in CTN-0114, consistent with his role as Scientific Officer. He had no substantial involvement in the 
other cited grants. The views and opinions expressed in this manuscript are those of the authors only and do not 
necessarily represent the views, official policy or position of the US Department of Health and Human Services or 
any of its affiliated institutions or agencies. We would like to acknowledge the efforts of members of the CTN-0114 
Advisory Committee: Kathleen Brady MD, PhD; Todd Korthuis MD, MPH; Sean Luo PhD; Edward Nunes MD; 
John Rotrosen MD; Andrew Saxon MD; and Steven Shoptaw PhD.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are openly available in “https://trinetx.com/”.

REFERENCES

1. National Institute on Drug Abuse (NIDA). What is the scope of cocaine use in the United States? 
Bethesda, MD: NIDA; 2022.

2. Yoon JH, Suchting R, de Dios C, Vincent JN, McKay SA, Lane SD, et al. Decreased cocaine 
demand following contingency management treatment. Drug Alcohol Depend. 2021;226:108883. 
[PubMed: 34198136] 

3. Jones GM, Nock MK. Exploring protective associations between the use of classic psychedelics and 
cocaine use disorder: a population-based survey study. Sci Rep. 2022;12:1–9. [PubMed: 34992227] 

4. Kampman KM. The treatment of cocaine use disorder. Sci Adv. 2019;5:eaax1532. [PubMed: 
31663022] 

5. Bentzley BS, Han SS, Neuner S, Humphreys K, Kampman KM, Halpern CH. Comparison of 
treatments for cocaine use disorder among adults: a systematic review and meta-analysis. JAMA 
Netw Open. 2021;4:e218049. [PubMed: 33961037] 

6. Schwartz EK, Wolkowicz NR, De Aquino JP, MacLean RR, Sofuoglu M. Cocaine use disorder 
(CUD): current clinical perspectives. Subst Abuse Rehabil. 2022;13:25–46. [PubMed: 36093428] 

7. Kola I, Landis J. Can the pharmaceutical industry reduce attrition rates? Nat Rev Drug Discov. 
2004;3:711–26. [PubMed: 15286737] 

8. Mullard A New drugs cost US $2.6 billion to develop. Nat Rev Drug Discov. 2014;13:877.

9. Zhou M, Wang Q, Zheng C, John Rush A, Volkow ND, Xu R. Drug repurposing for opioid use 
disorders: Integration of computational prediction, clinical corroboration, and mechanism of action 
analyses. Mol Psychiatry. 2021;26:5286–96. [PubMed: 33432189] 

10. Zhou M, Zheng C, Xu R. Combining phenome-driven drug-target interaction prediction 
with patients’ electronic health records-based clinical corroboration toward drug discovery. 
Bioinformatics. 2020;36:i436–44. [PubMed: 32657406] 

Gao et al. Page 12

Addiction. Author manuscript; available in PMC 2023 November 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://trinetx.com/


11. Pushpakom S, Iorio F, Eyers PA, Escott KJ, Hopper S, Wells A, et al. Drug repurposing: progress, 
challenges and recommendations. Nat Rev Drug Discov. 2019;18:41–58. [PubMed: 30310233] 

12. Mok CC. Rituximab for the treatment of rheumatoid arthritis: an update. Drug Des Dev Ther. 
2014;8:87.

13. Morris A In search of the mechanisms of metformin in cancer. Nat Rev Endocrinol. 2018;14:628–
8.

14. Martin M, Marais R. Metformin: a diabetes drug for cancer, or a cancer drug for diabetics? J Clin 
Oncol. 2012;30:2698–700. [PubMed: 22565000] 

15. Astrup A, Toubro S. Topiramate: a new potential pharmacological treatment for obesity. Obes Res. 
2004;12:167S–73S. [PubMed: 15687413] 

16. Luo H, Li M, Yang M, Wu FX, Li Y, Wang J. Biomedical data and computational models for drug 
repositioning: a comprehensive review. Brief Bioinform. 2021;22:1604–19. [PubMed: 32043521] 

17. Jarada TN, Rokne JG, Alhajj R. A review of computational drug repositioning: strategies, 
approaches, opportunities, challenges, and directions. J Cheminform. 2020;12:1–23. [PubMed: 
33430988] 

18. Lotfi Shahreza M, Ghadiri N, Mousavi SR, Varshosaz J, Green JR. A review of network-based 
approaches to drug repositioning. Brief Bioinform. 2018;19:878–92. [PubMed: 28334136] 

19. Song T, Wang G, Ding M, Rodriguez-Paton A, Wang X, Wang S. Network-based approaches for 
drug repositioning. Mol Inform 2022;41:2100200.

20. Adasme MF, Parisi D, Sveshnikova A, Schroeder M. Structure-based drug repositioning: potential 
and limits. Semin Cancer Biol. 2021;68:192–8. [PubMed: 32032699] 

21. Masoudi-Sobhanzadeh Y, Salemi A, Pourseif MM, Jafari B, Omidi Y, Masoudi-Nejad A. 
Structure-based drug repurposing against COVID-19 and emerging infectious diseases: methods, 
resources and discoveries. Brief Bioinform. 2021;22:bbab113. [PubMed: 33993214] 

22. Pan X, Lin X, Cao D, Zeng X, Yu PS, He L, et al. Deep learning for drug repurposing: methods, 
databases, and applications. Wiley Interdiscip Rev Comput Mol Sci. 2022;12:e1597.

23. Rodriguez S, Hug C, Todorov P, Moret N, Boswell SA, Evans K et al. Machine learning identifies 
candidates for drug repurposing in Alzheimer’s disease. Nat Commun 2021;12:1–13. [PubMed: 
33397941] 

24. Zong N, Wen A, Moon S, Fu S, Wang L, Zhao Y, et al. Computational drug repurposing 
based on electronic health records: a scoping review. NPJ Digit Med. 2022;5:77. 10.1038/
s41746-022-00617-6 [PubMed: 35701544] 

25. Wu P, Feng Q, Kerchberger VE, Nelson SD, Chen Q, Li B, et al. Integrating gene expression 
and clinical data to identify drug repurposing candidates for hyperlipidemia and hypertension. Nat 
Commun. 2022;13:1–12. [PubMed: 34983933] 

26. Gao Z, Ding P, Xu R. KG-predict: a knowledge graph computational framework for drug 
repurposing. J Biomed Inform. 2022;132:104133. [PubMed: 35840060] 

27. Gao Z, Pan Y, Ding P, Xu R. A knowledge graph-based disease-gene prediction system using 
multi- relational graph convolution networks. AMIA Annual Symposium, 5–9 November 2022, 
Washington DC.

28. Kanehisa M, Goto S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 
2000;28:27–30. [PubMed: 10592173] 

29. OntoSIML, Phenomebrowser. Accessed in 2021. Available at: http://phenomebrowser.net/archive/
sider_drug_phenotype.txt

30. Gene Ontology Consortium. Gene ontology consortium: going forward. Nucleic Acids Res. 
2015;43:D1049–56. [PubMed: 25428369] 

31. Eppig JT, Smith CL, Blake JA, Ringwald M, Kadin JA, Richardson JE, et al. Mouse Genome 
Informatics (MGI): resources for mining mouse genetic, genomic, and biological data in support 
of primary and translational research. Methods Mol Biol. 2017;1488:47–73. [PubMed: 27933520] 

32. The GTEx Consortium Ardlie KG, Deluca DS Segrè AV, Sullivan TJ Young TR, et al. The 
genotype-tissue expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science. 
2015;348:648–60. [PubMed: 25954001] 

Gao et al. Page 13

Addiction. Author manuscript; available in PMC 2023 November 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://phenomebrowser.net/archive/sider_drug_phenotype.txt
http://phenomebrowser.net/archive/sider_drug_phenotype.txt


33. Robinson PN, Mundlos S. The human phenotype ontology. Clin Genet. 2010;77:525–34. [PubMed: 
20412080] 

34. Wishart DS, Knox C, Guo AC, Cheng D, Shrivastava S, Tzur D, et al. DrugBank: a knowledgebase 
for drugs, drug actions and drug targets. Nucleic Acids Res. 2008;36:D901–6. [PubMed: 
18048412] 

35. Xu R, Wang Q. Automatic signal extraction, prioritizing and filtering approaches in detecting 
post-marketing cardiovascular events associated with targeted cancer drugs from the FDA adverse 
event reporting system (FAERS). J Biomed Inform. 2014;47:171–7. [PubMed: 24177320] 

36. Xu R, Wang Q. Large-scale extraction of accurate drug-disease treatment pairs from biomedical 
literature for drug repurposing. BMC Bioinform. 2013;14:1–11.

37. Piñero J, Bravo À, Queralt-Rosinach N, Gutiérrez-Sacristán A, Deu-Pons J, Centeno E, et al. 
DisGeNET: a comprehensive platform integrating information on human disease-associated genes 
and variants. Nucleic Acids Res. 2016;45:D833–9. [PubMed: 27924018] 

38. Li X, Wolf ME. Multiple faces of BDNF in cocaine addiction. Behav Brain Res. 2015;279:240–54. 
[PubMed: 25449839] 

39. Enoch MA, Zhou Z, Kimura M, Mash DC, Yuan Q, Goldman D. GABAergic gene expression in 
postmortem hippocampus from alcoholics and cocaine addicts; corresponding findings in alcohol-
naive P and NP rats. PLOS ONE. 2012;7:e29369. [PubMed: 22253714] 

40. Nudmamud-Thanoi S, Veerasakul S, Thanoi S. Pharmacogenetics of drug dependence: 
polymorphisms of genes involved in GABA neurotransmission. Neurosci Lett. 2020;726:134463. 
[PubMed: 31472163] 

41. Harris PA, Taylor R, Thielke R, Payne J, Gonzalez N, Conde JG. Research electronic data capture 
(REDCap)—a metadata-driven methodology and workflow process for providing translational 
research informatics support. J Biomed Inform. 2009;42:377–81. [PubMed: 18929686] 

42. TriNetX. Analytics network. Available at: https://trinetx.com. Accessed in 2022.

43. Wang L, Berger NA, Kaelber DC, Davis PB, Volkow ND, Xu R. Incidence rates and clinical 
outcomes of SARS-CoV-2 infection with the omicron and Delta variants in children younger than 
5 years in the US. JAMA Pediatr. 2022;176:811–3. [PubMed: 35363246] 

44. Wang L, Davis PB, Kaelber DC, Volkow ND, Xu R. Comparison of mRNA-1273 and BNT162b2 
vaccines on breakthrough SARS-CoV-2 infections, hospitalizations, and death during the Delta-
predominant period. JAMA. 2022;327:678. [PubMed: 35050314] 

45. Wang L, Davis PB, Kaelber DC, Xu R. COVID-19 breakthrough infections and hospitalizations 
among vaccinated patients with dementia in the United States between December 2020 and august 
2021. Alzheimer’s Dement. 2022. 10.1002/alz.12669

46. Wang W, Kaelber DC, Xu R, Berger NA. Breakthrough SARS-CoV-2 infections, hospitalizations, 
and mortality in vaccinated patients with cancer in the US between December 2020 and November 
2021. JAMA Oncol 2022. 10.1001/jamaoncol.2022.1096

47. Wang L, Kaelber DC, Xu R, Berger NA. COVID-19 breakthrough infections, hospitalizations and 
mortality in fully vaccinated patients with hematologic malignancies: a clarion call for maintaining 
mitigation and ramping-up research. Blood Rev. 2022;54:100931. [PubMed: 35120771] 

48. Wang L, Berger NA, Xu R. Risks of SARS-CoV-2 breakthrough infection and hospitalization in 
fully vaccinated patients with multiple myeloma. JAMA Netw Open. 2021;4:e2137575. [PubMed: 
34812850] 

49. Wang L, Davis PB, Volkow ND, Berger NA, Kaelber DC, Xu R. Association of COVID-19 with 
new-onset Alzheimer’s disease. J Alzheimer’s Dis. 2022;89:411–4. [PubMed: 35912749] 

50. Pan Y, Davis PB, Kaebler DC, Blankfield RP, Xu R. Cardiovascular risk of gabapentin and 
pregabalin in patients with diabetic neuropathy. Cardiovasc Diabetol. 2022;21:170. [PubMed: 
36050764] 

51. Kendall EK, Olaker VR, Kaelber DC, Xu R, Davis PB. Association of SARS-CoV-2 infection 
with new-onset type 1 diabetes among pediatric patients from 2020 to 2021. JAMA Netw Open. 
2022;5:e2233014. [PubMed: 36149658] 

52. Wang L, Xu R, Kaelber DC, Berger NA. Time trend and association of early-onset colorectal 
cancer with diverticular disease in the United States: 2010–2021. Cancer. 2022;14:4948.

Gao et al. Page 14

Addiction. Author manuscript; available in PMC 2023 November 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://trinetx.com


53. Wang L, Wang Q, Davis PB, Volkow ND, Xu R. Increased risk for COVID-19 breakthrough 
infection in fully vaccinated patients with substance use disorders in the United States between 
December 2020 and August 2021. World Psychiatry. 2022;21:124–32. [PubMed: 34612005] 

54. Wang L, Volkow ND, Berger NA, Davis PB, Kaelber DC, Xu R. Association of COVID-19 
with endocarditis in patients with cocaine or opioid use disorders in the US. Mol Psychiatry. 
2023;28:543–52. [PubMed: 36510003] 

55. Ding P, Pan Y, Wang Q, Xu R. Prediction and evaluation of combination pharmacotherapy using 
natural language processing, machine learning and patient electronic health records. J Biomed 
Inform. 2022;133:104164. [PubMed: 35985621] 

56. Gorenflo MP, Davis PB, Kendall EK, Olaker VR, Kaelber DC, Xu R. Association of aspirin 
use with reduced risk of developing Alzheimer’s disease in elderly ischemic stroke patients: a 
retrospective cohort study. J Alzheimer’s Dis. 2023;91:697–709. [PubMed: 36502331] 

57. Dakwar E, Levin F, Foltin RW, Nunes EV, Hart CL. The effects of subanesthetic ketamine 
infusions on motivation to quit and cue-induced craving in cocaine-dependent research volunteers. 
Biol Psychiatry. 2014;76:40–6. [PubMed: 24035344] 

58. Dakwar E, Hart CL, Levin FR, Nunes EV, Foltin RW. Cocaine self-administration disrupted by the 
N-methyl-D-aspartate receptor antagonist ketamine: a randomized, crossover trial. Mol Psychiatry. 
2017;22:76–81. [PubMed: 27090301] 

59. Dakwar E, Nunes EV, Hart CL, Hu MC, Foltin RW, Levin FR. A sub-set of psychoactive 
effects may be critical to the behavioral impact of ketamine on cocaine use disorder: results 
from a randomized, controlled laboratory study. Neuropharmacology. 2018;142:270–6. [PubMed: 
29309770] 

60. Austin PC. An introduction to propensity score methods for reducing the effects of confounding in 
observational studies. Multivar Behav Res. 2011;46:399–424.

61. Ford JD, Gelernter J, DeVoe JS, Zhang W, Weiss RD, Brady K, et al. Association of psychiatric 
and substance use disorder comorbidity with cocaine dependence severity and treatment utilization 
in cocaine-dependent individuals. Drug Alcohol Depend. 2009;99:193–203. [PubMed: 18775607] 

62. Klassen LJ, Bilkey TS, Katzman MA, Chokka P. Comorbid attention deficit/hyperactivity disorder 
and substance use disorder: treatment considerations. Curr Drug Abuse Rev. 2012;5:190–8. 
[PubMed: 22571450] 

63. Winhusen T, Theobald J, Kaelber DC, Lewis D. Medical complications associated with substance 
use disorders in patients with type 2 diabetes and hypertension: electronic health record findings. 
Addiction. 2019;114:1462–70. [PubMed: 30851217] 

64. Nzerue CM, Hewan-Lowe K, Riley LJ Jr. Cocaine and the kidney: a synthesis of pathophysiologic 
and clinical perspectives. Am J Kidney Dis. 2000;35:783–95. [PubMed: 10793010] 

65. Thylstrup B, Clausen T, Hesse M. Cardiovascular disease among people with drug use disorders. 
Int J Public Health. 2015;60:659–68. [PubMed: 26104131] 

66. Schoenfeld D Chi-squared goodness-of-fit tests for the proportional hazards regression model. 
Biometrika. 1980;67:145–53.

67. Szklarczyk D, Santos A, Von Mering C, Jensen LJ, Bork P, Kuhn M. STITCH 5: augmenting 
protein–chemical interaction networks with tissue and affinity data. Nucleic Acids Res. 
2016;44:D380–4. [PubMed: 26590256] 

68. Farren CK, Hameedi FA, Rosen MA, Woods S, Jatlow P, Kosten TR. Significant interaction 
between clozapine and cocaine in cocaine addicts. Drug Alcohol Depend. 2000;59:153–63. 
[PubMed: 10891628] 

69. Sinner B, Graf BM. Ketamine. In: Schüttler J, Schwilden H, editors-Modern Anesthetics New 
York, NY: Springer; 2008. p. 313–33.

70. Zarate CA Jr, Brutsche NE, Ibrahim L, Diazgranados N, Cravchik A, Selter J, et al. Replication 
of ketamine’s antidepressant efficacy in bipolar depression: a randomized controlled add-on trial. 
Biol Psychiatry. 2012;71:939–46. [PubMed: 22297150] 

71. Maeng S, Zarate CA Jr, Du J, Schloesser RJ, McCammon J, Chen G, et al. Cellular 
mechanisms underlying the antidepressant effects of ketamine: role of α-amino-3-hydroxy-5-
methylisoxazole-4-propionic acid receptors. Biol Psychiatry. 2008;63:349–52. [PubMed: 
17643398] 

Gao et al. Page 15

Addiction. Author manuscript; available in PMC 2023 November 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



72. Dakwar E, Nunes EV, Hart CL, Foltin RW, Mathew SJ, Carpenter KM, et al. A single ketamine 
infusion combined with mindfulness-based behavioral modification to treat cocaine dependence: a 
randomized clinical trial. Am J Psychiatry. 2019;176:923–30. [PubMed: 31230464] 

73. Dakwar E, Anerella C, Hart CL, Levin FR, Mathew SJ, Nunes EV. Therapeutic infusions of 
ketamine: do the psychoactive effects matter? Drug Alcohol Depend. 2014;136:153–7. [PubMed: 
24480515] 

74. Ivan Ezquerra-Romano I, Lawn W, Krupitsky E, Morgan CJA. Ketamine for the treatment of 
addiction: evidence and potential mechanisms. Neuropharmacology. 2018;142:72–82. [PubMed: 
29339294] 

75. Tyler MW, Yourish HB, Ionescu DF, Haggarty SJ. Classics in chemical neuroscience: ketamine. 
ACS Chem Nerosci. 2017;8:1122–34.

76. Ortinski PI. Cocaine-induced changes in NMDA receptor signaling. Mol Neurobiol. 2014;50:494–
506. [PubMed: 24445951] 

77. Ortinski PI, Turner JR, Pierce RC. Extrasynaptic targeting of NMDA receptors following D1 
dopamine receptor activation and cocaine self-administration. J Neurosci. 2013;33:9451–61. 
[PubMed: 23719812] 

78. Ghitza UE, Zhai H, Wu P, Airavaara M, Shaham Y, Lu L. Role of BDNF and GDNF in drug 
reward and relapse: a review. Neurosci Biobehav Rev. 2010;35:157–71. [PubMed: 19914287] 

79. Zanos P, Gould TD. Mechanisms of ketamine action as an antidepressant. Mol Psychiatry. 
2018;23:801–11. [PubMed: 29532791] 

Gao et al. Page 16

Addiction. Author manuscript; available in PMC 2023 November 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIGURE 1. 
The pipeline of the drug repurposing strategy for cocaine use disorder. (a) Our knowledge 

graph-based drug discovery system modeled multi-type interactions from various biomedical 

databases to rank candidate drugs for cocaine use disorder (CUD) treatment. (b) The 

CTN-0114 advisory committee reviewed the top-ranked drugs and selected ketamine for 

further clinical evaluation. (c) Electronic health record (EHR)-based analysis provided 

clinical corroborations of ketamine for CUD treatment. (d) The genetic and functional-level 

analyses showed that ketamine directly targets multiple CUD genes and pathways.

Gao et al. Page 17

Addiction. Author manuscript; available in PMC 2023 November 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIGURE 2. 
Flow-charts of retrospective case–control cohort design.
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FIGURE 3. 
Hazard ratios for remission from cocaine use disorder (CUD) in patients prescribed 

with ketamine compared with propensity score-matched patients prescribed with other 

anesthetics.
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FIGURE 4. 
Hazard ratios for remission from cocaine use disorder (CUD) in patients with depression 

prescribed with ketamine compared with propensity score-matched patients prescribed with 

other antidepressants or midazolam.
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FIGURE 5. 
Clinical efficacy of ketamine for cocaine use disorder (CUD) remission in two non-

overlapping cohorts of CUD patients.
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TABLE 4

CUD pathways targeted by ketamine.

No. Pathwaysa

1 Neuroactive ligand-receptor interaction

2 Alcoholism

3 cAMP signaling pathway

4 Cocaine addiction

5 Dopaminergic synapse

6 Amphetamine addiction

7 GABAergic synapse

8 Morphine addiction

9 Serotonergic synapse

0 Nicotine addiction

11 Retrograde endocannabinoid signaling

12 Long-term depression

Abbreviation: CUD, cocaine use disorder.

a
From 78 significantly enriched pathways for ketamine.
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