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Proteogenomic insights suggest druggable pathways in 
endometrial carcinoma
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SUMMARY

We characterized a prospective endometrial carcinoma (EC) cohort containing 138 tumors and 

20 enriched normal tissues using 10 different omics platforms. Targeted quantitation of two 

peptides can predict antigen processing and presentation machinery activity, and may inform 

patient selection for immunotherapy. Association analysis between MYC activity and metformin 

treatment in both patients and cell lines suggests a potential role for metformin treatment in 

non-diabetic patients with elevated MYC activity. PIK3R1 in-frame indels are associated with 

elevated AKT phosphorylation and increased sensitivity to AKT inhibitors. CTNNB1 hotspot 

mutations are concentrated near phosphorylation sites mediating pS45-induced degradation of 

β-catenin, which may render Wnt-FZD antagonists ineffective. Deep learning accurately predicts 

EC subtypes and mutations from histopathology images, which may be useful for rapid diagnosis. 

Overall, this study identified molecular and imaging markers that can be further investigated to 

guide patient stratification for more precise treatment of EC.

eTOC Blurb

Dou et al. report the characterization of a prospective endometrial carcinoma (EC) cohort using 

10 different omics platforms. They identify potential molecular and imaging markers for guiding 

patient stratification for more precise treatment of EC.

Graphical Abstract
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INTRODUCTION

Endometrial carcinoma (EC) is the most common gynecologic malignancy in developed 

nations1–3. Over the past decade, the incidence of EC has steadily increased (~1% 

annually1,4). Curiously, EC-specific mortality has steadily worsened over the past 10 years, 

despite the fact that postmenopausal vaginal bleeding is a common early symptom and the 

majority of early stage, well-differentiated EC can be cured by hysterectomy5. Worsening 

EC outcomes have been attributed to the increasing incidence of aggressive EC histotypes, 

particularly among Black and Hispanic women5. For high-risk EC patients, adjuvant 

radiotherapy and cytotoxic chemotherapy have been shown to decrease the likelihood of 

disease recurrences and improve survival. However, failure rates associated with these 

treatments remain unacceptably high6. In other situations, the ability of radiotherapy or 

cytotoxic chemotherapy to improve outcomes for EC patients at intermediate risk of 

disease progression or recurrence remains much less clear. In part, this may depend on the 

patterns of driver mutations present7. Effective therapies capable of curing EC once widely 

metastatic are lacking.

Comprehensive genomic profiling by The Cancer Genome Atlas (TCGA) has led to a 

better understanding of key genomic drivers of EC, including the identification of four EC 

subtypes defined solely by their genomic signatures: POLE ultramutated, microsatellite 

instability hypermutated (MSI-H), copy-number low (CNV-L), and copy-number high 
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(CNV-H)8. Associations between these subtypes and clinical outcomes are now being 

evaluated. Integrated genomic and proteomic characterization of EC by the Clinical 

Proteomic Tumor Analysis Consortium (CPTAC) revealed additional oncogenic signaling 

pathways and regulatory mechanisms, and identified specific defects in antigen presentation 

machinery (APM) which appear important for determining clinical responses to immune 

checkpoint inhibition (ICI) therapy9.

Here, we present the results of a comprehensive proteogenomic analysis of a prospectively 

curated set of 138 EC tumors and 20 specimens enriched for normal endometrium from 

healthy donors. Analysis of this independent cohort, incorporating pre-existing EC tumor 

and cell line cohorts, has not only confirmed published findings from our recent exploratory 

studies, but also provided biological insights relevant to potential therapeutic strategies. We 

also evaluated the utility of using machine learning for parsing clinically-relevant genomic 

features based solely on the analysis of histological slides routinely created for clinical 

evaluation.

RESULTS

Proteogenomic landscape of an independent EC cohort

We characterized the proteogenomic landscape of 138 EC tumors (including 119 

endometrioid, 13 serous, 3 clear cell) with matched blood normal samples and 20 enriched 

normal endometrium samples from healthy donors (Table S1) using 10 omic platforms 

including whole-genome sequencing (WGS), whole-exome sequencing (WES), methylation 

array, total RNA sequencing (RNA-seq), microRNA sequencing, targeted proteomics, global 

proteomics, phosphoproteomics, acetylproteomics, and glycoproteomics (STAR methods). 

A total of 10,135 proteins and 25,300 phosphorylation, 5,556 acetylation, and 6,513 

glycosylation sites were quantified (Figure 1A), using rigorous quality control metrics 

(Figure S1A–I). Principal component analysis (PCA) separated the tumors and normal 

samples based on global proteome, phosphoproteome, or glycoproteome data, but not on 

acetylproteomics data, with no batch effect observed in the tandem mass tag (TMT) plexes. 

(Figure S1E–H). Significant overlaps were observed for quantifiable global proteomics and 

phosphoproteomics features between the exploratory cohort9 and this independent cohort. 

However, more acetylation sites were quantified in this cohort due to platform improvement 

(Figure 1B).

Top mutated genes in this cohort included PTEN, ARID1A, PIK3CA, PIK3R1, and 

CTNNB1 whose mutation frequencies were similar to those in the exploratory cohort 

(Figure 1C). Mutation frequencies were lower in the TCGA EC cohort, due to a higher 

proportion of serous tumors8. The mutation frequencies were highly correlated across the 

three cohorts (Figure S1J). Tumors were classified into four genomic subtypes: 6 POLE, 47 

MSI-H, 66 CNV-L, 16 CNV-H tumors and 3 unclassified because of missing WGS-based 

CNV data (Figure 1C and Figure S1K–L; Table S1). One tumor was identified as both 

POLE and CNV-H by genomic data, highlighting the high degree of heterogeneity in certain 

EC tumors that likely requires careful consideration in treatment decisions. In general, these 

results indicate that mutational features of this current independent cohort are similar to 

previous EC studies.
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WGS-based CNV analysis identified significant focal amplifications and deletions. Several 

known tumor drivers were located within the amplified regions (e.g., SETDB1, ECT2, 

ATAD2, GRB7, and CCNE1) (Figure 1D; Table S2). We prioritized CNV driver genes by 

their correlation with mRNA and protein levels (Figure 1E) and filtered them by comparing 

protein levels in tumors vs enriched normal tissues, which identified 351 and 237 potential 

CNV drivers from this and the exploratory cohorts, respectively, of which a significant 

overlap of 88 genes was found between them (Figure 1E; Table S2; p<2.2e-16), and these 

were significantly enriched in proliferation and cell cycle related processes (Figure 1F).

We identified 1,292 up- and 1,488 down-regulated proteins when tumors were compared 

to enriched normal tissues (FDR < 0.01, |Log2FC| > 0.25). Significantly differentially 

expressed proteins were highly overlapping between the independent cohort and the 

exploratory cohort (Figure 1G). Interestingly, two cancer/testis antigens, PBK and KIF2C, 

were found to be significantly upregulated in both cohorts9. The cis- and trans-effects on the 

proteome of somatic driver mutations were similar across cohorts (Figure 1H). For example, 

CTNNB1 mutations were significantly positively correlated with higher CTNNB1 and LEF1 

protein levels. We confirmed that MLH1 and HOX family genes were silenced by DNA 

methylation in this independent cohort (Figure S1M). circRNAs show stronger positive 

correlations than that between their host genes (Figure S1N) and miR-200c-3p significantly 

negatively correlated with QKI, a circRNA regulator, protein level (Figure S1O). These 

results suggest that many findings at the multi-omics level are highly consistent between the 

two CPTAC EC studies.

PIK3R1 in-frame indels are potential markers of AKT inhibition response

Previous studies have shown that the PI3K-AKT pathway is frequently altered in 

endometrioid tumors8–10 with PTEN, PIK3CA, and PIK3R1 being the most frequently 

mutated genes in the pathway. PTEN is mutated in ~80% of endometrioid tumors and 

mostly co-occurs with PIK3CA and PIK3R1 mutations, which are mutually exclusive 

(Figure 2A). Although PIK3CA is commonly mutated in many cancer types10, PIK3R1 
mutations, especially in-frame indels of PIK3R1, are more frequent in EC (Figures 1C, 

S2A). Interestingly, these in-frame indels are tightly clustered at the two ends of the P85/

iSH2 domain (Figure S2B), which are structurally close to each other in a region of PIK3R1 

that interacts with PIK3CA (Figure 2B). Of note, this clustering pattern is not observed 

for truncations and missense mutations (Figure S2C–D). This suggests a potentially distinct 

function of PIK3R1 in-frame indels from other PIK3R1 variants.

To test this hypothesis, we examined cis-effects of different PIK3R1 mutations on mRNA 

and protein levels (Figure 2C–D). In-frame indels were associated with comparable PIK3R1 

protein (p85α subunit of PI3K) levels (Figure 2D; Table S3), while truncating mutations 

were associated with lower protein levels compared to the WT PIK3R1 group11. Since 

PIK3R1 is a suppressor of AKT phosphorylation, we expected that lower levels of PIK3R1 

by truncating mutations would result in activation of the PI3K-AKT pathway and worse 

clinical outcomes. Surprisingly, PIK3R1 in-frame indels were associated with worse survival 

compared to both PIK3R1 truncating and PIK3CA hotspot mutations in the TCGA cohort, 

despite our finding that they do not result in reduced levels of PIK3R1 protein (Figure 2E). 
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The Both WT group (PIK3CA WT and PIK3R1 WT) had similar survival with the PIK3R1 
in-frame indel group. This may be due to the fact that this cohort is significantly enriched for 

CNV-high ECs and contains a lower proportion of POLE-mutated cancers (Figure S2E).

We hypothesized that PIK3R1 proteins with in-frame indels abrogate the ability of PIK3R1 

to suppress AKT phosphorylation, leading to elevated levels of phosphorylated AKT1. To 

examine this hypothesis, we first examined the relationships between AKT1 phosphorylation 

level and PTEN, PIK3CA, and PIK3R1 mutation status. As expected, PTEN WT samples 

have significantly lower AKT1-T308 phosphorylation levels than PTEN mutated samples12 

(Figure 2F). Moreover, samples with in-frame indels had higher levels of AKT1-T308 

phosphorylation compared with cancers carrying PIK3CA hotspot or PIK3R1 truncating 

mutations (Figure 2F). Since this phosphosite was not identified in the exploratory cohort, 

TCGA Reverse Phase Protein Array (RPPA) data was used to further confirm our hypothesis 

that AKT-T308 phosphorylation is higher in tumors harboring PIK3R1 in-frame indels and 

the lowest in PTEN WT tumors (Figure 2G). We observed the same trend for another well 

studied phosphorylation site, AKT-S473 (Figure 2H). Moreover, AKT protein levels were 

not consistently altered by PIK3CA and PIK3R1 mutations in the independent cohort or 

TCGA (Figure S2F–G). These results are consistent with a previous study that showed 

PIK3R1 in-frame indels were able to more efficiently promote AKT phosphorylation than 

other mutations in EC cell lines13. To further confirm the relation between PIK3R1 in-frame 

indels and AKT-T308 and AKT-S473 phosphorylation, we created an in-frame deletion, 

T576Del, in an EC cell line, HEC151, by CRISPR-Cas9 (Figure S2H). As expected, both 

AKT-T308 and AKT-S473 were upregulated at phosphorylation level (Figure 2I). Taken 

together, these results suggest that PIK3R1 in-frame indels are associated with worse 

outcomes in PTEN-mutated EC patients and contribute to altered PI3K-AKT pathway by 

increasing AKT1 phosphorylation.

Various drugs have been developed to target the PI3K-AKT pathway, but many have 

failed in clinical trials14,15. For example, results from a clinical trial with MK-2206, a 

well-established AKT inhibitor targeting AKT-S473, failed to improve survival in EC 

patients with PIK3CA mutated EC16. In light of our analyses described above, we next 

evaluated whether PIK3R1 in-frame indels may be a better marker of clinical responses to 

AKT inhibition than PIK3CA mutations using data from EC cell lines from DepMap17. As 

expected, EC cell lines with PIK3R1 in-frame indels and mutated PTEN were significantly 

more sensitive to MK-2206 compared to lines with PIK3CA hotspot mutation, PIK3R1 
truncation, or WT PTEN (Figure 2J; Table S3). This result was also observed for two 

additional AKT inhibitors, GDC-0068 (NCT02465060, a phase II study of multiple 

cancer types including EC with inclusion criteria for tumors with AKT mutations) and 

GSK2110183 (Figure S2I–J; Table S3). In summary, our results suggest the PIK3R1 in-

frame indels with mutated PTEN could be a potential biomarker for response to AKT 

inhibition (Figure 2K).

Selected Reaction Monitoring (SRM) assay accurately predicts APM status

Effective cellular APM has been reported as an important factor of response to ICI18–20 

independent of tumor-mutation burden (TMB)9. By grouping tumors according to their 
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TMB and APM levels, we confirmed the finding of high APM variation in TMB-H tumors9 

(Figure S3A;Table S4). The TMB-H/APM-L group were enriched for JAK1 mutations (p 

= 1.05e-3, Fisher’s test) and had lower JAK-STAT, APM, and HLA protein levels (Figure 

S3B). TMB-H/APM-H tumors were immune hot with activated CD8+ T cells (Figure 3A). 

Moreover JAK1 variants were very rare in TMB-L tumors (Table S4) suggesting JAK1 
mutations are associated with TMB-H tumors. This potential interaction between JAK1 
mutations and TMB-H status warrants further examination in other EC cohorts.

Unlike TMB which is already used as a clinical biomarker21,22, there are no clinical 

biomarkers to determine APM status. The previous approach for computing APM scores 

relies on proteome-wide measurements, and is not suitable as a diagnostic assay9,23. 

To develop targeted proteomic assays, we selected a panel comprising 17 JAK-STAT 

and APM proteins, and 51 other immune related proteins, including two peptides for 

each protein (Table S4, Figure S3C). In both exploratory and independent cohorts, we 

observed a strong correlation between peptides originating from the same protein, as 

well as between the targeted assay and TMT measurements, particularly for proteins with 

relatively higher levels (Figures 3B–C, S3D–E). The targeted assays verified downregulation 

of APM proteins that were previously identified as downregulated in the TMB-H/APM-L 

group through global proteomics (Figures 3D–E). By utilizing these peptide measurements, 

we constructed machine learning models that accurately predicted the APM status, 

achieving an AUC of 0.961 using only two peptides: PSMB9−VSAGEAVVNR and 

PSMB10−LPFTALGSGQDAALAVLEDR (Figures 3F–G, S3F–J). We applied this SRM 

assay to immunotherapy-treated MSI-H EC tumors (10 sensitive and 2 resistant) (Table 

S4). The Immunotherapy-sensitive group had higher peptide levels than the TMB-H/APM-L 

group (Figure S3K–L), without reaching statistical significance, possibly as a result of the 

small cohort size. Therefore, this simple SRM assay should be further validated to evaluate 

its suitabillity for predicting APM status in a clinical setting.

MYC activity is the target and potential biomarker for metformin treatment

Obesity and type 2 diabetes (T2D) are well recognized risk factors for EC24–26. In a recent 

metaanalysis, metformin treatment was shown to improve overall survival of EC patients 

with T2D27. A number of mechanisms by which metformin potentially improves EC 

outcomes include its ability to modulate autophagy28, inhibit mitochondrial respiration29, 

modify epigenetic signatures30, and directly suppress cell growth31,32. However, the 

mechanisms by which metformin impacts EC and potentially improves patient outcomes 

remain unclear.

To examine molecular determinants underlying metformin response, we integrated clinical 

phenotypes with multi-omics data. RNA-seq-based pathway analysis showed significantly 

lower proliferation-related MYC activity in metformin-treated patients (Figures 4A, S4A; 

Table S1). A similar relationship was observed where MYC protein level decreased when 

Ishikawa EC cell lines were treated with metformin33. We also analyzed responses of 22 

EC cell lines (8 sensitive, 14 insensitive) from DepMap17 (Figure S4B) and found that 

metformin-sensitive cell lines had significantly higher MYC activity than resistant ones 

(Figure 4B). Collectively, we interpreted these observations to indicate that MYC potentially 
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serves as a biomarker for metformin responses in EC. To further evaluate this hypothesis, we 

sought to determine whether downregulation of MYC activity could be a direct consequence 

of metformin treatment34. We found MYC activity to be downregulated in several CMap 

signatures of metformin-treated cell lines (Figure 4C; Table S5). Analyzing two metformin-

sensitive and two insensitive EC cell lines from DepMap (Figure S4B), we observed higher 

MYC protein levels in the metformin-sensitive cell lines (Figure 4D), but not mRNA 

levels (Figure S4C). Use of a previously validated reporter assay confirmed higher levels 

of MYC activity in the two cell lines with greater MYC protein levels (Figure S4D). 

Cell lines with higher MYC activity were more sensitive to metformin treatment (Figure 

4E). Moreover, mRNA expression of MYC and multiple MYC targets were suppressed in 

response to metformin treatment (Figure S4E; Table S5). In general, decreases in putative 

MYC-regulated transcripts occurred earlier and to a greater degree in the two cell lines with 

greatest sensitivity to metformin. These experiments demonstrate that metformin treatment 

significantly decreases MYC activity, with a trend toward increased sensitivity in cell lines 

which express high levels of MYC. These results suggest that an important mechanism by 

which metformin decreases EC growth is by directly downregulating MYC activity.

Next, we evaluated the relationship between T2D, EC outcomes, MYC expression and 

metformin exposure. We found EC patients with T2D whose tumors were characterized by 

high levels of MYC protein have significantly worse overall survival (OS) (Figure S4F) 

than MYC-low patients (Table S5). Interestingly, high levels of MYC were also associated 

with worse OS in both MSI-H and CNV-L subsets of EC (Figure 4F–G), but not in serous 

tumors (Figure S4G). Although the MYC protein is not quantifiable by global proteomics, 

we found MYC activity to be significantly higher in MYC-high tumors in TCGA RPPA data 

(Figure S4H). MYC activity also significantly correlated with MYC Immunohistochemistry 

(IHC) score (Figure 4H; Table S5), but not MYC mRNA levels (Figure S4I). Therefore, 

we used inferred MYC activity as a readout of MYC protein level to further examine 

relationships between MYC and EC genotypes/phenotypes. We divided patients into 3 

groups, non-diabetic, diabetic untreated, and diabetic treated, and sorted patients by their 

MYC activity from high to low (Figure 4I). As predicted by our earlier results, metformin-

treated tumors had significantly lower levels of MYC activity when compared to untreated 

tumors from T2D patients (p = 4.49e-2, t test). A similar trend was observed when we 

re-evaluated our earlier exploratory cohort (Figure 4I and S4J). Of note, we found that MYC 

activity in ECs from non-diabetic patients was similar or even higher than those observed in 

diabetic patients not previously treated with metformin (Figure 4I and S4J). We also found 

that MYC activity was negatively correlated with BMI in this cohort (p = 1.26e-2, R = 

−0.24).

Collectively, these observations suggest that high levels of MYC activity may be a 

biomarker for identifying EC patients most likely to benefit from metformin treatment, 

including non-diabetic and non-obese patients.
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Comprehensive pathway analysis reveals EC tumors separate by high and low transporter 
activity

Calculating the activation score for 8,615 pathways using EC protein levels (Table S6), 

revealed the transporters axis to be the most significant subtype across EC tumors (Figure 

S5A–B). The transporter axis is composed of transmembrane proteins including ATP-

binding cassette transporters, ATPases, ion channels and solute carriers, all of which mediate 

exchange of ions, metabolites and nutrients between the intra- and extracellular space. EC 

cancers with high transporter scores featured elevated levels of transporters, biosynthetic 

and metabolic pathways for lipids and glycans, synthesis of fatty acyl-CoAs, insulin, 

triglyceride, steroid and cholesterol, and downregulation of proinflammatory cytokine 

signaling responsible for activation of CD4+ and CD8+ T lymphocytes. The transporter-high 

tumors were associated with a higher CTNNB1 mutation frequency (Figure S5A, p = 0.004), 

resulting in stabilization of β-catenin and transcriptional activation of target genes involved 

in glycosylation and in molecular exchange required for lipid metabolic reprogramming 

and cancer progression. Among numerous β-catenin transcriptional targets were immune 

checkpoints35,36 contributing to an immunosuppressive environment.

CTNNB1 hotspot mutations inhibit DKK-induced degradation

Hotspot mutations in exon 3 of CTNNB1 (β-catenin) (Figure S5C), potential drivers of 

tumorigenesis37, were significantly enriched in CNV-L tumors (Figure 5A, S5D–E) and 

with a higher frequency in CNV-L than in TMB-H tumors (Figure S5F). CTNNB1 hotspot 

mutations led to significant upregulation of Wnt-β-catenin signaling at both RNA and 

protein levels and downregulation of several immune related pathways (Figure 5B), and 

these were also true across the whole cohort (Table S6). Wnt signaling proteins including 

CTNNB1 and LEF1 were upregulated in CTNNB1 hotspot-mutated tumors despite DKK4, 

an inhibitor of the Wnt pathway38, being the most significantly upregulated protein 

(Figure 5C, Table S6). Because CTNNB1 hotspot mutations occur at key phosphorylation 

sites or neighboring amino acids, they may block phosphorylation-dependent β-catenin 

degradation39. Consistent with this hypothesis, S45 phosphorylation was significantly 

downregulated in hotspot-mutated tumors, whereas phosphosites distant from the hotspot 

mutations were mostly upregulated (Figure 5D, Table S6). We also found significantly 

upregulated cell proliferation and transporter activity and downregulated total immune score 

in tumors with CTNNB1 hotspot mutations, consistent with existing knowledge37.

CTNNB1 hotspot mutations are associated with higher risk of recurrence40,41 and therefore 

useful for making treatment decisions. Currently, sequencing is used to identify these 

mutations, but sequencing is not always available or covered by insurance for low-grade 

tumors42,43, revealing an unmet need for a more accessible diagnostic tool. To screen 

for potential protein biomarkers, we used proteomic data from the exploratory cohort to 

train regression models and tested their performance using the independent cohort. The 

best performing model used CNV-L tumors and Wnt proteins (AUC = 0.99) (Figure 5F–

G, Table S6). Using IHC for CTNNB1, LEF1, and MYC, we validated elevated protein 

levels and MYC activity in hotspot-mutated tumors. Since EC tumors derive from the 

epithelium, membrane CTNNB1 stains positive in all cells. However, nuclear CTNNB1 
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was significantly higher in CNV-L hotspot-mutated tumors compared to WT (Figure S5G), 

implying a higher occurrence of oncogenic activity in these tumors.

Together, our data suggest that CTNNB1 hotspot mutations block phosphorylation induced 

β-catenin degradation and may render Wnt-FZD antagonists ineffective for ECs with the 

hotspot mutations (Figure 5E), and that protein-based assays, such as IHC, can be used to 

detect hotspot mutation status, suggesting possibilities beyond bulk sequencing for clinical 

testing.

Deep learning models using histopathology slides predict subtypes and mutation status

The CNV-H molecular subtype of EC, which includes some high-grade endometrioid 

(Figure S6A) and all histologically serous (Figure S6B) cases, has the worst patient 

outcomes8. In contrast, POLE tumors, typically ultra-mutated with favorable outcomes, 

are not currently identifiable by human pathologists without sequencing the tumors 

(Figure S6C). Here, we trained convolutional neural network models on H&E stained 

slides from TCGA and CPTAC exploratory cohorts to predict the molecular subtypes, 

histological subtypes, and common mutations of EC44, and tested them on the independent 

cohort (Figure 6A). We qualitatively confirmed that our models were able to successfully 

distinguish CNV-H and non-CNV-H samples (Figure 6B–C). Notably, a rare dual CNV-H 

and POLE tumor was also picked out by the imaging model, which aligned to both 

molecular subtypes (Figure S6D). tSNE plots showing CNV-H and POLE predictions of 

this sample show separation of tiles based on their subtype prediction, highlighting the 

heterogeneity in this tumor. Using similar tSNE plots for samples with either CNV-H or 

POLE subtype, but not both, the model does not predict high CNV-H scores for POLE 

tiles (not shown). The highest AUROC obtained from our POLE model was 0.925, which 

was higher than the 0.89 previously reported44. We then tested and re-trained with an 

independent cohort from NYU, which resulted in AUROCs ranging 0.6–0.8 (Figure 6A, 

Table S7).

1q amplification leads to increased glycoprotein levels and may be a biomarker for PARP-
inhibition treatment

Increased CNV, a hallmark of cancer, is correlated with poorer outcomes, increased 

immune evasion, and lowered response to immunotherapies45,46. While the CNV-H subtype 

shows the highest concentration of CNV (Figure S1K), there are patterns of chromosome-

specific alterations that occur across all EC subtypes, such as gains of 1q, the most 

common arm level CNV in EC (Figure 6D, Table S2). Tumors with 1q gain have a 

significantly lowered overall immune score, CD8+ naive T cell score, myeloid dendritic 

cell score, and microenvironment score (Figure 6E, Table S2). Using TCGA data, we saw 

a significant decrease in disease-free survival among tumors with 1q gain (Figure S6G, 

p=2.9e-3). Interestingly, pathways associated with protein glycosylation were significantly 

enriched in samples with 1q gain (Figure S6E). Using glycoproteomics data, we observed 

upregulation of glycopeptides for polymeric immunoglobulin receptor (PIGR) and other 

glycosylated proteins in tumors with 1q gain (Figure 6F). Focusing on glycosyltransferases 

or glycosidases encoded on 1q, we found 7 proteins involved in glycosylation (Figure S6F) 

including poly [ADP-ribose] polymerase 1 (PARP1), a key protein involved in DNA damage 
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repair47. We observed increased PARP1 copy number, RNA, protein, phosphorylation, 

and acetylation levels, not only in tumors with 1q gain, but also in tumors with focal 

amplifications of PARP1 (Figure 6G). To test if there is any correlation between PARP1 
amplification and drug response to PARP inhibitors (PARP-i), we used DepMap and 

observed that EC cell lines with PARP1 amplification showed increased sensitivity to the 

PARP-i olaparib (p=0.04) (Figure 6H). Sensitivity to niraparib and talazoparib, two other 

PARP-i in clinical use, also appeared to be greater in samples with PARP1 gain, although 

these differences were not statistically significant (Figure S6H). Gain of PARP1 may be an 

evolutionary advantage for EC tumors and could be a possible biomarker for treatment with 

PARP-i.

Multi-omic clustering uncovers a CTNNB1 hotspot mutation enriched CNV-L subgroup and 
a 1q gain MSI-H subgroup

Multi-omic clustering identified four clusters based on CNV, mRNA, protein, phosphosite, 

and acetylation site levels, which loosely follow the traditional genomic subtypes (Figure 

7A). All CNV-H tumors fall into Cluster 1 with significant enrichment of TP53-mutated 

tumors (p=4.54E-06) and a proliferation signature (Figure 7B, Table S7). Clusters 2 and 3 

were enriched for the CNV-L subtype (p=0.0006, p=0.001), with Cluster 3 characterized 

by CTNNB1 hotspot mutations (p=4.53E-07), arm 1q gain (p=7.39E-05), upregulated 

transporter activity (p=0.005) and downregulated immune pathways. Cluster 4 was enriched 

for MSI-H (p=1.70E-08) and TMB-H, and includes a majority of POLE tumors. Clusters 

2 and 3 have complementary pathway signatures with Cluster 2 showing upregulation of 

immune-related pathways. Cluster 4 has enhanced activity in cell-cycle, metabolic and 

DNA damage related pathways in addition to mTOR and TNFα signaling. Comparison of 

only MSI-H samples among three clusters reveals an enrichment of 1q gain in Cluster 3 

(p=0.002) and enrichment of ELMSAN1 mutation in Cluster 4 (p=7.05E-05), suggesting 

subgroups within the MSI-H subtype.

Glycopeptides and the corresponding unmodified protein levels are significantly different 
between tumor and normal samples

Altered glycosylation in tumors is known to be associated with increased metastatic 

potential and immune evasion48. In our data, oligomannose (HM) occupies 19% of N-linked 

glycopeptides, and ~70% of the rest were complex glycans with fucose (Fuc) (26%), sialic 

acids (Sia) (17%), or both (27%) (Figure S7A). Comparing tumor and normal samples, we 

observed 121 upregulated and 296 downregulated glycopeptides (Figure S7B), and ~80% 

of the glycopeptides involved in the lysosome pathway were upregulated, while ~60% 

of glycopeptides involved in the PI3K-AKT pathway were downregulated. The change in 

levels between tumor and normal samples of N-linked glycopeptides and the corresponding 

unmodified protein levels were correlated (r=0.71) (Figure S7C–D). Interestingly, three of 

the downregulated genes involved in trimming were MAN1C1 for trimming mannose and 

MGAT4C and MGAT5B for branching with GlcNAc, which may result in reduced synthesis 

of complex-type N-linked oligosaccharides, especially for bisected tetra-antennary complex 

N-glycans.
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NMF clustering of glycopeptides groups tumors into four subtypes that are distinct from 
the multi-omics clusters

Unsupervised NMF clustering of glycopeptides levels49 divides the tumors into four 

subtypes (Figure 7C). Clusters 1 and 3 were mostly associated with the complex glycans 

Sia and Fuc, Cluster 2 with Sia, and Cluster 4 with HM. Chromosome 1q gain was most 

frequent in Cluster 1, TP53 mutations were frequent in Clusters 2 and 4, and CTNNB1 
mutations were rare in Cluster 2. The levels of glycopeptides enriched in each cluster and 

the corresponding protein correlated with each other (Figure S7E). Proteins associated with 

oligosaccharide precursor synthesis were downregulated in all four clusters (Figure 7D). 

The glyco-clusters were, in general, not related to genomic subtypes except for a slight 

enrichment of the CNV-L group in Cluster 3 (Figure S7F), providing a complementary 

subtyping of EC tumors.

Focusing on the PI3K-AKT pathway differences between tumor and normal samples (Figure 

7E), we observed 15 glycopeptides from 7 kinases. Most of these (12/15) were upregulated 

in tumors, including multiple glycosylation sites from FLT1. A significantly downregulated 

oligomannose structure was observed on EGFR, which indicates that glycosylation of EGFR 

could be altered in tumor samples in the trimming step, which may influence the function of 

EGFR in tumors.

DISCUSSION

This study is a comprehensive proteogenomic investigation of 138 prospectively collected 

EC tumors and 20 enriched normal endometrium samples, and provides a valuable 

community resource that can be used for both hypothesis generation and testing. Findings 

initially reported in Dou et al.9 were confirmed in this independent cohort, including 

the functional validation of the effects of frequently observed gene mutations, proteomic 

markers of clinical and genomic tumor subgroups, and the impact of defects in antigen 

presentation on patterns of immune infiltrates in TMB-H tumors. The concordance between 

the two studies was remarkably high, demonstrating the robustness of our proteogenomic 

strategy, including its sample collection protocols and analytical methods. Of note, the 

correlation between measured transcript and protein levels was in the range typically seen 

for tumors (median correlation across all genes of 0.48), once again demonstrating that, 

unsurprisingly, transcript levels are often not accurate for predicting protein levels for a 

given gene, as transcripts and protein can have largely different degradation rates and 

regulatory mechanisms.

Our current study expands our previous work in EC in several ways, including the 

exploration of additional data types: glycoproteomics, contributing further insights into EC 

tumor biology, and targeted mass spectrometry-based assays, which provide a path to the 

development of clinical assays.

ICI therapy provides a promising treatment option for many tumor types including EC. 

High TMB has been shown to predict response to ICI treatment in some cases, and 

pembrolizumab has been approved by the FDA to treat MSI-H cancers. However, high 

failure rates are observed among EC patients triaged to ICI therapy by currently available 
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biomarkers. For example, recent prospective studies evaluating the clinical efficacy of 

dostarlimab in EC have demonstrated response rates no higher than 45% in MSI-H ECs50. 

Our previous study indicated that defects in antigen presentation may serve as a key rate-

limiting factor which prevents variant peptide antigens from being processed and presented 

properly, and renders the host immune system unable to mount a tumoricidal response9. To 

address this potential clinical need, we developed an SRM assay for two peptides that can 

be used to predict APM status with high accuracy (AUC=0.96). Given its high accuracy, we 

believe this assay is amenable to being validated for use in clinical laboratories.

A second key finding of our current study is that MYC activity can potentially be used 

as a biomarker for triaging EC patients to metformin treatment. Over the past decade, a 

multitude of clinical studies have evaluated metformin as a strategy for EC prevention and 

treatment. For reasons that remain unclear, outcomes of these studies, which have typically 

focused on evaluating the impact of metformin in patients impacted by T2D and obesity, 

remain conflicted51–53. We found that high levels of MYC activity are associated with 

worse survival for both CNV-L and MSI-H ECs. Despite controversy whether sufficient 

circulating levels of metformin can be achieved clinically to biologically impact a cancer, 

our data clearly indicate that real-world metformin treatment results in lower levels of 

MYC activity in EC patients with T2D across both our current and previous EC cohorts. 

Lastly, we have uncovered an association between MYC activity in EC and patient BMI, 

with higher levels of MYC activity observed in non-obese patients. Thus, the response of 

ECs to metformin may be tempered by a complex relationship between MYC activity and 

BMI. In the future, it will be important to further parse these relationships as well as to 

directly test our therapeutic hypothesis that high MYC activity can serve as a biomarker 

for metformin response even in non-diabetic EC patients. Given the relatively limited 

correlation (cor = 0.38) we observed between MYC activity and MYC IHC score, this 

may require development of an alternative diagnostic.

Despite rapid clinical uptake of somatic tumor sequencing, traditional histology, being faster 

and cheaper, is still widely used to determine cancer treatments. In part, this is because the 

cost of genomic technologies has largely limited their use to advanced stage and metastatic 

disease, e.g., most insurances do not cover sequencing of low-grade EC. We therefore 

explored the possibility that features derived from traditional histopathology images could 

be used to predict the molecular features of a tumor. The high degree of accuracy achieved 

with our algorithm as a predictive model for some EC subtypes and mutations, specifically 

POLE-mutated EC, is promising but needs to be tested on a larger cohort.

Our study demonstrates the ability of proteogenomic analysis to increase our understanding 

of EC tumor biology and to generate new hypotheses. We have highlighted a few examples 

of integrative analysis across the omics data modalities that can provide insights with 

potential clinical applications.
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STAR METHODS

RESOURCE AVAILABILITY

Lead Contact—Further information and requests for resources should be directed to the 

Lead Contact, David Fenyö (david@fenyolab.org).

Materials availability—This study did not generate new unique reagents.

DATA AND CODE AVAILABILITY

Clinical and proteomic (raw MS files and processed data files) data reported in this 

paper, including both exploratory and independent CPTAC datasets, can be accessed 

via the Proteomic Data Commons (PDC) at: https://pdc.cancer.gov/ (PDC000125, 

PDC000126, PDC000226). Genomic and transcriptomic data files for both CPTAC 

cohorts (phs001287) and TCGA cohort (phs000178) can be accessed via Genomic 

Data Commons (GDC) at: https://portal.gdc.cancer.gov/projects/CPTAC-3. The DepMap 

datasets can be accessed via the DepMap portal: https://depmap.org/portal/. Processed 

CPTAC data for both cohorts used in this publication can also be found in the 

PDC, the Python package called ‘cptac’ (https://pypi.org/project/cptac/, install via 

pip) to allow programmatic access and LinkedOmics via http://www.linkedomics.org/

data_download/CPTAC-UCEC-independent/ 64. Histological and radiological images for 

both CPTAC cohorts (10.7937/k9/tcia.2018.3r3juisw) and TCGA cohort (10.7937/k9/

tcia.2016.gkj0zwac) can be accessed via Imaging Data Commons (IDC) at https://

portal.imaging.datacommons.cancer.gov/explore/filters/?collection_id=cptac_ucec, and The 

Cancer Imaging Archive at https://wiki.cancerimagingarchive.net/pages/viewpage.action?

pageId=33948263. Deidentified digitized H&E slides from NYU reported in this paper will 

be shared by the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Patient Selection—The tumor, normal tissue, and whole blood samples used in this 

manuscript were prospectively collected between May 2016 and May 2019 for the CPTAC 

program from 5 different countries. Informed consent was collected for each patient and 

all patients consented to donate their specimens to CPTAC. Each sample collection site has 

an internally approved IRB. None of the sites use any central IRB and none are involved 

in trials. The average age of the cohort was 64 yrs. Biospecimens were collected from 

newly diagnosed patients with endometrial cancer (EC) who were undergoing surgical 

resection and had received no prior treatment for their disease, including chemotherapy or 

radiotherapy, and were collected independent of grade or stage. EC cases were graded using 

the FIGO (International Federation of Gynecology and Obstetrics) system or the American 

Joint Committee on Cancer TNM staging system, which are functionally identical.

Sample Collection—The CPTAC Biospecimen Core Resource (BCR) at the Pathology 

and Biorepository Core of the Van Andel Research Institute in Grand Rapids, Michigan 

manufactured and distributed biospecimen kits to the Tissue Source Sites (TSS) located 

in the US, Europe, and Asia. Each kit contained a set of pre-manufactured labels for 

unique tracking of every specimen respective to TSS location, disease, and sample type, 
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used to track the specimens through the BCR to the CPTAC proteomic and genomic 

characterization centers. Tissue specimens averaging 302 mg were snap-frozen by the 

TSS within a 30 min cold ischemic time (CIT) (CIT average = 17 min) and an adjacent 

segment was formalin-fixed paraffin-embedded (FFPE) and H&E stained by the TSS for 

quality assessment to meet the CPTAC EC requirements. Routinely, several tissue segments 

for each case were collected. Tissues were flash frozen in liquid nitrogen (LN2) then 

transferred to a liquid nitrogen freezer for storage until approval for shipment to the 

BCR. Specimens were shipped using a cryoport that maintained an average temperature 

of under −140°C to the BCR with a time and temperature tracker to monitor the 

shipment. Receipt of specimens at the BCR included a physical inspection and review 

of the time and temperature tracker data for specimen integrity, followed by barcode 

entry into a biospecimen tracking database. Specimens were again placed in storage at 

LN2 temperatures until further processing. Acceptable EC tumor tissue segments were 

determined by TSS pathologists based on the percent viable tumor nuclei (> 80%), total 

cellularity (> 50%), and necrosis (< 20%). Segments received at the BCR were verified 

by BCR and Leidos Biomedical Research (LBR) pathologists and the percent of total 

area of tumor in the segment was also documented. Additionally, disease-specific working 

group pathology experts reviewed the morphology to clarify or standardize specific disease 

classifications and correlation to the proteomic and genomic data. Specimens selected for 

the discovery set were determined on the maximal percent in the pathology criteria and best 

weight. Specimens were pulled from the biorepository using an LN2 cryocart to maintain 

specimen integrity and then cryopulverized. The cryopulverized specimen was divided into 

aliquots for DNA (30 mg) and RNA (30 mg) isolation and proteomics (50 mg) for molecular 

characterization. Nucleic acids were isolated and stored at −80°C until further processing 

and distribution; cryopulverized protein material was returned to the LN2 freezer until 

distribution. Shipment of the cryopulverized segments used cryoports for distribution to the 

proteomic characterization centers and shipment of the nucleic acids used dry ice shippers 

for distribution to the genomic characterization centers; a shipment manifest accompanied 

all distributions for the receipt and integrity inspection of the specimens at the destination. 

The DNA sequencing was performed at the Broad Institute, Cambridge, MA and RNA 

sequencing was performed at the University of North Carolina, Chapel Hill, NC. Material 

for proteomic analyses was sent to the Proteomic Characterization Center (PCC) at Pacific 

Northwest National Laboratory (PNNL), Richland, Washington.

Enriched normal sample collection—20 enriched normal endometrium tissue samples 

were collected according to CPTAC’s Standard Operating Procedure (SOP) for collection 

and preservation of research specimens. Enriched normal samples were obtained from 

healthy patients with an indication for surgery due to the presence of a non-cancerous 

lesion (hyperplasia, endometrial polyps, myoma) and served as an independent cohort 

of normal endometrial samples. The collected fragments were excised carefully to avoid 

any contamination of myometrium and other stromal components. After excision, the 

normal tissue samples were snap-frozen within a 30 min cold ischemic time, and next 

flash-frozen in liquid nitrogen, and transferred to a liquid nitrogen freezer for storage 

until approval for shipment to BCR. An adjacent segment of each sample was formalin-

fixed paraffin-embedded and H&E stained to perform quality assessment. To meet CPTAC 
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pathology acceptance criteria, collected normal tissue samples had to include at least 80% of 

endometrial cells. Thus, enriched normal tissue means that the normal tissue includes at least 

80% of endometrial cells.

ICI treated sample collection—Medical records were abstracted to identify uterine 

cancer patients who had received treatment with ICI therapy. Pre-ICI FFPE tumor specimens 

were retrieved from those with archived tissue stored at UAB. Medical records were 

analyzed to obtain basic demographic data, histology, stage, treatments used, and best 

response to ICI therapy. Best response to therapy was collected by reviewing all imaging 

reports obtained on therapy. Complete response was defined as no radiographic evidence 

of residual disease; partial response was defined as any reduction in lesion size by > 1 

cm; stable disease was defined as no growth or reduction of lesions > 1 cm; progressive 

disease was defined as growth of lesions > 1 cm or oncologist’s determination of clinical 

progression.

Cell lines—The EC cell line, HEC-151, was purchased from JCRB cell bank. Cells 

were cultivated using MEM containing 10% FBS and 1% penicillin–streptomycin in a 37 

°C incubator with 5% CO2. Cell lines were routinely tested and confirmed negative for 

Mycoplasma contamination by Lonza Mycoalert Mycoplasma Detection Kit.

EC cell lines, HEC265, HEC-108, HEC-251, were obtained from either the JCRB Cell 

Bank. EC cell line, HEC1A, was obtained from the American Type Culture Collection. Cells 

were cultured in MEM media supplemented with 15% FBS. Identity of each cell line was 

verified by a PCR-based method for Short Tandem Repeat (STR) profiling prior to receipt. 

Once thawed, cell lines were cultured for fewer than 20 passages and regularly screening for 

mycoplasma infection by two independent methods: MycoStrip (Rep-mys-10; Invivogen) 

and RT-PCR (Venor GeM, Cat MP00025–1KT; Sigma-Millipore).

METHOD DETAILS

Sample Processing for Genomic DNA and Total RNA Extraction—Our study 

sampled a single site of the primary tumor from surgical resections, due to the internal 

requirement to process a minimum of 125 mg of tumor issue and 50 mg of adjacent normal 

tissue. DNA and RNA were extracted from tumor and adjacent normal specimens in a co-

isolation protocol using QIAGEN’s QIAsymphony DNA Mini Kit and QIAsymphony RNA 

Kit. Genomic DNA was also isolated from peripheral blood (3–5 mL) to serve as matched 

normal reference material. The Qubit dsDNA BR Assay Kit was used with the Qubit 2.0 

Fluorometer to determine the concentration of dsDNA in an aqueous solution. Any sample 

that passed quality control and produced enough DNA yield to go through various genomic 

assays was sent for genomic characterization. RNA quality was quantified using both the 

NanoDrop 8000 and quality assessed using Agilent Bioanalyzer. A sample that passed RNA 

quality control and had a minimum RIN (RNA integrity number) score of 7 was subjected to 

RNA sequencing. Identity match for germline, normal adjacent tissue, and tumor tissue was 

assayed at the BCR using the Illumina Infinium QC array. This beadchip contains 15,949 

markers designed to prioritize sample tracking, quality control, and stratification.
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Whole Exome Sequencing

Whole Exome Sequencing Methods

Library Construction: Library construction was performed as described in Fisher et al., with 

the following modifications: initial genomic DNA input into shearing was reduced from 3 μg 

to 20–250 ng in 5 0μL of solution. For adapter ligation, Illumina paired end adapters were 

replaced with palindromic forked adapters, purchased from Integrated DNA Technologies, 

with unique dual-indexed molecular barcode sequences to facilitate downstream pooling. 

Kapa HyperPrep reagents in 96-reaction kit format were used for end repair/A- tailing, 

adapter ligation, and library enrichment PCR. In addition, during the post-enrichment SPRI 

cleanup, elution volume was reduced to 30 μL to maximize library concentration, and a 

vortexing step was added to maximize the amount of template eluted.

In-solution hybrid selection: After library construction, libraries are pooled into groups of 

up to 96 samples. Hybridization and capture were performed using the relevant components 

of Illumina’s Nextera Exome Kit and following the manufacturer’s suggested protocol, with 

the following exceptions: first, all libraries within a library construction plate were pooled 

prior to hybridization. Second, the Midi plate from Illumina’s Nextera Exome Kit was 

replaced with a skirted PCR plate to facilitate automation. All hybridization and capture 

steps were automated on the Agilent Bravo liquid handling system.

Preparation of libraries for cluster amplification and sequencing: After post-capture 

enrichment, library pools were quantified using qPCR (automated assay on the Agilent 

Bravo), using a kit purchased from KAPA Biosystems with probes specific to the ends of the 

adapters. Based on qPCR quantification, libraries were normalized to 2nM.

Cluster amplification and sequencing: Cluster amplification of DNA libraries was 

performed according to the manufacturer’s protocol (Illumina) using exclusion amplification 

chemistry and flowcells. Flowcells were sequenced utilizing Sequencing-by-Synthesis 

chemistry. The flow cells are then analyzed using RTA v.2.7.3 or later. Each pool of whole 

exome libraries was sequenced on paired 76 cycle runs with two 8 cycle index reads across 

the number of lanes needed to meet coverage for all libraries in the pool. Pooled libraries 

were run on HiSeq4000 paired end runs to achieve a minimum of 150x on target coverage 

per each sample library. The raw Illumina sequence data were demultiplexed and converted 

to fastq files, adapter and low-quality sequences were trimmed. The raw reads were mapped 

to the HG38 human reference genome. The validated bams were used for downstream 

analysis and variant calling.

PCR-Free Whole Genome Sequencing

Whole Genome Sequencing, PCR-Free

Preparation of libraries for cluster amplification and sequencing—An aliquot 

of genomic DNA (350 ng in 50 μL) is used as the input into DNA fragmentation 

(aka shearing). Shearing is performed acoustically using a Covaris focused-ultrasonicator, 

targeting 385bp fragments. Following fragmentation, additional size selection is performed 

using a SPRI cleanup. Library preparation is performed using a commercially available 
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kit provided by KAPA Biosystems (KAPA Hyper Prep without amplification module) and 

with palindromic forked adapters with unique 8-base index sequences embedded within the 

adapter (purchased from IDT). Following sample preparation, libraries are quantified using 

quantitative PCR (kit purchased from KAPA Biosystems), with probes specific to the ends 

of the adapters. This assay is automated using Agilent’s Bravo liquid handling platform. 

Based on qPCR quantification, libraries are normalized to 1.7 nM and pooled into 24-plexes.

Cluster amplification and sequencing (HiSeq X)—Sample pools are combined with 

HiSeqX Cluster Amp Regents EPX1, EPX2 and EPX3 into single wells on a strip tube 

using the Hamilton Starlet Liquid Handling system. Cluster amplification of the templates is 

performed according to the manufacturer’s protocol (Illumina) with the Illumina cBot. Flow 

Cells are sequenced to a minimum of 15x on HiSeqX utilizing sequencing-by-synthesis 

kits to produce 151bp paired-end reads. Output from Illumina software is processed by the 

Picard data-processing pipeline to yield BAM files containing demultiplexed, aggregated 

aligned reads.

All sample information tracking is performed by automated LIMS messaging.

Illumina Infinium MethylationEPIC BeadChip Array—The MethylationEPIC array 

uses an 8-sample version of the Illumina Beadchip capturing >850,000 methylation sites per 

sample. The EPIC array includes sample plating, bisulfite conversion, and methylation array 

processing. After scanning, the data was processed through an automated genotype calling 

pipeline. Data generated consists of raw idats and a sample sheet

RNA Sequencing.

Total RNA Sequencing: Indexed cDNA sequencing libraries were prepared from the 

RNA samples using the TruSeq Stranded RNA Sample Preparation Kit and bar-coded 

with individual tags. Quality control was performed at every step, and the libraries were 

quantified. Indexed libraries were prepared and run on HiSeq4000 paired end 75 base pairs 

to generate a minimum of 120 million reads per sample library with a minimum of 90% 

mapped reads. The raw Illumina sequence data were demultiplexed and converted to fastq 

files, and adapter and low-quality sequences were trimmed for downstream analysis.

miRNA Sequencing: Indexed small RNA sequencing libraries were prepared from the RNA 

samples using the TruSeq Small Total RNA Sample Prep Kit and bar-coded with individual 

tags. Quality control was performed at every step, and the libraries were quantified. Indexed 

libraries were prepared and loaded on the Hiseq4000 to generate a minimum of 10 million 

reads per library with a minimum of 90% reads mapped. The raw Illumina sequence data 

were demultiplexed and converted to fastq files for downstream analysis.

MS Sample Processing and Data Collection

Protein extraction and Lys-C/trypsin tandem digestion—Approximately 50 mg of 

each of the pulverized OCT-embedded uterine tumor and normal tissues were homogenized 

separately in 200 μL of lysis buffer (8 M urea, 75 mM NaCl, 50 mM Tris, pH 8.0, 1 

mM EDTA, 2 μg/mL aprotinin, 10 μg/mL leupeptin, 1 mM PMSF, 10 mM NaF, 1:100 v/v 
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Sigma phosphatase inhibitor cocktail 2, 1:100 v/v Sigma phosphatase inhibitor cocktail 3, 

20 μM PUGNAc, and 5 mM sodium butyrate). Lysates were precleared by centrifugation 

at 20,000 g for 10 min at 4 °C and protein concentrations were determined by BCA 

assay (ThermoFisher Scientific) and adjusted to 8 μg/μL with lysis buffer. Proteins were 

reduced with 5 mM dithiothreitol for 1 h at 37 °C, and subsequently alkylated with 10 

mM iodoacetamide for 45 min at 25°C in the dark. Samples were diluted 1:4 with 50 mM 

Tris, pH 8.0 and digested with Lys-C (Wako) at 1:50 enzyme-to-substrate ratio sequencing 

grade modified trypsin (Promega, V5117) at 1:50 enzyme-to-substrate ratio. After 2 h of 

digestion at 25 °C, an aliquot of the same amount of sequencing grade modified trypsin 

(Promega, V5117) was added to the samples and further incubated at 25 °C overnight (~14 

h). The digested samples were then acidified with 100% formic acid to 1% of the final 

concentration of formic acid. Tryptic peptides were desalted on C18 SPE (Waters tC18 

SepPak, WAT054925) and dried using Speed-Vac.

TMT-11 labeling—Desalted peptides were labeled with 11-plex TMT reagents using 

conditions modified from the manufacturer’s instructions (ThermoFisher Scientific). 

Peptides (400 μg) from each of the tumors were dissolved in 80 μL of 50 mM HEPES, 

pH 8.5 solution, and mixed with 400 μg of TMT reagent that was dissolved freshly in 20 μL 

of anhydrous acetonitrile. Channel 126 was used for labeling the internal reference sample 

(pooled from all tumor and normal samples in the CPTAC UCEC Exploratory cohort – Cell. 

2020, 180(4):729–748) throughout the sample analysis. After 1 h incubation at RT each 

sample was diluted with 60 μL 50 mM HEPES pH 8.5, 20% acetonitrile. Quench of the 

reaction was achieved by adding 12 μL of 5% hydroxylamine and incubation for 15 min at 

RT. Peptides labeled by different TMT reagents were then mixed, dried using Speed-Vac, 

reconstituted with 3% acetonitrile, 0.1% formic acid and were desalted on tC18 SepPak SPE 

columns.

Fractionation—Approximately 3.5 mg of 11-plex TMT labeled sample was separated 

on a reversed-phase Agilent Zorbax 300 Extend-C18 column (250 mm × 4.6 mm column 

containing 3.5-μm particles) using Agilent 1200 HPLC System. Solvent A was 5 mM 

ammonium formate, pH 10, 2% acetonitrile and solvent B was 5 mM ammonium formate, 

pH 10, 90% acetonitrile. The flow rate was 1 mL/min and the injection volume was 900 

μL. The LC gradient started with a linear increase of solvent B to 16% in 6 min, then 

linearly increased to 40% B in 70 min, 4 min to 44% B, 5 min to 60% B and another 14 

of 60% solvent B. A total of 96 fractions were collected into a 96 well plate throughout the 

LC gradient. These fractions were concatenated into 24 fractions by combining 4 fractions 

that are 24 fractions apart (i.e., combining fractions #1, #25, #49, and #73; #2, #26, #50, 

and #74; and so on). For proteome analysis, 5% of each concatenated fraction was dried 

down and resuspended in 2% acetonitrile, 0.1% formic acid to a peptide concentration 

of 0.1 mg/mL for LC-MS/MS analysis. The rest of the fractions (95%) were further 

concatenated into 12 fractions (i.e., by combining fractions #1 and #13; #3 and #15; and 

so on), dried down, and subjected to immobilized metal affinity chromatography (IMAC) for 

phosphopeptide enrichment.
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Phosphopeptide enrichment using IMAC—Fe3+-NTA-agarose beads were freshly 

prepared using the Ni-NTA Superflow agarose beads (QIAGEN, #30410) for 

phosphopeptide enrichment. For each of the 12 fractions, peptides were reconstituted in 500 

μL IMAC binding/wash buffer (80% acetonitrile, 0.1% trifluoroacetic acid) and incubated 

with 20 μL of the 50% bead suspension for 30 min at RT. After incubation, the beads were 

washed 2 times each with 50 μL of wash buffer and once with 50 μL of 1% formic acid on 

the stage tip packed with 2 discs of Empore C18 material (Empore Octadecyl C18, 47 mm; 

Supleco, 66883-U). Phosphopeptides were eluted from the beads on C18 using 70 μL of 

Elution Buffer (500 mM K2HPO4, pH 7.0). 50% acetonitrile, 0.1% formic acid was used for 

elution of phosphopeptides from the C18 stage tips. Samples were dried using Speed-Vac, 

and later reconstituted with 10 μL of 3% acetonitrile, 0.1% formic acid for LC-MS/MS 

analysis.

Immunoaffinity purification of acetylated peptides—Tryptic peptides from the 

flow-through of IMAC were combined into four samples follow concatenation scheme by 

combining 3 fractions that were 4 fractions apart (i.e., combining fractions #1, #5 and #9 

as a new fraction) and dried down using Speed-Vac. The dried peptides were reconstituted 

in 1.4 mL of the immunoaffinity purification (IAP) buffer (50 mM MOPS/NaOH pH 7.2, 

10 mM Na2HPO4 and 50 mM NaCl). After dissolving the peptide, the pH of the peptide 

solution was checked using pH indicator paper. The antibody beads from PTMScan® 

Acetyl-Lysine Motif [Ac-K] Kit (Cell Signaling, #13416) were freshly prepared. Briefly, 

the antibody beads were centrifuged at 2,000 x g for 30 sec and all buffers from the beads 

were removed; the antibody beads were then washed with 1 mL of IAP buffer for four 

times and finally resuspend in 40 μL of IAP buffer. For each fraction, half of the antibody 

in each tube was transferred to the peptide solution and incubated on a rotator overnight at 

4 °C. After removing the supernatant, the reacted beads were washed with 1 mL of PBS 

buffer five times. For the elution of acetylated peptides, the antibody beads were incubated 2 

times each with 50 μL of 0.15% TFA at room temperature for 10 min. The eluted peptides 

were transferred to the stage tip packed with two discs of Empore C18 material. The C18 

stage tips were washed by 1% formic acid and 50% acetonitrile, and 0.1% formic acid was 

used for elution of peptides from the C18 stage tips. The eluted peptides were dried using 

Speed-Vac, and reconstituted with 13 μL of 2% acetonitrile, 0.1% formic acid contained 

0.01% DDM (n-Dodecyl β-D-maltoside) right before the LC-MS/MS analysis.

The acetylated peptides prepared by IP from the IMAC flow-through may very well 

miss those peptides that are both phosphorylated and acetylated. Splitting the samples for 

independent IP and IMAC may improve the chance of recovering such peptides, assuming 

having both PTMs on the same peptide does not impact the affinity of either the IP or IMAC 

process. However, acetylated peptides are estimated to be 10 times lower in abundance than 

the phosphopeptides, hence much larger input may be needed to recover the dual-modified 

peptides. Given the extremely low stoichiometry of these dual-modified peptides and the 

sample size limitations, it was not pursued in this work.

Enrichment of glycopeptides—Peptides from the flow-through of acetylated peptide 

enrichment were desalted on the reversed phase C18 SPE column (Waters). The 
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glycopeptides were enriched with OASIS MAX solid-phase extraction (Waters). The 

MAX cartridge was conditioned with 3×1 mL of ACN, then 3×1 mL of 100 mM 

triethylammonium acetate buffer, followed by 3×1 mL of water, and finally 3×1 mL of 95% 

ACN / 1% TFA. The peptides were reconstituted in 95% ACN / 1% TFA and loaded twice. 

The cartridge was washed with 4×1 mL of 95% ACN / 1% TFA to remove non-glycosylated 

peptides. The glycopeptide fraction was eluted with 50% ACN / 0.1% FA, dried down, and 

reconstituted in 3% ACN / 0.1% FA prior to ESI-LC-MS/MS analysis.

LC-MS/MS data acquisition—Fractionated samples prepared for global proteome, 

phosphoproteome, and acetylome analysis were separated using a nanoACQUITY UPLC 

system (Waters) by reversed-phase HPLC. The analytical column was manufactured in-

house using ReproSil-Pur 120 C18-AQ 1.9 μm stationary phase (Dr. Maisch GmbH) and 

slurry packed into a 25-cm length of 360 μm o.d. x 75 μm i.d. fused silica picofrit capillary 

tubing (New Objective). The analytical column was heated to 50 °C using an AgileSLEEVE 

column heater (Analytical Sales and Services). The analytical column was equilibrated to 

98% Mobile Phase A (MP A, 0.1% formic acid/3% acetonitrile) and 2% Mobile Phase B 

(MP B, 0.1% formic acid/90% acetonitrile) and maintained at a constant column flow of 200 

nL/min. The sample was injected into a 5-μL loop placed in-line with the analytical column 

which initiated the gradient profile (min:%MP B): 0:2, 1:6, 85:30, 94:60, 95:90, 100:90, 

101:50, 110:50 (for global proteome and phosphoproteome analysis); 0:2, 1:6, 235:30, 

244:60, 245:90, 250:90, 251:50, 260:50 (for acetylome analysis). The column was allowed 

to equilibrate at start conditions for 30 minutes between analytical runs.

MS analysis was performed using an Orbitrap Fusion Lumos mass spectrometer 

(ThermoFisher Scientific). The global proteome and phosphoproteome samples were 

analyzed under identical conditions. Electrospray voltage (1.8 kV) was applied at a carbon 

composite union (Valco Instruments) coupling a 360 μm o.d. x 20 μm i.d. fused silica 

extension from the LC gradient pump to the analytical column and the ion transfer tube 

was set at 250 °C. Following a 25-min delay from the time of sample injection, Orbitrap 

precursor spectra (AGC 4 × 105) were collected from 350–1800 m/z for 110 min at a 

resolution of 60K along with data dependent Orbitrap HCD MS/MS spectra (centroid) at a 

resolution of 50K (AGC 1 × 105) and max ion time of 105 ms for a total duty cycle of 2 

seconds. Masses selected for MS/MS were isolated (quadrupole) at a width of 0.7 m/z and 

fragmented using a collision energy of 30%. Peptide mode was selected for monoisotopic 

precursor scan and charge state screening was enabled to reject unassigned 1+, 7+, 8+, and 

> 8+ ions with a dynamic exclusion time of 45 seconds to discriminate against previously 

analyzed ions between ±10 ppm. The acetylome samples were analyzed under similar 

conditions except that the max ion time was 125 ms.

The TMT-labeled glycoproteome fractions were analyzed using Orbitrap Fusion Lumos 

mass spectrometer (Thermo Scientific). Approximately 0.5 ug of peptides were separated 

on an in-house packed 28 cm x 75 um diameter C18 column (1.9 um Reprosil-Pur C18-

AQ beads (Dr. Maisch GmbH); Picofrit 10 um opening (New Objective)) lined up with 

an Easy nLC 1200 UHPLC system (Thermo Scientific). The column was heated to 50C 

using a column heater (Phoenix-ST). The flow rate was set at 200 nl/min. Buffer A and 

B were 3% ACN / 0.1% FA and 90% ACN / 0.1% FA, respectively. The peptides were 
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separated with a 6%–30% B gradient in 84 min. Peptides were eluted from the column 

and nanosprayed directly into the mass spectrometer. The mass spectrometer was operated 

in a data-dependent mode. Parameters for glycoproteomic samples were set as follows: 

MS1 resolution – 60,000, mass range – 500 to 2000 m/z, RF Lens – 30%, AGC Target 

– 5.0e5, Max injection time – 50 ms, charge state include – 2–6, dynamic exclusion – 

45 s. The cycle time was set to 2 s, and within this 2 s the most abundant ions per scan 

were selected for MS/MS in the orbitrap. MS2 resolution – 50,000, high-energy collision 

dissociation activation energy (HCD) – 35, isolation width (m/z) – 0.7, AGC Target – 1.0e5, 

Max injection time – 100 ms.

Construction and utilization of the Comparative Reference samples—As a 

quality control measure, two different types of “Comparative Reference” (“CompRef”) 

patient-derived xenograft (PDX) samples were generated as previously described (Li et al., 

2013; Tabb et al., 2016) and used to monitor the longitudinal performance of the proteomics 

workflow throughout the course of this study. Briefly, the PDX tumors from established 

basal and luminal breast cancer intrinsic subtypes were raised subcutaneously in 8-week 

old NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ mice (Jackson Laboratories, Bar Harbor, ME) using 

procedures reviewed and approved by the Institutional Animal Care and Use Committee 

at Washington University in St. Louis. Xenografts were grown in multiple mice, pooled, 

and cryopulverized to provide a sufficient amount of uniform material for the duration of 

the study. Full proteome, phosphoproteome and acetylome process replicates of each of the 

two types of CompRef samples were prepared and analyzed as standalone 11-plex TMT 

experiments alongside every four TMT-11 experiments of the study samples, using the same 

analysis protocol as the patient samples. These interstitially analyzed CompRef samples 

were evaluated for depth of proteome, phosphoproteome, and acetylome coverage and for 

consistency in quantitative comparison between the basal and luminal models.

Genomic Data Analysis

Harmonized genome alignment—WGS, WES, RNA-Seq sequence data were 

harmonized by NCI Genomic Data Commons (GDC) https://gdc.cancer.gov/about-data/gdc-

data-harmonization, which included alignment to GDC’s hg38 human reference genome 

(GRCh38.d1.vd1) and additional quality checks. All the downstream genomic processing 

was based on the GDC-aligned BAMs to ensure reproducibility.

Copy Number Calling—Copy number variation was detected using BIC-seq2 94, a read-

depth-based CNV calling algorithm to detect somatic copy number variation (CNVs) from 

the WGS data of tumors. Briefly, BIC-seq2 divides genomic regions into disjoint bins and 

counts uniquely aligned reads in each bin. Then, it combines neighboring bins into genomic 

segments with similar copy numbers iteratively based on Bayesian Information Criteria 

(BIC), a statistical criterion measuring both the fitness and complexity of a statistical model. 

We used paired-sample CNV calling that takes a pair of samples as input and detects 

genomic regions with different copy numbers between the two samples. We used a bin 

size of ∼100 bp and a lambda of 3 (a smoothing parameter for CNV segmentation). We 

recommend calling segments as copy gain or loss when their log2 copy ratios were larger 

than 0.2 or smaller than −0.2, respectively (according to the BIC-seq publication).
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Somatic Variant Calling—Somatic mutations were called by the Somaticwrapper 

pipeline v1.6 (https://github.com/ding-lab/somaticwrapper), which includes four different 

callers, i.e., Strelka v.295, MUTECT v1.7 71, VarScan v.2.3.8 84, and Pindel v.0.2.5 76 from 

WES. We kept the exonic SNVs called by any two callers among MUTECT v1.7, VarScan 

v.2.3.8, and Strelka v.2 and indels called by any two callers among VarScan v.2.3.8, Strelka 

v.2, and Pindel v.0.2.5. For the merged SNVs and indels, we applied a 14X and 8X coverage 

cutoff for tumor and normal, separately. We also filtered SNVs and indels by a minimal 

variant allele frequency (VAF) of 0.05 in tumors and a maximal VAF of 0.02 in normal 

samples. We filtered any SNV, which was within 10bp of an indel found in the same tumor 

sample. Finally, we rescued the rare mutations with VAF of [0.015, 0.05) in ccRCC driver 

genes based on the gene consensus list 96

Mutational Signatures—The R package SigProfilerMatrixGeneratorR (version 1.0) was 

used to call mutation signatures from somatic mutation data (PMID: 31470794). The 

maximum number of signatures was set to 10 and nmf replicate was set to 100. The 

activity scores of SigProfilerMatricGenetator suggested decomposed solutions were used as 

signature scores. Only single base substitutions signatures were included in our analysis.

DNA methylation analysis—Raw methylation idat files were downloaded from CPTAC 

DCC and GDC. Beta values of CpG loci were reported after functional normalization, 

quality check, common SNP filtering, and probe annotation using Li Ding Lab’s methylation 

pipeline v1.1 https://github.com/ding-lab/cptac_methylation. For downstream integrated 

analysis, we focused only on the methylation levels (represented as beta values) of the 

probes located both in the CpG island and the promoter (including 5’UTR) regions. The 

gene-level methylation was derived by averaging these probe-level methylation values.

Microsatellite Instability Prediction—MSI scores were calculated by MSIsensor 

(https://github.com/ding-lab/msisensor) and interpreted as the percentage of microsatellite 

sites (with deep enough sequencing coverage) that have a lesion. Samples with an MSIscore 

> 5 are classified as “MSI-High” and the rest will be classified as “MSS” based on a 

bimodal distribution of MSIscore on this cohort.

Copy Number Classification—The copy number subtypes were characterized by CNV 

deletion events. A sample was defined as CNV-high if more than 10% of its genome was 

deleted, regardless of the number of CNV-independent events.

TCGA Subtype Classification—TCGA identified four subtypes of endometrial cancer: 

POLE, MSI, CNV-high, and CNV-low. We replicated this subtyping for the samples in this 

study.

The MSI subtype consists of all samples called MSI-H, as described in the Microsatellite 

Instability Prediction section. To identify the POLE subtype, we looked for samples with 

mutations in the POLE exonuclease domain. There were 6 samples carrying exonuclease 

domain mutations (EDM) including 5 P286R and 1 V411L. All of them passed the criteria 

[CA] signature > 20% and [CG] signature < 3%. Thus, six samples were classified as POLE. 

Samples identified as having high CNV, as described in the Copy Number Classification 
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section, were assigned to the CNV-high subgroup. All remaining samples not classified 

as MSI, POLE, or CNV-high were classified as CNV-low. The genomic subtypes of three 

samples, C3L-00898, C3L-02802, and C3N-02298, could not be determined due to lack of 

WGS-based CNV data. One sample, C3L-02557, was identified as both POLE and CNV-H.

RNA Quantification & Analysis

RNA Quantification and Circular RNA Prediction: The Hg38 reference genome and 

RefSeq annotations were used for the RNAseq data analysis. They were downloaded from 

the UCSC table browser. First, CIRI (v2.0.6) was used to call circular RNA with default 

parameters and BWA (version 0.7.17-r1188) was used as the mapping tool. The cutoff of 

supporting reads for circRNA was set to 10. Then we used a pseudo-linear transcript strategy 

to quantify gene and circular RNA expression 97. In brief, for each sample, linear transcripts 

of circular RNAs were extracted and 75bp (read length) from the 3’ end was copied to the 

5’ end. The modified transcripts were called pseudo-linear transcripts. Transcripts of linear 

genes were also extracted and mixed with pseudo-linear transcripts. RSEM (version 1.3.1) 

with Bowtie2 (version 2.3.3) as the mapping tool was used to quantify gene and circular 

RNA expression based on the mixed transcripts. After quantification, the upper quantile 

method was applied for normalization. The normalized matrix was log2-transformed and 

separated into gene and circular RNA expression matrices.

miRNA-Seq Data Analysis miRNA-Seq FASTQ files were downloaded from GDC. We 

reported the mature miRNA and precursor miRNA expression in TPM (Transcripts Per 

Million) after adapter trimming, quality check, alignment, annotation, reads counting using 

Li Ding Lab’s miRNA pipeline https://github.com/ding-lab/CPTAC_miRNA. The mature 

miRNA expression was calculated irrespective of its gene of origin by summing the 

expression from its precursor miRNAs.

PROGENy Pathway Activity: The PROGENy R package was applied to the log2 

transformed RSEM mRNA matrix to estimate activity of 11 cancer related pathways: EGFR, 

Hypoxia, JAK-STAT, MAPK, NFkB, PI3K, TGFb, TNFa, Trail, VEGF, p5377.

MS Data Interpretation

Quantification of TMT global proteomics data—LC-MS/MS analysis of the TMT11-

labeled, bRPLC fractionated samples generated a total of 384 global proteomics data files. 

The Thermo RAW files were processed with mzRefinery to characterize and correct for 

any instrument calibration errors, and then with MS-GF+ v988167,72,98 to match against 

the RefSeq human protein sequence database downloaded on June 29, 2018 (hg38; 41,734 

proteins), combined with 264 contaminants (e.g., trypsin, keratin). The partially tryptic 

search used a ± 10 ppm parent ion tolerance, allowed for isotopic error in precursor ion 

selection, and searched a decoy database composed of the forward and reversed protein 

sequences. MS-GF+ considered static carbamidomethylation (+57.0215 Da) on Cys residues 

and TMT modification (+229.1629 Da) on the peptide N-terminus and Lys residues, and 

dynamic oxidation (+15.9949 Da) on Met residues for searching the global proteome data.
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Peptide identification stringency was set at a maximum 1% FDR at peptide level using 

PepQValue < 0.005 and parent ion mass deviation < 7 ppm criteria. A minimum of 6 unique 

peptides per 1000 amino acids of protein length was then required for achieving 1% at the 

protein level within the full data set.

The intensities of all 11 TMT reporter ions were extracted using MASIC software (Monroe 

et al., 2008). Next, PSMs passing the confidence thresholds described above were linked 

to the extracted reporter ion intensities by scan number. The reporter ion intensities from 

different scans and different bRPLC fractions corresponding to the same gene were grouped. 

Relative protein level was calculated as the ratio of sample level to reference level using 

the summed reporter ion intensities from peptides that could be uniquely mapped to a gene. 

The pooled reference sample was labeled with TMT 126 reagent, allowing comparison 

of relative protein levels across different TMT-11 plexes. The relative levels were log2 

transformed and zero-centered for each gene to obtain final relative levels.

Small differences in laboratory conditions and sample handling can result in systematic, 

sample-specific bias in the quantification of protein levels. In order to mitigate these effects, 

we computed the median, log2 relative protein level for each sample and re-centered to 

achieve a common median of 0.

Quantification of phosphopeptides—Phosphopeptide identification for the 192 

phosphoproteomics data files were performed as in the global proteome data analysis 

described above (e.g., peptide level FDR < 1%), with an additional dynamic phosphorylation 

(+79.9663 Da) on Ser, Thr, or Tyr residues. The phosphoproteome data were further 

processed by the Ascore algorithm (Beausoleil et al., 2006) for phosphorylation site 

localization, and the top-scoring sequences were reported. For phosphoproteomic datasets, 

the TMT-11 quantitative data were not summarized by protein but left at the phosphopeptide 

level. All peptides (phosphopeptides and global peptides) were labeled with TMT-11 

reagent simultaneously. Separation into phospho- and non-phosphopeptides using IMAC 

was performed after the labeling. Thus, all the biases upstream of labeling are assumed 

to be identical between global and phosphoproteomic datasets. Therefore, to account for 

sample-specific biases in the phosphoproteome analysis, we applied the correction factors 

derived from median-centering the global proteomic dataset.

Quantification and analysis of acetylated peptides—Acetylated peptide 

identification for the 64 acetylome data files were performed as in the global proteome 

data analysis described above, with additional dynamic acetylation (+42.0105 Da) and 

carbamylation (+43.0058 Da) on Lys residues. The acetylation site localization, protein 

inference, and quantification of the acetylome data were performed in identical fashion as in 

the phosphoproteome data.

Targeted selected reaction monitoring (SRM) analysis

Stable isotope-labeled peptides: Proteotypic peptides for the target proteins were selected 

for targeted proteomics analysis based on the TMT identification results and well-accepted 

criteria 99, and the corresponding crude heavy stable isotope-labeled peptides were 

synthesized with 13C/15N on C-terminal lysine or arginine (New England Peptide, Gardner, 
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MA). The heavy peptides were dissolved individually in 15% acetonitrile (ACN) and 0.1% 

formic acid (FA) at a concentration of 2 mM and used for creating a peptide internal 

standard (IS) mixture with a final concentration of 5 μMfor each peptide.

SRM assay development: The heavy peptides in the peptide mixture were evaluated for 

peptide response and fragmentation pattern using LC-SRM. For each peptide, transition 

settings were as follows: (1) precursor charges: 2, 3 and 4; (2) fragment ion charges: 1, 2 

and 3; (3) ion type: y ions; and (4) m/z window: 250–1500. Transition lists were generated 

with optimal collision energy values by Skyline software (Version 21.2) 81. LC-SRM was 

then used to evaluate all heavy peptides for stability of peptide retention time, reliable heavy 

peptides identification, transition interferences, and endogenous peptide detectability. In the 

end, 3 transitions per peptide were selected for the final assay configuration for targeted 

quantitation of a total of 108 peptides of the 62 target proteins and 11 phosphopeptides of 

RB1 protein.

PRISM fractionation: High-pressure, high-resolution separations coupled with intelligent 

selection and multiplexing (PRISM) fractionation 100 was performed for 39 peptides to 

achieve higher sensitivity quantitation by SRM. A nanoACQUITY UPLC® system (Waters 

Corporation, Milford, MA) equipped with a reversed-phase capillary LC column (30-μm 

Jupiter C18 bonded particles packed in 200 μm i.d. × 50 cm capillary) was used. Separations 

were performed by reversed-phase LC fractionation at mobile phase flow rates of 2.2 μL/min 

on the binary pump systems using 10 mM ammonium formate (pH 7) in water as mobile 

phase A and 10 mM ammonium formate (pH 7) in 90% ACN as mobile phase B. 45 μL of 

sample with a peptide concentration of 0.5 μg/μL and 12 fmol/μL of heavy peptide standards 

was loaded onto the reversed-phase capillary column and separated into 96 fractions using 

a 190-min gradient of (min:%B): 35:1, 37:10, 52:15, 87:25, 112:35, 125:45, 150:90, 156:1. 

The eluent was automatically deposited every minute and concatenated onto 6 vials. Prior to 

peptide fraction collection, 20 μL of 0.1% FA was added to each well of the 96-well plate to 

avoid the loss of peptides. All the elute were then dried under vacuum.

Phosphopeptides enrichment by IMAC: The in-house-made IMAC tip was capped in a 

tip-end with a 20-μm polypropylene frits disk followed by packing with Ni-NTA silica 

resin (QIAGEN, Hilden, Germany). First, Ni2+ ions were removed by adding 50 mM 

EDTA in 1 M NaCl. The tip was then activated with 100 mM FeCl3 and equilibrated with 

1% (v/v) acetic acid at pH 3.0 prior to sample loading. 1 μL of 4000 fmol/μL of each 

of the crude IS phosphopeptides spiked into 200 μL of 1 μg/μL tryptic peptides or into 

in 0.1% (v/v) trifluoroacetic acid, 80% ACN were subjected to IMAC. Followed by 1% 

(v/v) trifluoroacetic acid, 80% ACN, and 1% (v/v) acetic acid washing steps, the bound 

phosphopeptides were eluted by 200 mM NH4H2PO4 onto the activated desalting SDB-XC 

StageTips for desalting and directly eluted to sample vials of LC-SRM then dried under 

vacuum.

LC-SRM data acquisition: The digested tissue samples were reconstituted in 2% ACN/

0.1% FA and spiked with 50 fmol/μL heavy peptides for a final concentration of 0.25 

μg/μL, and 2 μL of the resulting samples were analyzed by LC-SRM using a Waters 
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nanoACQUITY UPLC system coupled to a Thermo Scientific TSQ Altis triple quadrupole 

mass spectrometer (Thermo Scientific, Waltham, MA). A 100 μm i.d. × 10 cm, BEH 1.7-μm 

C18 capillary column (Waters) was operated at a temperature of 44 °C. The mobile phases 

were (A) 0.1% FA in water and (B) 0.1% FA in ACN. The peptide samples were separated 

at a flow rate of 400 nL/min using a 110-min gradient profile as follows (min:%B): 7:1, 

9:6, 40:13, 70:22, 80:40, 85:95, 93:50, 94:95 and 95:1. Data were acquired in timescheduled 

SRM mode (retention time window: 15 min). PRISM collected fractions were reconstituted 

in 20 μL 2% ACN/0.1% FA and 9 μL were loaded onto the column and separated at a 

flow rate of 400 nL/min using a 70-min gradient profile as follows (min:%B): 11:0.5, 14: 

5, 30:20, 37:25, 48:60, 31:95, 54:0.5. Data were acquired in unscheduled SRM mode. For 

enriched phosphopeptide samples, all the eluent from IMAC was dissolved in 12 μL and 9 

μL were loaded onto the column and separated at a flow rate of 400 nL/min using a 42-min 

gradient profile as follows (min:%B): 11:0.5, 13: 5, 18:20, 23:25, 53:95, 36:0.5. Data were 

acquired in unscheduled SRM mode. The parameters of the triple quadruple instrument were 

set with 0.7 fwhm Q1 and Q3 resolution, and 1.2-s cycle time.

SRM data analysis: SRM data were analyzed using the Skyline software (Version 21.2) 
81. The total peak area ratios of endogenous light peptides and their heavy isotope-labeled 

internal standards (i.e., L/H peak area ratios) were exported for quantitation. Peak detection 

and integration were carried out according to two criteria: (1) same retention time and (2) 

similar peak area ratios for the transitions. All data were manually inspected to ensure 

correct retention time, peak detection and accurate integration. All SRM results including 

the assay characterization data are organized as Skyline files on the Panorama server 101 and 

can be accessed via https://panoramaweb.org/CPTAC_UCEC.url (the account for reviewer 

is: Email: panorama+reviewer134@proteinms.net; Password: ALZsnvJc).

Quantification and analysis of glycopeptides: Mass spectrometry data from each 

individual cohort was downloaded from the DCC website. The data sets were annotated 

following their metadata information. MzML files were searched using the GPQuest search 

engine version 2.1 (Hu et al., 2018; Mertins et al., 2018) against a reported glycopeptide 

database reported in Glycositeatlas (Sun et al, 2019 ) appended with an equal number of 

decoy sequences and an N-linked glycan database, which was collected from the public 

database of GlycomeDB (Ranzinger et al., 2011) (http://www.glycome-db.org). The post-

processing, statistical summarization, and reporting were done using MS-PyCloud (Li Chen, 

2018, biorxiv). The consensus spectral library for each glycopeptide was constructed by 

using SpectraST and data visualization was done by OmicsOne (Hu et. al, 2021). Below are 

the individual search settings for glycoproteome analysis, including the necessary setting to 

account for individual experimental settings.

Searching N-linked glycopeptides using GPQuest. Prior to the database search, 

ProteoWizard 3.0 was used to convert the .RAW files to .mzML files with the “centroid 

all scans” option selected. The MS/MS spectra containing the oxonium ions (m/z 204.0966) 

in the top 10 abundant peaks after removing TMT reporter ions were considered as the 

potential glycopeptide candidates. Isotope error was set to (−1/0/1/2) for all searches. 

Cysteine carbamidomethylation (+57.0215) was specified as fixed modification. Methionine 
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oxidation (+15.9949), and protein N-terminal acetylation (+42.01060) were specified as 

variable modifications. The minimum number of peaks used was set to 15, and the 

maximum set to 100. The precursor ion tolerance was set to 10 ppm and the fragment 

tolerance was set to 20 ppm. Lysine TMT labeling (+229.1629), and peptide N-terminal 

TMT labeling (+229.1629) were specified as fixed modifications. The best hits of all 

glycopeptide-spectrum matchings (GPSMs) were ranked by the Morpheus scores (Wenger 

and Coon, 2013) in descending order, in which those with FDR < 1% and covering > 10% 

total intensity of each tandem spectrum were reserved as qualified identifications.

Post-processing using MS-PyCloud. Glycopeptide-spectrum matchings (GPSMs) were 

filtered based on a user-defined PSM-level false discovery rate (FDR) cutoff and significant 

GPSMs from all sets of each cohort were grouped to infer the represented proteins 

parsimoniously using a bipartite graph analysis algorithm adopted in many protein inference 

tools 102–104. The final FDRs are then estimated at N-glycopeptide-levels using the reversed 

decoy search. For isobaric labeled data, the TMT reporter ion intensities are extracted from 

the mzML file for MS2 scans corresponding to the identified glycopeptides. For TMT data, 

the TMT reagent lot correction factors were used to adjust the reported TMT intensities 

for interference between TMT channels. Log2 ratios are calculated at GPSM-level relative 

to the user-specified reference channel and are then rolled up by the median value to 

N-glycopeptide-level (intact glycopeptide enriched). Normalized log2 ratio matrices are 

generated using median normalization (MD norm), and median normalization plus median 

absolute deviation scaling (MD norm + MAD scaling). Normalised levels are generated 

from the log2 ratio matrices by summing the log2 ratios with the median log2 value of the 

reference channel summed MS2 intensities across all sets for each N-glycopeptide using the 

same approach used in the proteome and phosphoproteome processing. Additional details 

regarding these steps can be found in 105,106.

IHC analysis: Immunohistochemical staining was performed on formalin-fixed paraffin-

embedded 4-μm tumor sections obtained from 52 UCEC patients. Slides and appropriate 

positive and negative controls were then stained with primary and secondary antibodies 

using the automated platform, Dako Autostainer Link 48. The following primary antibodies 

were used: anti-c-MYC (1:100; rabbit monoclonal; clone Y69; cat. no. 790–4628; Ventana), 

anti-CTNNB1 (1:1000; rabbit polyclonal; cat. no. HPA029159; Atlas Antibodies), anti-

LEF1 (pre-diluted, ready-to-use formulation; rabbit monoclonal; clone ZR336; cat. no. ZC-

Z2642RL, Zeta Corporation). An EnVision FLEX kit (cat. no. K800221–2; Dako, Agilent 

Technologies, Inc.) was used to visualize antibody binding. Subsequently, IHC slides were 

quantified manually by H-score on a scale of 0 to 300 taking into account the percentage of 

positive tumor cells and staining intensity. Slides were also digitally scanned with automated 

ScanScope AT Turbo slide scanner (Aperio/Leica Microsystems) using 20X magnification 

and digital images were saved as.svs.

CRISPR editing materials and methods

Cell line: The endometrial carcinoma cell line HEC-151 was purchased from JCRB 

cell bank. Cells were cultivated using MEM containing 10% FBS and 1% penicillin–

streptomycin in a 37 °C incubator with 5% CO2. Cell lines were routinely tested and 
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confirmed negative for Mycoplasma contamination by Lonza Mycoalert Mycoplasma 

Detection Kit.

PIK3R1T576del editing: The SpCas9 2NLS nuclease and the CRISPRevolution sgRNA EZ 

kit were ordered from Synthego corporation. The sequence of the gRNA is: 5’ 

GGUCUCUCGUCUUUCUCAGC. The Homology-directed repair (HDR) donor ssODN 

(PAGE purified) and PCR primers was ordered from Sigma-Aldrich. The sequence of 

ssODN is: 5’ 

caattattcatgtataggattccatttcaaatacttacATCAAGTATTGGTCTCTtTTcCTgAGCTGGATAAG

GTCT GGTTTAATGCTGTTCATACGTTTGTCAATTTCTCGATACT. The PCR primers 

used for screening edited alleles are: 5’ CCAGCTcAGgAAaAGACC (PIK3R1-T576del-F2) 

and 5’ gcaatcaccaattattcatg (PIK3R1-R4). The primers used to amplify the edited region for 

Sanger sequencing and deep sequencing are: 5’ AGAAGACTTGAAGAAGCAGG 

(PIK3R1-1) and 5’ aactcatcctgaattgtagc (PIK3R1-2).

2×105 HEC-151 cells resuspended in 5μl resuspension buffer (in Neon™ Transfection 

System 10 μL Kit, ThermoFisher) were mixed with sgRNA (90pmol), Cas9 (10pmol), and 

ssODN (60pmol) in 7μl resuspension buffer. 10μl of the resulting mixture was electroporated 

using Neon Transfection System (ThermoFisher) with the setting of 1400 volts, 10ms, and 

4 pulses. Cells were then transferred into one well in a 24-well-dish and recovered in full 

medium for 2 days. Cells were then seeded in a 96-well-dish with 10~20 cells/well. When 

cells reached confluency, a screening PCR was conducted by using 10% of the cells from 

each well in a direct PCR assay using primers specifically amplifying the edited allele and 

Terra™ PCR Direct Red Dye Premix (TaKaRa). The remaining cells were expanded for 

further analyses later. After a positive sub-pool was identified, a Sanger sequencing and 

Deep sequencing further confirmed the editing. For these two assays, the 172bp fragment 

spanning the edited region was amplified by PCR using the cells from the positive wells, 

primers amplifying the 172bp spanning the edited region, and Terra™ PCR Direct Red Dye 

Premix. The purified PCR product was sent to Azenta Life Sciences for Sanger sequencing 

and Amplicon-EZ Next Generation sequencing, respectively.

Western blotting: Western blotting has been previously described 107 with a few 

modifications. Cell lysate protein (30μg) was loaded into each well of a 4–15% Mini-Protein 

TGX Precast gel (Bio-Rad). The first antibodies used were rabbit anti–phospho-AKT 

(Thr308) (Cell Signaling Technology, RRIRAB_329825, 1:500), rabbit anti-phospho-AKT 

(Ser473) (Cell Signaling Technology, RRID:AB 329825, 1:1000 dilution), rabbit anti-AKT 

(Cell Signaling Technology, RRID:AB_329827, 1:1000 dilution), and mouse anti-β-actin 

(Sigma-Aldrich, RRID:AB_476744, 1:5000 dilution).

In vitro Metformin sensitivity assays: Established UCEC cell lines were obtained from 

either the JCRB Cell Bank (HEC265, HEC-108, HEC-251) or the American Type Culture 

Collection (HEC1A) and cultured in MEM media supplemented with 15% FBS. Identity 

of each cell line was verified by a PCR-based method for Short Tandem Repeat (STR) 

profiling prior to receipt. Once thawed, cell lines were cultured for fewer than 20 passages 

and regularly screening for mycoplasma infection by two independent methods: MycoStrip 

(Rep-mys-10; Invivogen) and RT-PCR (Venor GeM, Cat MP00025–1KT; Sigma-Millipore). 
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To assess metformin sensitivity, all cell lines were serum starved for 24 hours before 

being aliquoted in 96-well plates and incubated in MEM supplemented with 5% FBS 

and metformin at specified doses. Metformin (PHR 1085, Sigma Millipore) was prepared 

fresh in MEM media for each use. Cell counts were quantified using Cell Titer96 reagent 

(Promega; Cat# G3580) as previously described (Delaney MA, et al, 2017).

Gene expression was evaluated using validated Taqman assays specific for c-myc 

(Hs00153408_m1) as well as putative myc-regulated targets identified by our 

interrogation of DEPMAP data: NOP2 (Hs00999660_m1), NOP16 (Hs00212622_m1), 

NOLC-1 (Hs01102319_g1); WDR74 (Hs00276510_m1), PES1 (Hs00362795_g1), IMP4 

(Hs00369187), GRWD1 (Hs00230365_m1) and TBRG4 (Hs01056260_g1). Total RNA was 

prepared from flash frozen pellets of washed cells using the MirVANA kit (AM1561; Fisher 

Scientific) as previously described (Delaney MA, et al, 2017). Relative levels of transcript 

were quantified by the delta-deltaCT method (Livak KJ and Schmittgen TD, 2001).

Western blotting was used to assess levels of expression for proteins of interest as 

described (Delaney MA, et al, 2017) with the following modifications. Thirty micrograms 

of cell lysate was loaded into each well of a 4–12% polyacrylamide gel (Invitrogen) 

and transferred to PVDF membranes. Membranes were then incubated with primary 

antibody for c-myc (Cat#E5Q6W, Cell Signaling; 1:1000 dilution;). Secondary HRP-

conjugated anti-rabbit antibody (Cat#7974S; Cell Signaling) was used at 1:3000 dilution. 

Immunoreactivity was visualized using ECL Western PICO (Fisher Scientific). Specimen-

specific immunoreactivity for GADPH (Cat#G9545; Sigma-Millipore; 1:3000 dilution), was 

used as a loading control. Results are reported as levels of luminescence normalized to 

loading control for each lane of interest. Results are reported as relative levels of expression 

normalized to baseline/controls.

Both a previously validated E-box luciferase reporter vector (pGL2, pGL2-E4) and 

CMV-beta-gal vector were obtained from Dr. Rosalie Sears (Oregon Health and Science 

University) and used to evaluate c-myc transcriptional activity in vitro as described (Hurlin, 

PJ, et al, 1997). In brief, 3 × 105 cells from each UCEC cell line were co-transfected with 

either 200 ng of pGL2 (non-expressing control) or pGL2-E4 and 100 ng b-galactosidase 

reporter plasmid using lipofectamine 2000 (Cat#: 11668027, ThermoFisher) in Opti-MEM 

media (Cat#31985062, ThermoFisher). After 5 minutes, media bathing transfected cells 

were replaced and cells incubated for 24 hours. Each transfected culture was divided and 

used to measure either luciferase (E1500, Promega) or b-galactosidase activity (E2000, 

Promega) using a manufacturer recommended protocol. After subtracting background, 

results are reported as luciferase activity normalized to b-galactosidase activity for each 

cell pellet.

For all studies, statistical significance was assessed using Student’s T-test, with significance 

set at p<0.05.

Other proteogenomic analyses

Mutation impact on the proteome—To assess the impact of somatic mutations on 

protein and phosphorylation levels, we performed cis/trans analysis as detailed in https://
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github.com/PayneLab/GBM_confirmatory. Briefly, samples were segregated into wildtype 

or mutation for a specific gene. Cis analysis then performed a Wilcoxon rank sum test to 

determine whether the samples with a mutation had a significantly different protein level 

for the mutated gene. Trans analysis was similar, with samples separated into wildtype and 

mutated. Then all proteins were tested to see if a significantly different level was observed 

(with a BH corrected FDR of 5%). See the GitHub repository for explicit code used in the 

manuscript.

APM subgroup prediction—The R package caret (v6.0.88) 86 was used to train and 

predict APM status using SRM data. There are 35 TMB high samples in the Exploratory 

cohort with 33 features in total. Among them, there are 20 positive samples (TMB_H/

APM_H) and 15 negative samples (TMB_H/APM_L). The buil-tin backwards feature 

selection method, recursive feature elimination, was used to sort the 33 features based 

on their importance with 10-fold cross-validation and 5 times repeating. After that, 10 

different classic machine learning methods with default parameters were used to train 

the classification model on the Exploratory cohort by adding peptides one at a time, 

starting with the peptide with the highest feature importance. These methods are AdaBoost, 

Bayesian Generalized Linear Model (Bayesglm), Logistic Model Trees (LMT), Boosted 

Logistic Regression (LogitBoost), Penalized Multinomial Regression (Multinom), Oblique 

Random Forest (ORFlog), Penalized Logistic Regression (plr), Random Forest (ranger, rf), 

and Regularized Random Forest (RRF). Among them, LMT, LogitBoost and plr are three 

different versions of logistic regression. ORFlog, parRF, ranger, rf and RRF are five different 

versions of random forest. Then, the trained models were applied to the independent cohort 

and AUC values were used to evaluate the performances of these methods.

Inferred Immune, MYC, APM, and Wnt pathway scores—All scores were inferred 

by single sample gene set enrichment analysis (ssGSEA) method from the GSVA R package 
62,108. The immune signatures are from 109, MYC hallmark gene sets were used as MYC 

signature, and the KEGG antigen processing and presentation pathway gene set is used as 

the APM signature. The KEGG Wnt Signaling Pathway gene set was used to analyze the 

Wnt pathway signatures for our CTNNB1-mutated and WT tumors. mRNA expression was 

used to infer MYC and immune scores and protein level was used to infer the APM score.

CTNNB1 hotspot mutation prediction—The glm.net package in R was used to train 

and test lasso regression models to classify hotspot CTNNB1 mutations. Protein data from 

the exploratory CPTAC UCEC cohort (Dou et al. Cell 2020) was used for training and 

the current independent dataset was used as testing. Four lasso regression models were run 

using (1) all samples and all available proteins, (2) CNV-low samples only and all available 

proteins, (3) all samples and Wnt-β-catenin signaling genes (MSigDB), and (4) CNV-low 

samples and Wnt-β-catenin signaling genes. Before training the models, feature selection 

was performed using a two-sided t-test to determine top 10 genes from either all available 

proteins or Wnt-β-catenin signaling geneset. The top ten genes were then used in training 

and testing models to classify hotspot mutation or WT tumors. ROC curves were plotted 

using the pROC package in R (https://cran.r-project.org/web/packages/pROC/index.html).

Dou et al. Page 31

Cancer Cell. Author manuscript; available in PMC 2024 September 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/PayneLab/GBM_confirmatory
https://cran.r-project.org/web/packages/pROC/index.html


PANOPLY analysis—Proteomics data – including global proteome, phosphoproteome, 

acetylome and glycoproteome – along with RNAseq gene expression and CNV data 

from the V3.0 data freeze were reformatted into GCT files (https://clue.io/connectopedia/

gct_format) and input to PANOPLY v1.1. PANOPLY 110 is a cloud-based platform for 

automated and reproducible proteogenomic data analysis implementing a wide array of 

algorithms.

In the first round of analysis, we focused on multi-omic clustering using all the proteomics, 

RNAseq and CNV data as input. Based on preliminary exploration, the number of 

clusters kmin was set to 4. Clustering was performed using all features from all -omes 

(balance_omes=false), filtered to exclude 5% of features globally with the lowest standard 

deviation (sd_filt=0.05 with filt_mode=global).

Once the clusters were defined, over-representation analysis was performed to determine 

enrichments for various selected sample annotation terms in the clusters using Fisher’s 

exact test on the set of samples forming the cluster core. Functional characterization of the 

clusters was performed using gene set enrichment analysis (GSEA) on the matrix of signed 

multi-omic feature weights (W). Details are available in the PANOPLY documentation Wiki 

(https://github.com/broadinstitute/PANOPLY/wiki).

Subsequently, the sample annotation was updated to include the multi-omic cluster ID 

for each sample. This updated sample annotation along with the proteogenomics datasets 

previously described are then used as input to a subsequent run of the PANOPLY pipeline 

to perform immune analysis, outlier analysis, association analysis and connectivity map 

analysis among others. Each analysis outputs a report summarizing results in addition to 

detailed plots and tables.

Neural networks for subtype and mutation predictions—Digital whole slide 

images (WSI) stained with hematoxylin and eosin (H&E) were obtained as SVS files. 

TCGA, CPTAC Exploratory (Dou et al. 2020), and CPTAC independent cohort images were 

obtained from the The Cancer Imaging Archive (TCIA). NYU slides were obtained from 

the NYU Center for Biospecimen Research & Development (CBRD, RRID:SCR_017930). 

Slides were scanned at either 40x (TCGA cohort) or 20x (CPTAC and NYU cohorts). 

Due to the size and the multi-resolution data structure of the WSI, the Python package, 

Openslide, was used to cut slides into 299 × 299 pixel tiles at 10x, 5x, and 2.5x 

equivalent magnification of the scanned WSI. 10x, 5x, and 2.5x tiles covering the same 

regions were then grouped into tile sets and were treated as 1 sample for multi-resolution 

models following the Panoptes sample preparation (Hong et al Cell Rep Med 2021, 

PMID: 34622237). In short, tiles were excluded if more than 40% of the pixels are of 

white background and irrelevant contaminants. Stain colors were normalized using the 

method described in Vahadane et al. 2016 (PMID: 27164577). Labels for each task were 

one-hot encoded at per-tile level. Multi-resolution and single-resolution convolutional neural 

network (CNN) imaging models were trained on TCGA and CPTAC exploratory cohorts, 

which were randomly split into training, validation, and testing at a per-patient ratio of 8:1:1. 

The CPTAC independent dataset was used for completely independent testing of the trained 

models.
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For each task, 13 model architectures were applied to the data. These include Inception 

V1, V2, V3, InceptionResnet V1, V2, and Panoptes 1, 2, 3, 4 with and without a clinical 

variable branch (I1, I2, I3, I5, I6, X2, X1, X4, X3, X2CF, X1CF, X4CF, X3CF, respectively). 

Inception and InceptionResnet are established deep CNN classifiers (Szegedy et al. 

2017, DOI: https://doi.org/10.1609/aaai.v31i1.11231). The Panoptes architecture is a multi-

resolution InceptionResnet-based CNN architecture that takes in three tiles of the same 

region on each slide (Hong et al 2021, PMID: 34622237). Panoptes1 and Panoptes2 have 

three branches based on InceptionResnet1 and InceptionResnet1, respectively. Panoptes3 

and Panoptes4 use the same architecture as Panoptes1 and 2, respectively, and contain an 

additional 1-by-1 convolutional layer between the concatenation of branches and the global 

average pooling. Models with an added clinical feature layer were fed patient age and BMI 

(Panoptes models + CF).

Receiver Operating Characteristic (ROC) curve, plotting true positive rate against false 

positive rate, and the area under the ROC curve (AUROC), were calculated using 

the R package PRROC (https://cran.r-project.org/web/packages/PRROC/index.html). 95% 

confidence intervals were calculated using a 2000 times bootstrap method by randomly 

sampling true labels and prediction probabilities. Mean AUROC with 95% confidence 

intervals were plotted for the top performing internal split test architectures per task, 

top performing internal test architecture for the independent test, and the top performing 

architecture for the independent test (Figure 6A).

The best performing models were selected based on the highest AUROC at the per-slide 

(patient) level. For visualization, activations of 20,000 randomly sampled tiles of the second-

to-the-last layer of the test set were extracted and dimensionally reduced and plotted with 

tSNE for feature visualization. Example tiles were highlighted and sent to pathologists for 

secondary review. Selected whole slide cases from the test set were fed into the trained 

model and per-tile level predictions were aggregated into a heatmap layer to overlay onto the 

original slides for feature visualization and localization.

To correct for multiple testing, we adapted the method used by Kather et al. 2020111, 

and included a list of p-values and false discovery rates (FDR, with Benjamini-Hochberg 

correction) for top performing models at the slide level (Table S7). The p-values were 

obtained from one-sided ttests between the probability values of patients in the positive class 

and the negative class, for each corresponding model and test datasets.

To address the limited sample size for the POLE subtype, we obtained 13 positive POLE 

slides from the NYU Center for Biospecimen Research & Development (CBRD), as well 

as 78 non-POLE slides to control for batch effect. We did not obtain clinical data for NYU 

samples other than EC genomic subtype, and therefore could not test or train with any of the 

CF model architectures. We first tested the X4 architecture trained on TCGA and CPTAC 

exploratory on the NYU POLE positive samples and CPTAC independent samples, labeled 

“POLE + NYU Test”. We then trained new models with TCGA, CPTAC exploratory, and 

all NYU samples, and then applied to the current independent cohort for testing across 4 

Panoptes architectures, labeled “POLE + NYU Train”.
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Antigen Presentation Machary (APM) status models were trained using only CPTAC cohorts 

due to the lack of proteomic data in the TCGA dataset. APM status was derived from a 

proteomic based scoring metric. We therefore tested two modeling methods for the APM 

classifier: (1) training on the exploratory cohort and testing on independent, labeled “APM-

high”, and (2) training on the combined exploratory and independent cohorts and testing on 

the internal split, labeled “APM-high Mixed”.

Transporters score—Determining the most distinct separation of tumors into distinct 

classes along a given scoring axis was completed by Inferred Pathway Activity Score 

(IPAS) (https://doi.org/10.1101/2020.10.19.345629). Pathway activity scores from proteome 

profiles of EC tumors were determined by using a collection of 8,600 pathways and cell 

type signatures from various databases: KEGG 112, Reactome 112,113, HMDB 114, SMPDB 
114,115, Hallmark 116, WikiPathways 117, BioPlanet 118, BioCarta 119, xCell 120, Tabula 

Sapiens 121. Each pathway score was treated as a dimension and the tumors were ranked 

along the axis by increasing scoring value. At each point i of the axis, geometrically 

averaged P values were computed between distributions of individual protein levels in class 

[1,i] and class [i+1,N], (where N is a number of tumors) and determined the minimum of 

the geometrically averaged P value. It is assumed that the minimal value the averaged P 

determines the most distinct separation of given molecular profiles (tumors) along a given 

axis. Mann Whitney Wilcoxon test was used for computing individual P values.

To assess significance of the obtained optimal classes of tumors, 10,000 randomly formed 

tumor classes of the same sizes were generated. For each randomly formed tumor class, 

the combined P values 122,123 and the actual histograms of P values were computed and 

compared to combined P values and P value histograms of the optimal classes. Both the 

number of times combined P values of randomly selected formed tumor classes were less 

than the combined P values of original classes and the number of times individual P values 

of a certain power (eg. P < 10−6) in random classes were less than P values of the same 

power in original classes were obtained. The obtained numbers were divided by the number 

of tests (104), and significance was assessed of the obtained optimal classes 123. Mutation 

enrichment in a specific class (eg. Transporters) was performed by Fisher test.

SRM data batch effect correction—The ICI treated samples are formalin-fixed 

paraffin-embedded specimens which are different to the fresh frozen method used by 

CPTAC. Combat method implemented in the R package ez.combat was used to do the 

batch effect correction with default parameters 87. Peptides with more than 50% NAs were 

removed, and then remaining NAs were set to the minimum values of non-NA numbers. 

After batch effect correction, these values were reset to NAs.

QUANTIFICATION AND STATISTICAL ANALYSIS—Data analysis and visualization 

was done with a diverse set of methods depending on which data modality was analyzed. 

The methods are described in the methods details section. When multiple tests were 

performed p-values were corrected for multiple testing using the Benjamini-Hochberg 

method to control for the false discovery rate.
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HIGHLIGHTS

• APM status can be accurately predicted using a targeted proteomic assay

• MYC activity is a potential biomarker for metformin treatment

• PIK3R1 in-frame indels are associated with upregulated AKT1 

phosphorylation

• CTNNB1 exon 3 hotspot mutations block pS45 induced β-catenin 

degradation
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Figure 1: Proteogenomic landscape of the independent EC cohort
(A) Multi-omic data availability in the independent EC cohort. The main heatmap shows 

each patient per column and the side heatmap (right) shows each enriched normal sample 

per column.

(B) Identified and quantified proteomic features across the exploratory (Exp) and 

independent (Ind) cohorts.
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(C) Oncoplot showing the most frequently mutated genes in the independent cohort 

identified by whole genome sequencing. Each column is a patient. Side table (right) 

compares mutation frequencies per gene for the two CPTAC cohorts and TCGA cohort.

(D) Focal-level copy number variations (CNVs) across the genome (x-axis) versus G-score 

(y-axis), which is the Frequency x Amplitude of the CNV. Significant amplifications are 

shown in red and deletions are shown in blue, with annotated peaks containing known tumor 

drivers.

(E) Prioritization of CNV drivers across the two CPTAC cohorts.

(F) Barplot showing pathways enriched from CNV drivers analysis (E).

(G) Scatter plot of protein level tumor/normal between the two CPTAC cohorts.

(H) Cis/trans effects of somatic mutations (y-axis) on protein expression (x-axis). See also 

Figure S1 and Tables S1 and S2.
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Figure 2: PIK3R1 in-frame indels show induction of activating AKT phosphosites
(A) PTEN, PIK3CA, and PIK3R1 mutations across independent (Ind), exploratory (Exp), 

and TCGA cohorts. P-values derived from Fisher’s exact test.

(B) 3D structure of PI3K complex. PIK3CA protein is colored in green, PIK3R1 protein is 

colored in blue, and location of PIK3R1 in-frame variants is shown in red.

(C-D) Boxplots comparing PIK3R1 mRNA (C) and protein levels (D) between PIK3R1 
variants across the independent (Ind), exploratory (Exp), and TCGA cohorts. P-values 

derived from Student’s t-test
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(E) Survival analysis of TCGA PTEN mutated EC patients harboring PIK3R1 and PIK3CA 
variants. P-values derived from log-rank test.

(F) Boxplots comparing AKT1-pT308 levels between PIK3R1 and PIK3CA variants in the 

independent cohort. P-values derived from Student’s t-test.

(G-H) Boxplots comparing TCGA RPPA data for AKT-pT308 (G) and AKT-pS473 (H) 

levels between PIK3R1 and PIK3CA variants. P-values derived from Student’s t-test.

(I) Western blot for AKT pT308 and pS473 in HEC-151 cells with CRISPR-Cas9 created 

T576 deletion.

(J) Boxplots comparing DepMap EC cell lines’ response to MK-2206. P-values derived from 

Student’s t-test.

(K) Schematic showing consequences of PIK3R1 in-frame variants.

Boxplots: Box portion represents Interquartile range (IQR), midline corresponds to the 

median, and whiskers range from the minimum (bottom) and maximum (top) variability 

outside the first and third quartiles (Q1 and Q3). Outliers are shown as points above 

whiskers. See also Figure S2 and Table S3.
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Figure 3: Selective reaction monitoring (SRM) assay for antigen presentation machinery (APM) 
status
(A) Heatmap of immune subgroups and related pathways derived from ssGSEA pathway 

scores using protein level as input for the independent cohort. Each column corresponds to 

individual samples in the main heatmap and the mean score for each immune subgroup in 

the side (right) panel. Each row represents a pathway.

(B-C) Histograms showing the frequency of correlations between SRM peptides from the 

same genes (B) and SRM peptides with TMT-based protein levels (C) for the independent 

cohort.
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(D-E) Heatmaps showing SRM-based peptide quantitation of JAK-STAT and selected 

APM proteins in the exploratory (D) and independent (E) cohorts. Columns correspond 

to individual samples and rows represent peptides. JAK1 mutations enriched for TMB-H/

APM-L groups indicated by asterisks (* p < 0.05, ** p < 0.01). P-values determined by 

Fisher’s exact test.

(F) ROC curves showing model performances of classifiers using two peptides, PSMB10-

LPFTALGSGQDAALAVLEDR and PSMB9-VSAGEAVVNR.

(G) ROC curves showing model performances of the ORFlog classifier on the independent 

cohort, comparing top N peptides used per model.

See also Figure S3 and Table S4.
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Figure 4: Metformin may target MYC in EC
(A) MYC Targets V2 enrichment plots from pathway analysis comparing metformin-treated 

versus untreated patients with Type2 Diabetes (T2D) in the independent cohort.

(B) MYC Targets V2 enrichment plot from pathway analysis comparing metformin-sensitive 

versus insensitive EC cell lines from DepMap.

(C) Volcano plot of MYC Targets V2 pathway scores (x-axis) versus -log10(FDR) (y-axis) 

for CMAP metformin treatment signatures.

(D) Western blot showing MYC expression in four EC cell lines.
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(E) Dose-response curves of EC cell lines treated with metformin at increasing 

concentrations (x-axis).

(F-G) Survival analysis of TCGA MSI-H (F) and CNV-L (G) tumors with high and low 

MYC activity. (H) Scatter plot of MYC activity (y-axis) versus MYC IHC score (x-axis). 

P-values derived from log-rank test.

(I) Heatmap of all endometrioid tumors in the independent cohort, sorted by MYC activity 

(top panel) and grouped by diabetes and metformin treatment status. Side boxplots (right) 

compare MYC activity (top) and BMI (bottom) across the diabetes/treatment groups. MYC 

IHC scores (third panel from top) are shown from samples with IHC data available. P-values 

derived from Student’s t-test (boxplots) and Spearman correlation (left panel).

Boxplots: Box portion represents Interquartile range (IQR), midline corresponds to the 

median, and whiskers range from the minimum (bottom) and maximum (top) variability 

outside the first and third quartiles (Q1 and Q3). Outliers are shown as points above 

whiskers.

See also Figure S4 and Table S5.
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Figure 5: CTNNB1 hotspot mutations block DKK induced degradation
(A) Mosaic plot showing distribution of CTNNB1 mutations across CNV-L tumors versus 

all other tumors in the independent cohort. P-value determined from Chi-Square Test.

(B) Scatter plot of pathway Normalized Enrichment Scores (NES) comparing CTNNB1 
hotspot mutant versus WT CNV-L tumors at the protein (x-axis) and RNA (y-axis) levels in 

the independent cohort. Points with FDR < 0.01 at both protein and RNA levels are colored 

in red, RNA only are in green, protein only are in blue, and neither are in gray.
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(C) Volcano plot of protein log2 fold change (x-axis) between CTNNB1 hotspot and WT 

CNV-L tumors versus −log10 FDR (y-axis) determined by Student’s T-test. Points with FDR 

< 0.01 and log2 fold change < −0.5 or > 0.5 are shown in blue and red, respectively.

(D) Heatmap showing mRNA, protein, and phosphoprotein values for CTNNB1, LEF1 

protein, MYC activity score, Immune Score, and Transporters Score across CNV-L tumors 

with and without CTNNB1 hotspot mutations. Side panel showing boxplots (right) compares 

mutants versus WT tumors. P-values determined by Wilcoxon Rank Sum Test.

(E) Schematic depicting proposed downstream implications of hotspot mutations in 

CTNNB1.

(F) ROC curves of Lasso regression models predicting CTNNB1 hotspot mutation status 

using exploratory protein data as training and independent protein data as testing. Models 

vary by which samples (all tumors or just CNV-L tumors) and which proteins (all proteins or 

only Wnt- β-catenin pathway proteins) were used.

(G) Venn diagram showing top 10 proteins selected by regression analysis per model.

Boxplots: Box portion represents Interquartile range (IQR), midline corresponds to the 

median, and whiskers range from the minimum (bottom) and maximum (top) variability 

outside the first and third quartiles (Q1 and Q3). Outliers are shown as points above 

whiskers.

See also Figure S5 and Table S6.
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Figure 6: Deep learning models successfully classify molecular features
(A) Barplots showing the mean AUROC per model from internal training data split tests 

(trained on TCGA and exploratory cohorts) and independent tests (tested on independent 

cohort plus NYU cohort for POLE predictions). Bar color is determined by AUROC value 

coming from internal or independent tests, and outlines denote if the top performing model 

architecture comes from the internal or independent test.

(B-C) tSNE plots where each point is a tile, colored by predicted CNV-H score (B) and true 

CNV-H label (C).
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(D) Distribution of chromosome 1q copy number status across all tumors in the independent 

cohort, grouped by genomic and histologic subtypes.

(E) Boxplots of xCell immune scores (y-axis) comparing tumors with 1q gain versus no gain 

(xaxis). P-values determined by Wilcoxon Rank Sum Test.

(F) Volcano plot of differentially expressed glycopeptides in tumors with 1q gain versus 

no gain. X-axis shows log2 fold change and the y-axis shows -log10 FDR, determined by 

Student’s T-test.

(G) Heatmap of PARP1 multi-omic levels in samples with and without 1q gain.

(H) Boxplots of olaparib (PARP-inhibitor) response in DepMap EC cell lines with and 

without PARP1 amplification. P-values determined by Wilcoxon Rank Sum Test.

Boxplots: Box portion represents Interquartile range (IQR), midline corresponds to the 

median, and whiskers range from the minimum (bottom) and maximum (top) variability 

outside the first and third quartiles (Q1 and Q3). Outliers are shown as points above 

whiskers.

See also Figure S6 and Table S7.
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Figure 7: Multi-omic and glycoproteomic NMF clustering separates samples into 4 clusters
(A) Heatmap of all tumors in the independent cohort, separated by multi-omic NMF 

clusters. Panels show histologic subtypes, histologic grade, genomic subtypes, APM class, 

transporter status, mutation status of selected genes, 1q copy number status, immune score, 

and corresponding glyco-NMF cluster assignment.

(B) Heatmap of mean ssGSEA pathway enrichments per cluster.

(C) Heatmap of glycopeptide levels for all independent cohort tumors, separated by glyco-

peptide derived NMF clusters. Side panel (left) annotates types of glycans.
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(D) Dot plots of glyco-enzyme levels between tumor versus normal across glyco-clusters, 

separated by glyco-enzyme function: Precursor (left), Trimming (middle), and Capping 

(right). Red denotes positive log2 fold change (higher in tumor) while blue indicates 

negative log2 fold change (higher in normal). Size of dots is determined by -log10 p-value, 

which comes from Student’s T-test.

(E) Dot plot comparing tumor and normal samples’ glycosylated kinases in the PI3K-AKT 

pathway by glycans (x-axis) and corresponding peptide (y-axis). Red denotes positive log2 

fold change (higher in tumor) while blue indicates negative log2 fold change (higher in 

normal). Size of dots is determined by -log10 p-value, which comes from Student’s T-test.

See also Figure S7.
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Antibodies

anti–phospho-AKT (S473) Cell 
Signaling

Catalog: 9271

anti–phospho-AKT (T308) Cell 
Signaling

Catalog: 9275

Anti- GAPDH Sigma Catalog: G9545

anti-myc Cell 
Signaling

Catalog: E5Q6W

rabbit anti-AKT Cell 
Signaling

Catalog: 9272

anti–β-actin Sigma-
Aldrich

Catalog: A5441

HRP-conjugated anti-rabbit antibody Cell 
Signaling

Catalog: 7074S

Biological Samples

Primary tumor and normal tissue samples This paper N/A

Patient-derived xenograft tissue samples Washington 
University in 
St. Louis

Dou et al.9

Chemicals, peptides, and recombinant proteins

4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid Sigma Catalog: H3375

Ammonium bicarbonate Sigma Catalog: 9830

Ammonium formate Sigma Catalog: 9735

Aprotinin Sigma Catalog: A6103

Calcium chloride Sigma Catalog: C1016

Dithiothreitol Thermo 
Scientific

Catalog: 20291

Ethylenediaminetetraacetic acid Sigma Catalog: E7889

Fetal Bovine Serum Sigma Catalog: F7524

Formic acid Sigma Catalog: 33015

Iodoacetamide Thermo 
Scientific

Catalog: A3221

Iron (III) chloride Sigma Catalog: 451649

Leupeptin Roche Catalog: 11017101001

Lipofectamine 2000 Invitrogen Catalog: 52785

Lysyl Endopeptidase Wako 
Chemicals

Catalog: 129–02541

Metformin Sigma Catalog: PHR 1084

MOPS buffer Invitrogen Catalog: NP0001

Ni-NTA Superflow Agarose Beads Qiagen Catalog: 30410

OptiMem Media ThermoFisher Catalog: 31985062

Phenylmethylsulfonyl fluoride Sigma Catalog: 93482

Phosphatase Inhibitor Cocktail 2 Sigma Catalog: P5726
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Phosphatase Inhibitor Cocktail 3 Sigma Catalog: P0044

Polyvinylidene fluoride membrane (PVDF) Invitrogen Catalog: IB401002

Sequencing grade modified trypsin Promega Catalog: V517

Sodium butyrate Sigma Catalog: 303410

Sodium chloride Sigma Catalog: S7653

Sodium fluoride Sigma Catalog: S7920

Urea Sigma Catalog: U0631

Acetonitrile, Optima LC/MS Fisher 
Chemical

Catalog: A955–4

Water, Optima LC/MS Fisher 
Chemical

Catalog: W6–4

Trifluoroacetic acid Sigma Catalog: 302031

Triethylammonium acetate buffer Sigma Catalog: 90358

MEM Corning Catalog: 10–010-CV

Critical Commercial Assays

Beta-Galactosidase Assay System Promega Catalog: P2000

BCA Protein Assay Kit Thermo 
Scientific 
Pierce

Catalog: A53225

Cell Titer 96 Assay Reagents Promega Catalog: G3580

Chemiluminescence PICO Assay Kit Thermo 
Fisher

Catalog: 34578

Luciferase Assay System Promega Catalog: E1500

PTMScan Acetyl-Lysine Motif [Ac-K] Kit Cell 
Signaling

Catalog: 13416

Reversed-phase tC18 SepPak Waters Catalog: WAT054925

Tandem mass tags - 11plex Thermo 
Scientific

Catalog: A34808

Taqman Assay - MYC Fisher 
Scientific

Hs00153408_m1

Taqman Assay - NOP2 Fisher 
Scientific

Hs00099660_m1

Taqman Assay - NOP16 Fisher 
Scientific

Hs00212612 _m1

Taqman Assay - NOLC1 Fisher 
Scientific

Hs01102319_g1

Taqman Assay - WDR74 Fisher 
Scientific

Hs00276510_m1

Taqman Assay - PES1 Fisher 
Scientific

Hs00362795_g1

Taqman Assay - IMP4 Fisher 
Scientific

Hs00369187_m1

Taqman Assay - GRWD1 Fisher 
Scientific

Hs00230365_m1

Taqman Assay - TBRG4 Fisher 
Scientific

Hs01056260_g1
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Taqman Universal Master Mix Applied 
Biosystems

Catalog: 444038

Oasis MAX 1 cc Vac Cartridge, 10 mg Sorbent per Cartridge Waters Catalog: 186004649

Mycoalert Mycoplasma Detection Kit Lonza Catalog: LT07–318

MycoStrip Test Kit Invivogen Catalog: Rep-mys-10

MycoPlasma RT-PCR Test Kit Venor GEM MP00025

SpCas9 nuclease 2NLS Synthego SpCas9 2NLS Nuclease (300 pmol)

CRISPRevolution sgRNA EZ kit Synthego Customized

Neon Transfection System 10 μL Kit ThermoFisher Catalog: MPK1025

Neon Transfection System ThermoFisher Catalog: MPK5000

Terra PCR Direct Red Dye Premix TaKaRa Catalog: 639270

Mini-Protein TGX Precast gel Bio-Rad Catalog: 4561086

Deposited data

CPTAC Raw Genomic data This paper 
and Dou et 
al.9

dbGaP phs001287

CPTAC Raw Proteomic data This paper 
and Dou et 
al.9

PDC000125, PDC000126, PDC000226

CPTAC and TCGA Processed data tables This paper, 
Dou et al.9, 
and The 
Cancer 
Genome 
Atlas et al.8

http://www.linkedomics.org/

CPTAC Image data This paper 
and Dou et 
al.9

10.7937/k9/tcia.2018.3r3juisw https://
portal.imaging.datacommons.cancer.gov/
explore/filters/?
collection_id=cptac_ucec

TCGA Raw Genomic data The Cancer 
Genome 
Atlas et al.8

dbGaP phs000178

TCGA Image data The Cancer 
Genome 
Atlas et al.8

10.7937/k9/tcia.2016.gkj0zwac https://
portal.imaging.datacommons.cancer.gov/
explore/filters/?collection_id=tcga_ucec

CCLE DepMap Corsello et 
al.17

https://depmap.org/portal/

Experimental models: Cell lines

HEC151 UCEC cell line JCRB cell 
bank

JCRB1122

HEC251 UCEC cell line JCRB cell 
bank

JCRB1141

HEC265 UCEC cell line JCRB cell 
bank

JCRB1142

HEC108 UCEC cell line JCRB cell 
bank

JCRB1123

HEC1A UCEC cell line American 
Type Culture 
Collection

HTB-112

Oligonucleotides
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CRISPRevolution sgRNA: 5’GGUCUCUCGUCUUUCUCAGC This paper, 
Synthego

N/A

Homology-directed repair (HDR) donor ssODN: 
5’caattattcatgtataggattccatttcaaatac ttacATCAAGTATTGGTCTCTtTTcC 
TgAGCTGGATAAGGTCTGGTTTAATGCTGTTCATACGTTTGTCAATTTCTCGATACT

This paper, 
Sigma-
Aldrich

N/A

PCR primers for PIK3R1 edited alleles: 5’CCAGCTcAGgAAaAGACC (PIK3R1-T576del-
F2) and 5’gcaatcaccaattattcatg (PIK3R1-R4)

This paper, 
Sigma-
Aldrich

N/A

Sanger sequencing primers for PIK3R1 edited alleles: 5’AGAAGACTTGAAGAAGCAGG 
(PIK3R1–1) and 5’aactcatcctgaattgtagc (PIK3R1–2)

This paper, 
Sigma-
Aldrich

N/A

Software and Algorithms

Ascore (v1.0.6858) Beausoleil et 
al.54

https://github.com/PNNL-Comp-Mass-
Spec/AScore/releases

BlackSheep Blumenberg 
et al.55

https://github.com/ruggleslab/
blackSheep

Bowtie2 (v2.3.3) Langmead et 
al.56

http://bowtie-bio.sourceforge.net/
bowtie2/index.shtml

BWA (v0.7.17-r1188) Li et al.57 http://bio-bwa.sourceforge.net/

CIRI (v2.0.6) Gao et al.58 https://sourceforge.net/projects/ciri/

cptac (Python package) Lindgren et 
al.59

https://paynelab.github.io/cptac/

eriscript (v0.5.5) Benelli et 
al.60

https://sites.google.com/site/
bioericscript/

GPQuest (v2.1) Toghi Eshghi 
et al.61

https://github.com/huizhanglabjhu/
GPQuest

GSVA (v1.30.0) Hänzelmann 
et al.62

https://bioconductor.org/packages/
release/bioc/html/GSVA.html

INTEGRATE v(0.2.6) Zhang et al.63 https://sourceforge.net/p/integrate-
fusion/wiki/Home/

LinkedOmics Vasaikar et 
al.64

http://www.linkedomics.org

MASIC Monroe et 
al.65

https://github.com/PNNL-Comp-Mass-
Spec/MASIC/releases

metaX Wen et al.66 https://github.com/wenbostar/metaX

MS-GF+ Kim et al.67 https://github.com/MSGFPlus/msgfplus/
releases

MSIsensor (v0.2) Niu et al.68 https://github.com/ding-lab/msisensor

MS-PyCloud Chen et al.69 https://bitbucket.org/mschnau1/
mspycloud/src/main/

MuSiC (v0.4) Dees et al.70 http://gmt.genome.wustl.edu/packages/
genome-music/index.html

Mutect (v1.1.7) Cibulskis et 
al.71

https://software.broadinstitute.org/
cancer/cga/mutect

mzRefinery Gibbons et 
al.72

https://omics.pnl.gov/software/
mzrefinery

Optitype Szolek et al.73 http://github.com/FRED-2/OptiType

PepQuery Wen et al.74 http://pepquery.org
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REAGENT or RESOURCE SOURCE IDENTIFIER

Maftools (2.10.0) Mayakonda 
et al.75

https://github.com/PoisonAlien/maftools

Pindel (v0.2.5) Ye et al.76 http://gmt.genome.wustl.edu/packages/
pindel/

PROGENy Schubert et 
al.77

https://bioconductor.org/packages/
release/bioc/html/progeny.html

pyQUILTS (v1.0) Ruggles et 
al.78

http://quilts.fenyolab.org

RSEM (v1.3.1) Li et al.79 https://deweylab.github.io/RSEM/

SigProfilerMatrixGeneratorR (v1.0) Tan et al.80 https://github.com/AlexandrovLab/
SigProfilerMatrixGeneratorR

Skyline (v 21.2) MacLean et 
al.81

https://skyline.ms/project/home/
software/Skyline/begin.view

STAR-Fusion (v1.6.0) Haas et al.82 https://github.com/STAR-Fusion/STAR-
Fusion/wiki

Strelka (v2) Saunders et 
al.83

https://github.com/Illumina/strelka

Varscan (v2.3.8) Koboldt et 
al84

http://varscan.sourceforge.net/

XGboost (v0.81) Chen et al.85 https://xgboost.readthedocs.io/en/latest/

Caret (v6.0.88) Kuhn et al.86 https://topepo.github.io/caret/

ez.combat
Johnson et 
al.87

https://github.com/TKoscik/ez.combat

Other

CPTAC Data Portal Edwards et 
al.88

https://cptac-data-portal.georgetown.edu/
cptacPublic

CTdatabase Chen et al.89 http://www.cta.lncc.br

dbGaP Tryka et al.90 https://www.ncbi.nlm.nih.gov/gap/

Genomic Data Commons Grossman et 
al.91

https://gdc.cancer.gov

RefSeq (downloaded from UCSC Genome Browser 2018/06/29) O’Leary et 
al.92

https://www.ncbi.nlm.nih.gov/refseq/; 
https://genome.ucsc.edu/cgibin/
hgTables; RRID:SCR_003496

UniProt (r2017.06, r2019.01) UniProt 
Consortium93

https://www.uniprot.org/; RRID: 
SCR_002380

BioRender BioRender https://www.biorender.com/
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