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Abstract

In this work, we report the set-up and results of the Liver Tumor Segmentation Benchmark (LiTS), 

which was organized in conjunction with the IEEE International Symposium on Biomedical 

Imaging (ISBI) 2017 and the International Conferences on Medical Image Computing and 

Computer-Assisted Intervention (MICCAI) 2017 and 2018. The image dataset is diverse and 

contains primary and secondary tumors with varied sizes and appearances with various lesion-to-

background levels (hyper−/hypo-dense), created in collaboration with seven hospitals and research 

institutions. Seventy-five submitted liver and liver tumor segmentation algorithms were trained 

on a set of 131 computed tomography (CT) volumes and were tested on 70 unseen test images 

acquired from different patients. We found that not a single algorithm performed best for both liver 

and liver tumors in the three events. The best liver segmentation algorithm achieved a Dice score 

of 0.963, whereas, for tumor segmentation, the best algorithms achieved Dices scores of 0.674 

(ISBI 2017), 0.702 (MICCAI 2017), and 0.739 (MICCAI 2018). Retrospectively, we performed 

additional analysis on liver tumor detection and revealed that not all top-performing segmentation 

algorithms worked well for tumor detection. The best liver tumor detection method achieved 

a lesion-wise recall of 0.458 (ISBI 2017), 0.515 (MICCAI 2017), and 0.554 (MICCAI 2018), 

indicating the need for further research. LiTS remains an active benchmark and resource for 

research, e.g., contributing the liver-related segmentation tasks in http://medicaldecathlon.com/. 

In addition, both data and online evaluation are accessible via https://competitions.codalab.org/

competitions/17094.
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1. Introduction

Background.

The liver is the largest solid organ in the human body and plays an essential role in 

metabolism and digestion. Worldwide, primary liver cancer is the second most common fatal 

cancer (Stewart and Wild, 2014). Computed tomography (CT) is a widely used imaging tool 

to assess liver morphology, texture, and focal lesions (Hann et al., 2000). Anomalies in the 

liver are essential biomarkers for initial disease diagnosis and assessment in both primary 

and secondary hepatic tumor disease (Heimann et al., 2009). The liver is a site for primary 

tumors that start in the liver. In addition, cancer originating from other abdominal organs, 

such as the colon, rectum, and pancreas, and distant organs, such as the breast and lung, 

often metastasize to the liver during disease. Therefore, the liver and its lesions are routinely 

analyzed for comprehensive tumor staging. The standard Response Evaluation Criteria in 

Solid Tumor (RECIST) or modified RECIST protocols require measuring the diameter of 

the largest target lesion (Eisenhauer et al., 2009). Hence, accurate and precise segmentation 

of focal lesions is required for cancer diagnosis, treatment planning, and monitoring of the 

treatment response. Specifically, localizing the tumor lesions in a given image scan is a 
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prerequisite for many treatment options such as thermal percutaneous ablation (Shiina et al., 

2018), radiotherapy, surgical resection (Albain et al., 2009) and arterial embolization (Virdis 

et al., 2019). Like many other medical imaging applications, manual delineation of the target 

lesion in 3D CT scans is time-consuming, poorly reproducible (Todorov et al., 2020) and 

segmentation shows operator-dependent results.

Technical challenges.

Fully automated segmentation of the liver and its lesions remain challenging in many 

aspects. First, the variations in the lesion-to-background contrast (Moghbel et al., 2017) 

can be caused by: (a) varied contrast agents, (b) variations in contrast enhancement due 

to different injection timing, and (c) different acquisition parameters (e.g., resolution, mAs 

and kVp exposure, reconstruction kernels). Second, the coexistence of different types of 

focal lesions (benign vs. malignant and tumor sub-types) with varying image appearances 

presents an additional challenge for automated lesion segmentation. Third, the liver tissue 

background signal can vary substantially in the presence of chronic liver disease, which is a 

common precursor of liver cancer. It is observed that many algorithms struggle with disease-

specific variability, including the differences in size, shape, and the number of lesions, as 

well as with modifications in shape and appearance to the liver organ itself induced by 

treatment (Moghbel et al., 2017). Examples of differences in liver and tumor appearance in 

two patients are depicted in Fig. 1, demonstrating the challenges of generalizing to unseen 

test cases with varying lesions.

Contributions.

In order to evaluate the state-of-the-art methods for automated liver and liver tumor 

segmentation, we organized the Liver Tumor Segmentation Challenge (LiTS) in three 

events: (1) in conjunction with the IEEE International Symposium on Biomedical Imaging 

(ISBI) 2017, (2) with MICCAI 2017 and (3) as a dedicated challenge task on liver and 

liver tumor segmentation in the Medical Segmentation Decathlon 2018 in MICCAI 2018 

(Antonelli et al., 2022).

In this paper, we describe the three key contributions to fully automated liver and liver 

tumor segmentation. First, we generate a new public multi-center dataset of 201 abdominal 

CT Volumes and the reference segmentations of liver and liver tumors. Second, we present 

the set-up and the summary of our LiTS benchmarks in three grand challenges. Third, 

we review, evaluate, rank, and analyze the resulting state-of-the-art algorithms and results. 

The paper is structured as follows: Section 2 reviews existing public datasets and state-of-

the-art automated liver and liver tumors segmentation. Next, Section 3 describes the LiTS 

challenge setup, the released multi-center datasets, and the evaluation process. Section 4 

reports results, analyzes the liver tumor detection task, showcases critical cases in the 

LiTS Challenge results, and discusses the technical trends and challenges in liver tumor 

segmentation. Section 5 discusses the limitations, summarizes this work, and points to future 

work.
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2. Prior work: Datasets & approaches

2.1. Publicly available liver and liver tumor datasets

Compared to other organs, available liver datasets offer either a relatively small number 

of images and reference segmentation or provide no reference segmentation (see Table 1). 

The first grand segmentation challenge - SLIVER07 was held in MICCAI 2007 (Heimann 

et al., 2009), including the 30 CT liver images for automated segmentation. In MICCAI 

2008, the LTSC’08 segmentation challenge offered 30 CT volumes with a focus on tumor 

segmentation (Deng and Du, 2008). The ImageCLEF 2015 liver CT reporting benchmark1 

made 50 volumes available for computer-aided structured reporting instead of segmentation. 

The VISCERAL (Jimenez-del Toro et al., 2016) challenge provided 60 scans per two 

modalities (MRI and CT) for anatomical structure segmentation and landmark detection. 

The recent CHAOS challenge (Kavur et al., 2021) provide 40 CT volumes and 120 

MRI volumes for healthy abdominal organ segmentation. However, none of these datasets 

represents well-defined cohorts of patients with lesions, and segmentation of the liver and its 

lesions are absent.

2.2. Approaches for liver and liver tumor segmentation

Before 2016, most automated liver and tumor segmentation methods used traditional 

machine learning methods. However, since 2016 and the first related publications at 

MICCAI (Christ et al., 2016), deep learning methods have gradually become a methodology 

of choice. The following section provides an overview of published automated liver and liver 

tumor segmentation methods.

2.2.1. Liver segmentation—Published work on liver segmentation methods can be 

grouped into three categories based on: (1) prior shape and geometric knowledge, (2) 

intensity distribution and spatial context, and (3) deep learning.

Methods based on shape and geometric prior knowledge.: Over the last two decades, 

statistical shape models (SSMs) (Cootes et al., 1995) have been used for automated liver 

segmentation tasks. However, deformation limitations prevent SSMs from capturing the 

high variability of the liver shapes. To overcome this issue, SSM approaches often rely 

on additional steps to obtain a finer segmentation contour. Therefore SSMs followed by 

a deformable model performing free form deformation became a valuable method for 

liver segmentation (Heimann et al., 2006; Kainmüller et al., 2007; Zhang et al., 2010; 

Tomoshige et al., 2014; Wang et al., 2015). Moreover, variations and further enhancement 

of SSMs such as 3D-SSM based on an intensity profiled appearance model (Lamecker 

et al., 2004), incorporating non-rigid template matching (Saddi et al., 2007), initialization 

of SSMs utilizing an evolutionary algorithm (Heimann et al., 2007), hierarchical SSMs 

(Ling et al., 2008), and deformable SSMs (Zhang et al., 2010) had been proposed to solve 

liver segmentation tasks automatically. SSMs-based methods showed the best results in 

SLIVER07, the first grand challenge held in MICCAI 2007 (Heimann et al., 2009; Dawant 

et al., 2007).

1 https://www.imageclef.org/2015/liver 
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Methods based on intensity distribution and spatial context.: A probabilistic atlas (PA) 

is an anatomical atlas with parameters that are learned from a training dataset. Park et al. 

proposed the first PA utilizing 32 abdominal CT series for registration based on mutual 

information and thin-plate splines as warping transformations (Park et al., 2003) and a 

Markov random field (MRF) (Park et al., 2003) for segmentation. Further proposed atlas-

based methods differ in their computation of the PA and how the PA is incorporated into the 

segmentation task. Furthermore, PA can incorporate relations between adjacent abdominal 

structures to define an anatomical structure surrounding the liver (Zhou et al., 2006). Multi-

atlas methods improved liver segmentation results by using non-rigid registration with a 

B-spline transformation model (Slagmolen et al., 2007), dynamic atlas selection and label 

fusion (Xu et al., 2015), or liver and non-liver voxel classification based on k-Nearest 

Neighbors (van Rikxoort et al., 2007).

Graph cut methods offer an efficient way to binary segmentation problems, initialized by 

adaptive thresholding (Massoptier and Casciaro, 2007) and supervoxel (Wu et al., 2016).

Methods based on deep learning.: In contrast to the methods above, deep learning, 

especially convolutional neural networks (CNN), is a data-driven method that can be 

optimized end-to-end without hand-craft feature engineering (Litjens et al., 2017). The 

U-shape CNN architecture (Ronneberger et al., 2015) and its variants (Milletari et al., 2016; 

Isensee et al., 2020; Li et al., 2018b) are widely used for biomedical image segmentation and 

have already proven their efficiency and robustness in a wide range of segmentation tasks. 

Top-performing methods share the commonality of multi-stage processes, beginning with 

a 3D CNN for segmentation, and post-process the resulting probability maps with Markov 

random field (Dou et al., 2016). Many early deep learning algorithms for liver segmentation 

combine neural networks with dedicated post-processing routines: Christ et al. (2016) uses 

3D fully connected neural networks combined with conditional random fields, Hu et al. 

(2016) rely on a 3D CNN followed by a surface model. In contrast, Lu et al. (2017) use a 

CNN regularized by a subsequent graph-cut segmentation.

2.2.2. Liver tumor segmentation—Compared to the liver, its lesions feature a more 

comprehensive range of shape, size, and contrast. Liver tumors can be found in almost any 

location, often with ambiguous boundaries. Differences in the uptake of contrast agents may 

introduce additional variability. Therefore liver tumor segmentation is considered to be the 

more challenging task. Published methods of liver tumor segmentation can be categorized 

into (1) thresholding and spatial regularization, (2) local features and learning algorithms, 

and (3) deep learning.

Methods with thresholding and spatial regularization.: Based on the assumption that 

gray level values of tumor areas differ from pixels/voxels belonging to regions outside 

the tumor, thresholding is a simple yet effective tool to automatically separate tumor 

from liver and background, first shown by Soler et al. (2001). Since then the threshold 

have set by histogram analysis (Ciecholewski and Ogiela, 2007), maximum variance 

between classes (Nugroho et al., 2008) and iterative algorithm (Abdel-massieh et al., 

2010) to improve tumor segmentation results. Spatial regulation techniques rely on (prior) 

information about the image or morphologies, e.g., tumor size, shape, surface, or spatial 
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information. This knowledge is used to introduce constraints in the form of regularization 

or penalization. Adaptive thresholding methods can be combined with model-based 

morphological processing for heterogeneous lesion segmentation (Moltz et al., 2008, 2009). 

Active contour (Kass et al., 1988) based tumor segmentation relies on shape and surface 

information and utilize probabilistic models (Ben-Dan and Shenhav, 2008) or histogram 

analysis (Linguraru et al., 2012) to create segmentation maps automatically. Level set 

(Osher and Sethian, 1988) methods allow numerical computations of tumor shapes without 

parametrization. Level set approaches for liver tumor segmentation are combined with 

supervised pixel/voxel classification in 2D (Smeets et al., 2008) and 3D (Jiménez Carretero 

et al., 2011).

Methods using local features and learning algorithms.: Clustering methods include k-

means (Massoptier and Casciaro, 2008) and fuzzy c-means clustering with segmentation 

refinement using deformable models (Häme, 2008). Among supervised classification 

methods are a fuzzy classification based level set approach (Smeets et al., 2008), support 

vector machines in combination with a texture based deformable surface model for 

segmentation refinement (Vorontsov et al., 2014), AdaBoost trained on texture features 

(Shimizu et al., 2008) and image intensity profiles (Li et al., 2006), logistic regression 

(Wen et al., 2009), and random forests recursively classifying and decomposing supervoxels 

(Conze et al., 2017).

Methods based on deep learning.: Before LiTS, deep learning methods have been rarely 

used for liver tumor segmentation tasks. Christ et al. (2016) was the first to use 3D U-Net 

for liver and liver tumor segmentation, proposing a cascaded segmentation strategy, together 

with a 3D conditional random field refinement. Many of the subsequent deep learning 

approaches were developed and tested in conjunction with the LiTS dataset.

Benefiting from the availability of the LiTS public dataset, many new deep learning 

solutions on liver and liver segmentation were proposed. U-Net-based architectures are 

extensively used and modified to improve segmentation performance. For example, the 

nn-UNet (Isensee et al., 2020) first presented in LiTS at MICCAI 2018, was shown to be one 

of the most top-performing methods in 3D image segmentation tasks. The related works will 

be discussed in the results section.

3. Methods

3.1. Challenge setup

The first LiTS benchmark was organized in Melbourne, Australia, on April 18, 2017, 

in a workshop held at the IEEE ISBI 2017 conference. During Winter 2016/2017, 

participants were solicited through private emails, public email lists, social media, and 

the IEEE ISBI workshop announcements. Participants were requested to register at 

our online benchmarking system hosted on CodaLab and could download annotated 

training data and unannotated test data. The online benchmarking platform automatically 

computed performance scores. They were asked to submit a four-page summary of their 

algorithm after successful submissions to the CodaLab platform. Following the successful 

submission process at ISBI 2017, the second LiTS benchmark was held on September 
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14, 2017, in Quebec City, Canada, as a MICCAI workshop. The third edition of LiTS 

was a part of the Medical Segmentation Decathlon at MICCAI 2018 (available at http://

medicaldecathlon.com/).

At ISBI 2017, five out of seventeen participating teams presented their methods at the 

workshop. At MICCAI 2017, the LiTS challenge introduced a new benchmark task — liver 

segmentation. Participants registered a new CodaLab benchmark and were asked to describe 

their algorithm after the submission deadline, resulting in 26 teams. The training and test 

data for the benchmark were identical to the ISBI benchmark. The workshop at the MICCAI 

2017 was organized similarly to the ISBI edition. At MICCAI 2018, LiTS was a part of a 

medical image segmentation decathlon organized by King’s College London in conjunction 

with eleven partnerships for data donation, challenge design, and administration. The LiTS 

benchmark dataset described in this paper constitutes the decathlon’s liver and liver lesion 

segmentation tasks. However, the overall challenge also required the participants to address 

nine other tasks, including brain tumor, heart, hippocampus, lung, pancreas, prostate, 

hepatic vessel, spleen, and colon segmentation. To this end, algorithms were not necessarily 

optimized only for liver CT segmentation.

3.2. Dataset

Training and test cases both represented abdomen CT images. The data is licensed as CC 

BY-NC-SA. Only the organizers from TUM have access to the labels of test images. The 

participants could download annotated training data from the LiTS Challenge website.2

Contributors.—The image data for the LiTS challenge are collected from seven clinical 

sites all over the world, including (a) Rechts der Isar Hospital, the Technical University 

of Munich in Germany, (b) Radboud University Medical Center, the Netherlands, (c) 

Polytechnique Montréal and CHUM Research Center in Canada, (d) Sheba Medical Center 

in Israel, (e) the Hebrew University of Jerusalem in Israel, (f) Hadassah University Medical 

Center in Israel, and (g) IRCAD in France. The distribution of the number of scans per 

institution is described in Table 2. The LiTS benchmark dataset contains 201 computed 

tomography images of the abdomen, of which 194 CT scans contain lesions. All data 

are anonymized, and the images have been reviewed visually to preclude the presence of 

personal identifiers. The only processing applied to the images is a transformation into 

a unified NIFTY format using NiBabel in Python.3 All parties agreed to make the data 

publicly available; ethics approval was not required.

Data diversity.—The studied cohort covers diverse types of liver tumor diseases, including 

primary tumor disease (such as hepatocellular carcinoma and cholangiocarcinoma) and 

secondary liver tumors (such as metastases from colorectal, breast and lung primary 

cancers). The tumors had varying lesion-to-background ratios (hyper- or hypo-dense). 

The images represented a mixture of pre- and post-therapy abdominal CT scans and 

were acquired with different CT scanners and acquisition protocols, including imaging 

artifacts (e.g., metal artifacts) commonly found in real-world clinical data. Therefore, it was 

2 www.lits-challenge.com 
3 https://nipy.org/nibabel/ 
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considered to be very diverse concerning resolution and image quality. The in-plane image 

resolution ranges from 0.56 mm to 1.0 mm, and 0.45 mm to 6.0 mm in slice thickness. 

Also, the number of axial slices ranges from 42 to 1026. The number of tumors varies 

between 0 and 12. The size of the tumors varies between 38 mm3 and 1231 mm3. The 

test set shows a higher number of tumor occurrences compared to the training set. The 

statistical test (p-value = 0.6) shows that the liver volumes in the training and test sets do 

not differ significantly. The average tumor HU value is 65 and 59 in the train and test 

sets, respectively. The LiTS data statistics are summarized in Table 3. The training and test 

split is with a ratio of 2:1 and the training and test sets were similar in center distribution. 

Generalizability to unseen centers has, hence, not been tested in LiTS.

Annotation protocol.—The image datasets were annotated manually using the following 

strategy: A radiologist with > 3 years of experience in oncologic imaging manually 

labeled the datasets slice-wise using the ITK-SNAP (Yushkevich et al., 2006) software 

and assigning one of the labels ‘Tumor’ or ‘Healthy Liver’. Here, the “Tumor” label 

included any neoplastic lesion irrespective of origin (i.e. both primary liver tumors and 

metastatic lesions). Any part of the image not assigned one of the aforementioned labels was 

considered ‘Background’. The segmentations were verified by three further readers blinded 

to the initial segmentation, with the most senior reader serving as tie-breaker in cases of 

labeling conflicts. Those scans with very small and uncertain lesion-like structures were 

omitted in the annotation.

3.3. Evaluation

3.3.1. Ranking strategy—The main objective of LiTS was to benchmark segmentation 

algorithms. We assessed the segmentation performance of the LiTS submissions considering 

three aspects: (a) volumetric overlap, (b) surface distance, and (c) volume similarity. 

All the values of these metrics are released to the participating teams. Considering that 

the volumetric overlap is our primary interest in liver and liver tumor segmentation, 

for simplicity, we only use the Dice score to rank the submissions at ISBI-2017 and 

MICCAI-2017. However, the exact choice of evaluation metric does sometimes affect the 

ranking results, as different metrics are sensitive to different types of segmentation errors. 

Hence, we provide a post-challenge ranking, considering three properties by summing up 

three ranking scores and re-ranking by the final scores. The evaluation codes for all metrics 

can be accessed in Github.4

3.3.2. Statistical tests—To compare the submissions from two teams in a per case 
manner, we used Wilcoxon signed-rank test (Rey and Neuhäuser, 2011). To compare the 

distributions of submissions from two years, we used the Mann–Whitney U Test (McKnight 

and Najab, 2010) (unpaired) for the two groups.

3.3.3. Segmentation metrics—Dice score. The Dice score evaluates the degree of 

overlap between the predicted and reference segmentation masks. For example, given two 

binary masks A and B, it is formulated as:

4 https://github.com/PatrickChrist/lits-challenge-scoring 
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Dice(A, B) = 2 ∣ A ∩ B ∣
∣ A ∣ + ∣ B ∣ (1)

The Dice score is applied per case and then averaged over all cases consistently for three 

benchmarks. This way, the Dice score applies a higher penalty to prediction errors in cases 

with fewer actual lesions.

Average symmetric surface distance.: Surface distance metrics are correlated measures of 

the distance between the surfaces of a reference and the predicted region. Let S(A) denote 

the set of surface voxels of A. Then, the shortest distance of an arbitrary voxel v to S(A) is 

defined as:

d(v, S(A)) = min
sA ∈ S(A)

‖v − sA‖, (2)

where ‖ . ‖ denotes the Euclidean distance. The average symmetric surface distance (ASD) is 

then given by:

ASD(A, B) = 1
∣ S(A) ∣ + ∣ S(B) ∣ ∑

sA ∈ S(A)
d(sA, S(B)) + ∑

sB ∈ S(B)
d(sB, S(A)) . (3)

Maximum symmetric surface distance.: The maximum symmetric surface distance 

(MSSD), also known as the Symmetric Hausdorff Distance, is similar to ASD except that 

the maximum distance is taken instead of the average:

MSSD(A, B) = max max
sA ∈ S(A)

d(sA, S(B)), max
sB ∈ S(B)

d(sB, S(A)) . (4)

Relative volume difference.: The relative volume difference (RVD) directly measures the 

volume difference without considering the overlap between reference A and the prediction 

B.

RV D(A, B) = ∣ B ∣ − ∣ A ∣
∣ A ∣ . (5)

For the other evaluation metrics, such as tumor burden estimation and the corresponding 

rankings, please check Appendix.

3.3.4. Detection metrics—Considering the clinical relevance of lesion detection, we 

introduce three detection metrics in the additional analysis. The metrics are calculated 

globally to avoid potential issues when the patient has no tumors. There must be a known 

correspondence between predicted and reference lesions to evaluate the lesion-wise metrics. 

Since lesions are all defined as a single binary map, this correspondence must be determined 

between the prediction and reference masks’ connected components. Components may not 
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necessarily have a one-to-one correspondence between the two masks. The details of the 

correspondence algorithm are presented in Appendix C.

Individual lesions are defined as 3D connected components within an image. A lesion is 

considered detected if the predicted lesion has sufficient overlap with its corresponding 

reference lesion, measured as the intersection over the union of their respective segmentation 

masks. It allows for a count of true positive, false positive, and false-negative detection, from 

which we compute the precision and recall of lesion detection. The metrics are defined as 

follows:

Individual lesions are defined as 3D connected components within an image. A lesion is 

considered detected if the predicted lesion has sufficient overlap with its corresponding 

reference lesion, measured as the intersection over the union of their respective segmentation 

masks. It allows for a count of true positive, false positive, and false-negative detection, from 

which we compute the precision and recall of lesion detection. The metrics are defined as 

follows:

IoU = ∣ A ∩ B ∣
∣ A ∪ B ∣ . (6)

Precision.: It relates the number of true positives (TP) to false positives (FP), also known as 

positive predictive value:

precision = TP
TP + FP . (7)

Recall.: It relates the number of true positives (TP) to false negatives (FN), also known as 

sensitivity or true positive rate:

recall = TP
TP + FN . (8)

F1 score.: It measures the harmonic mean of precision and recall:

F1 = 2
precision−1 + recall−1 . (9)

3.3.5. Participating policy and online evaluation platform—The participants were 

allowed to submit three times per day in the test stage during the challenge week. Members 

of the organizers’ groups could participate but were not eligible for awards. The awards 

were given to the top three teams for each task. The top three performing methods gave 

10-min presentations and were announced publicly. For a fair comparison, the participating 

teams were only allowed to use the released training data to optimize their methods. All 

participants were invited to be co-authors of the manuscript summarizing the challenge.
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A central element of LiTS was – and remains to be – its online evaluation tool hosted 

by CodaLab. On Codalab, participants could download annotated training and “blinded” 

test data and upload their segmentation for the test cases. The system automatically 

evaluated the uploaded segmentation maps’ performance and made the overall performance 

available to the participants. Average scores for the different liver and lesion segmentation 

tasks and tumor burden estimation were also reported online on a leaderboard. Reference 

segmentation files for the LiTS test data were hosted on the Codalab but not accessible 

to participants. Therefore, the users uploaded their segmentation results through a web 

interface, reviewed the uploaded segmentation, and then started an automated evaluation 

process. The evaluation to assess the segmentation quality took approximately two 

minutes per volume. In addition, the overall segmentation results of the evaluation were 

automatically published on the Codalab leaderboard web page and could be downloaded as a 

csv file for further statistical analysis.

The Codalab platform remained open for further use after the three challenges and will 

remain so in the future. As of April 2022, it has evaluated more than 3414 valid submissions 

(238,980 volumetric segmentation) and recorded over 900 registered LiTS users. The 

up-to-date ranking is available at Codalab for researchers to continuously monitor new 

developments and streamline improvements. In addition, the code to generate the evaluation 

metrics between reference and predictions is available as open-source at GitHub.5

4. Results

4.1. Submitted algorithms and method description

The submitted methods in ISBI-2017, MICCAI-2017 and MICCAI-2018 are summarized in 

Tables 4 and 5, and the reference paper of Medical Segmentation Decathlon (Antonelli et al., 

2022). In the following, we grouped the algorithms with several properties.

Algorithms and architectures.—Seventy-three submissions were fully automated 

approaches, while only one was semi-supervised (■ J. Ma et al.). U-Net derived 

architectures were overwhelmingly used in the challenge with only two automated methods 

using a modified VGG-net (■ J. Qi et al.) and a k-CNN (■ J. Lipkova et al.) respectively. 

Most submissions adopted the coarse-to-fine approach in which multiple U-nets were 

cascaded to perform liver and liver segmentation at different stages. Additional residual 

connections and adjusted input resolution were the most common changes to the basic U-

Net architecture. Three submissions combined individual models as an ensemble technique. 

In 2017, 3D methods were not directly employed on the original image resolution by any of 

the submitted methods due to high computational complexity. However, some submissions 

used 3D convolutional neural networks solely for tumor segmentation tasks with small 

input patches. Instead of full 3D, other methods tried to capture the advantages of three-

dimensionality by using a 2.5 D model architecture, i.e., providing a stack of images as a 

multi-channel input to the network and receiving the segmentation mask of the center slice 

of this stack as a network output.

5 https://github.com/PatrickChrist/LiTS-CHALLENGE 

Bilic et al. Page 11

Med Image Anal. Author manuscript; available in PMC 2023 November 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/PatrickChrist/LiTS-CHALLENGE


Critical components of the segmentation methods.—Data pre-processing with 

HU-value clipping, normalization, and standardization were the most frequent techniques 

in most of the methods. Data augmentation was also widely used and mainly focused on 

standard geometric transformations such as flipping, shifting, scaling, or rotation. Individual 

submissions implemented more advanced techniques such as histogram equalization and 

random contrast normalization. The most common optimizer varied between ADAM and 

Stochastic gradient descent with momentum, with one approach relying on RMSProp. 

Multiple loss functions were used for training, including standard and class-weighted 

cross-entropy, Dice loss, Jaccard loss, Tversky loss, L2 loss, and ensemble loss techniques 

combining multiple individual loss functions into one.

Post-processing.—Some types of post-processing methods were also used by the vast 

majority of the algorithm. The common post-processing steps were to form connected 

tumor components and overlay the liver mask on the tumor segmentation to discard tumors 

outside the liver region. More advanced methods included a random forest classifier, 

morphological filtering, a particular shallow neural network to eliminate false positives or 

custom algorithms for tumor hole filling.

Features of top-performing methods.—The best-performing methods at ISBI 2017 

used cascaded U-Net approaches with short and long skip connections and 2.5D input 

images (■ X. Han et al.). In addition, weighted cross-entropy loss functions and a few 

ensemble learning techniques were employed by most of the top-performing methods, 

together with some common pre- and post-processing steps such as HU-value clipping and 

connected component labeling, respectively. Some top-performing submissions at MICCAI 

2017 (e.g., ■ J. Zou) integrated the insights from the ISBI 2017, including the idea of 

the ensemble, adding residual connections, and featuring more sophisticated rule-based 

post-processing or classical machine learning algorithms. Therefore, the main architectural 

differences compared to the ISBI submissions were the higher usage of ensemble learning 

methods, a higher incidence of residual connections, and an increased number of more 

sophisticated post-processing steps. Another top-performing method by ■ X. Li et al. 

proposed a hybrid insight by integrating the advantages of the 2D and 3D networks in the 

3D liver tumor segmentation task (Li et al., 2018a). Therefore, compared to the methods in 

ISBI submissions that solely rely on 2D or 3D convolutions, the main architecture difference 

was the hybrid usage of 2D and 3D networks. In MICCAI-LiTS 2018, 3D deep learning 

models became popular and generally outperformed 2.5D or 2D without more sophisticated 

pre-processing steps.

4.2. Results of individual challenges

At ISBI 2017 and MICCAI 2017, the LiTS challenges received 61 valid submissions and 

32 contributing short papers as part of the two workshops. At MICCAI 2018, LiTS was 

held as part of the Medical Segmentation Decathlon and received 18 submissions (one of 

them was excluded from the analysis as requested by the participating team). In this work, 

the segmentation results were evaluated based on the same metrics described to ensure the 

comparability between the three events. For ISBI 2017, no liver segmentation task was 
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evaluated. The results of the tumor segmentation task were shown for all the events, i.e., 

ISBI 2017, MICCAI 2017, and MICCAI 2018.

4.2.1. Liver segmentation

Overview.: The results of the liver segmentation task showed high Dice scores; most teams 

achieved more than 0.930. It indicated that solely using the Dice score could not distinguish 

a clear winner. When we compared the progress with the two LiTS benchmarks, the results 

of MICCAI 2017 were slightly better than the MICCAI-MSD 2018 in terms of ASD 

(1.104 vs. 1.342). It might be because the algorithms for MICCAI-MSD were optimized 

considering their generalizability on different organs and imaging modalities. In contrast, 

the methods for MICCAI 2017 were specifically optimized for liver and CT imaging. The 

ranking result is shown in Table 6.

LiTS–MICCAI 2017.: The evaluation of the liver segmentation task relied on the three 

metrics explained in the previous chapter, with the Dice score per case acting as the primary 

metric used for the final ranking. Almost all methods except the last three achieved Dice 

per case values above 0.920, with the best one scoring 0.963. Ranking positions remain 

relatively stable when ordering submissions according to the other surface distance metric. 

Most methods changed by a few spots, and the top four methods were only interchanging 

positions among themselves. The position variation was more significant than the Dice score 

when using the surface distance metric ASD for the ranking, with some methods moving 

up to 4 positions. However, on average, the top-2 performing Dice per case methods still 

achieved the lowest surface distance values, with the winning method retaining the top spot 

in two rankings.

LiTS–MICCAI–MSD 2018.: The performance of Decathlon methods in liver segmentation 

showed similar results compared to MICCAI 2017. In both challenges, one could observe 

that the difference in Dice scores between top-performing methods was insignificant mainly 

because the liver is a large organ. The comparison of ASD between MICCAI 2018 and 

MICCAI 2017 confirmed that state-of-the-art methods could automatically segment the liver 

with similar performance to manual expert annotation for most cases. However, the methods 

exclusively trained for liver segmentation in MICCAI 2017 showed better segmentations 

under challenging cases (1.104 vs. 1.342).

4.2.2. Liver tumor segmentation and detection

Overview.: While automated liver segmentation methods showed promising results 

(comparable to expert annotation), the liver tumor segmentation task remained room for 

improvement. To illustrate the difficulty of detecting small lesions, we grouped the lesions 

into three categories with a clinical standard: (a) small lesions less than 10 mm in diameter, 

(b) medium lesions between 10 mm and 20 mm in diameter, and (c) large lesion bigger than 

20 mm in diameter. The ranking result is shown in Table 7.

LiTS–ISBI 2017.: The highest Dice scores for liver tumor segmentation were in the middle 

0.60s range, with the winner team achieving a score of 0.674 followed by 0.652 and 0.645 

for the second and third places, respectively. However, there were no statistically significant 
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differences between the top three teams in all three metrics. The final ranking changed to 

some degree when considering the ASD metric. For example, Bi et al. obtained the best 

ASD score but retained its order with the best methods overall. In lesion detection, we found 

that detecting small lesions was very challenging in which top-performing teams achieved 

only around 0.10 in F1 score. Fig. 6 shows some sample results of the top-performing 

methods.

LiTS–MICCAI 2017.: The best tumor segmentation Dice scores improved significantly 

compared to ISBI, with MICCAI’s highest average Dice (per case) of 0.702 compared 

to 0.674 in ISBI on the same test set. However, the ASD metric did not improve (1.189 

vs. 1.118) on the best top-performing method. In addition, there were no statistically 

significant differences between the top three teams in all three metrics. There was an overall 

positive correlation of ranking positions with submissions that performed well at the liver 

segmentation task concerning the liver tumor segmentation task. A weak positive correlation 

between the Dice ranking and the surface distance metrics could still be observed, although 

a considerable portion of methods changes positions by more than a few spots. The detection 

performance in MICCAI 2017 showed improvement over ISBI 2017 in lesion recall (0.479 

vs. 0.458 for the best team). Notably, the best-performing team (■ J. Zou et al.) achieved a 

very low precision of 0.148, which indicated that the method generates many false positives. 

Fig. 7 shows some sample results of the top-performing methods.

LiTS–MICCAI–MSD 2018.: The LiTS evaluation of MICCAI 2018 was integrated into 

MSD and attracted much attention, receiving 18 valid submissions. Methods were ranked 

according to two metrics: Dice score and ASD (in liver and liver tumor segmentation tasks). 

Compared to MICCAI 2017 and ISBI 2016, the two top-performing teams significantly 

improved the Dice scores (0.739 and 0.721 vs. 0.702) and ASD (0.903 and 0.896 vs. 1.189). 

However, there were no statistically significant differences between the top two teams in 

all three metrics. The first place (F. Isensee et al.) statistically significant (p-value < 0.001) 

outperformed the third place (S. Chen et al.) considering Dice score. More importantly, the 

same team won the two tasks using a self-adapted 3D deep learning solution, indicating a 

step forward in the development of segmentation methodology. The detection performance 

in MICCAI 2018 showed improvement over MICCAI 2017 in lesion recall (0.554 vs. 0.479 

for the best-performing teams).

From the scatter plots shown in Fig. 2, we observed that not all the top-performing methods 

in three LiTS challenges achieved good scores on tumor detection. The behavior of distance- 

and overlap-based metrics was similar. The detection metrics with clinical relevance could 

prevent the segmentation model from tending to segment large lesions. Thus it should be 

considered when ranking participating teams and performing the comprehensive assessment.

4.3. Meta analysis

In this section, we focus on liver tumor segmentation and analyze the inter-rater variability 

and method development during the last six years.
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4.3.1. Inter-rater agreement—To better interpret the algorithmic variability and 

performance, we recruited another radiologist (Z. Z.) with > 3 years of experience in 

oncologic imaging to re-annotate 15 3D CT scans, and two board-certified radiologists (J. 

K. and B. W.) to re-evaluate the original annotations. In Fig. 3, R2 re-annotated 15 CT 

scans from scratch. R3 and R4 are board-certified radiologists who checked and corrected 

the annotations. Specifically, one board-certified radiologist (R3) reviewed and corrected 

existing annotations. R4 re-evaluated R3’s final annotations and corrected them. The inter-

rater agreement was calculated by the Dice score per case between the pairs of two raters. 

We observed high inter-rater variability (median Dice of 70.2%)between the new annotation 

(R2) and the existing consensus annotation. We observed very high agreement (median Dice 

of 95.2%) between the board-certified radiologist and the existing annotations. Considering 

that the segmentation models were solely optimized on R1 and the best model achieved 

82.5% on the leader-board (last access: 04.04.2022), we argue that there is still room for 

improvement.

4.3.2. Performance improvement

Top-performing teams over three events.: First, we plotted the scores of Dice and 

ASD for three top-performing teams over the three events, as shown in Fig. 4. We 

observed incremental improvement (e.g., the median scores) over the three events. We 

further performed Wilcoxon signed-rank tests on the best teams (ranked by mean Dice) 

between each pair of two events. We observed that MSD’18 shows significant improvement 

against ISBI’17 on both metrics (see Table 8). For MSD’18, the submitted algorithms 

architectures were the same for all subtasks. They were trained individually for sub-tasks 

(e.g., liver, kidney, pancreas), focusing on the generalizability of segmentation models. The 

main advance was the advent of 3D deep learning models after 2017. Tables 4 and 5 

show that most of the approaches were 2D and 2.5D based. The winner of MSD — the 

nn-Unet approach was a 3D UNet based, self-configured and adaptive for specific tasks. 

We attributed the main improvement to the 3D architectures, which was in line with other 

challenges and benchmark results in medical image segmentation that occurred during this 

time.

CodaLab submissions in the last six years.: First, we separated the submissions yearly 

and summarized them by individual violin plots shown in Fig. 5. We observed a continuous 

improvement over the years, with the best results obtained in 2022. We excluded the 

submissions that achieved Dice scores >10% in the analysis. We further performed the 

Mann–Whitney U test on the distributions of mean Dice and ASD scores of all teams for 

each year. We observed that the scores achieved in 2022 are significantly better than in 

2021, indicating that the LiTS challenge remains active and contributes to methodology 

development (see Table 9).

4.4. Technique trend and recent advances

We have witnessed that the released LiTS dataset contributes to novel methodology 

development in medical image segmentation in recent years. We reviewed sixteen papers 

that used the LiTS dataset for method development and evaluation from three sources: (a) 
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Journal of Medical Image Analysis (MIA), (b) MICCAI conference proceeding, and (c) 

IEEE Transaction on Medical Imaging (TMI), as shown in Table 10.

A significant advance was on the 3D deep learning model besides the 2D approaches. Zhou 

et al. (2021b), Haghighi et al. (2021) proposed self-supervised pre-training frameworks 

to initialize 3D models for better representation than training them from scratch. Isensee 

et al. (2020) proposed a self-configuring pipeline to facilitate the model training and the 

automated design of network architecture. Wang et al. (2019) added a 3D attention module 

for 3D segmentation models. These works improved the efficiency of 3D models and 

popularized the 3D models in many image segmentation tasks (Ma, 2021).

Ma et al. (2020) focused on the special trait of liver and liver tumor segmentation and 

proposed a novel active contour-based loss function to preserve the segmentation boundary. 

Similarly, Tang et al. (2020) proposed to enhance edge information and cross-feature fusion 

for liver and tumor segmentation. Shirokikh et al. (2020) considered the varying lesion sizes 

and proposed a loss reweighting strategy to deal with size imbalance in tumor segmentation. 

Wang et al. (2020) attempted to deal with the heterogeneous image resolution with a 

multi-branch decoder.

One emerging trend was leveraging available sparse labeled images to perform multi-organ 

segmentation. Huang et al. (2020) attempted to perform co-training of single-organ datasets 

(liver, kidney, and pancreas). Fang and Yan (2020) proposed a pyramid-input and pyramid-

output network to condense multi-scale features to reduce the semantic gaps. Finally, Yan et 

al. (2020) developed a universal lesion detection algorithm to detect a variety of lesions in 

CT images in a multitask fashion and propose strategies to mine missing annotations from 

partially-labeled datasets.

4.4.1. Remaining challenges

Segmentation performance w.r.t. lesion size.: Overall, the submitted methods performed 

very well for large liver tumors but struggled to segment smaller tumors (see Fig. 8). Many 

small tumors only have diameters of a few voxels; further, the image resolution is relatively 

high with 512 × 512 pixels in axial slices. Therefore, detecting such small structures is 

difficult due to the small number of potentially differing surrounding pixels, which can 

indicate a potential tumor border (see Fig. 8). It is exacerbated by the considerable noise and 

artifacts in medical imaging, which occur from size similarity; texture differences from the 

surrounding liver tissue and their arbitrary shapes are difficult to distinguish from an actual 

liver tumor. Overall, state-of-the-art methods performed well on volumes with large tumors 

and worse on volumes with small tumors. Worst results were achieved in exams where 

single small tumors (<10 mm3) occur. Best results were achieved when volumes showed less 

than six tumors with an overall tumor volume above 40 mm3 (see Fig. 8). In the appendix, 

we show the performance of all submitted methods of the three LiTS challenges, compared 

for every test volume, clustered by the number of tumor appearances and tumor sizes, see 

Fig. A.10.

Segmentation performance w.r.t. image contrast.: Another important influence of the 

methods’ segmentation quality was the difference in tumor and liver HU values. Current 
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state-of-the-art methods perform best for volumes showing higher contrast between liver 

and tumor. Especially in the case of focal lesions with a density 40–60 HU higher than 

that of the background liver (see Fig. 8). Worst results are achieved in cases where the 

contrast is below 20 HU (see Fig. 8), including tumors having a lower density than the 

liver. An average difference in HU values eases the network’s task of distinguishing liver 

and tumor since a simple threshold-derived rule could be applied as part of the decision 

process. Interestingly, an even more significant difference value did not result in an even 

better segmentation.

The performance of all submitted methods of three LiTS challenges was compared for every 

test volume, clustered by the HU level difference between liver and tumor and the HU level 

difference within tumor ROIs, shown in appendix Fig. B.11.

5. Discussion

5.1. Limitations

The datasets were annotated by only one rater from each medical center. Thus it may 

introduce label bias, especially for small lesion segmentation, which is only ambiguous. 

However, further quality control of the annotations with consensus can reduce label 

noise and benefit supervised training and method evaluation. The initial rankings were 

conducted considering only the Dice score in which the large tissue will dominate. We 

observe that solely using Dice does not distinguish the top-performing teams but combining 

multiple metrics can do better. Unfortunately, imaging information (e.g., scanner type) and 

demographic information are unavailable when collecting the data from multiple centers. 

However, they are essential for in-depth analysis and further development of the challenge 

result (Maier-Hein et al., 2020; Wiesenfarth et al., 2021). The BIAS (Maier-Hein et al., 

2020) report has proven to provide a good guideline for organizing a challenge and 

analyzing the outcome of the challenge. Tumor detection task is of clinical relevance, and 

the detection metric should be considered in future challenges (see Fig. 9).

To allow for quick evaluation of the submissions, we release the test data to the participant. 

Hence, we cannot prevent potential over-fitting behavior by multiple iterative submissions 

or cheating behavior (e.g., manual correction of the segmentation). One option to improve 

this is using image containers (such as Docker6 and Singularity7) without releasing the test 

images. However, this would potentially limit the popularity of the challenge.

5.2. Future work

Organizing LiTS has taught us lessons relevant for future medical segmentation benchmark 

challenges and their organizers. Given that many of the algorithms in this study offered good 

liver segmentation results compared to tumors, it seems valuable to evaluate liver tumor 

segmentation based on their different size, type, and occurrence per volume. Generating 

large labeled datasets is time-consuming and costly. It might be more efficiently performed 

6 https://www.docker.com/ 
7 https://sylabs.io/singularity/ 
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by advanced semiautomated methods, thereby helping to bridge the gap to a fully automated 

solution.

Further, we recommend providing multiple reference annotations of liver tumors from 

multiple raters. This is because the segmentation of liver tumors presents high uncertainty 

due to the small structure and the ambiguous boundary (Schoppe et al., 2020). While most 

of the segmentation tasks in existing benchmarks are formulated to be one-to-one mapping 

problems, it does not fully solve the image segmentation problem where the data uncertainty 

naturally exists. Modeling the uncertainty in segmentation task is a trend8 (Mehta et al., 

2020; Zhang et al., 2020b) and would allow the model generates not only one but various 

plausible outputs. Thus, it would enhance the applicability of automated methods in clinical 

practice. The released annotated dataset is not limited to benchmarking segmentation tasks 

but could also serve as data for recent shape modeling methods such as implicit neural 

functions (Yang et al., 2022; Kuang et al., 2022; Amiranashvili et al., 2021) Considering 

the size and, importantly, the demographic diversity of the patient populations from the 

seven institutions that contributed cases in the LiTS benchmark dataset, we think its value 

and contribution to medical image analysis will be greatly appreciated across numerous 

directions. One example use case is within the research direction of domain adaptation, 

where the LiTS dataset can be used to account for the apparent differences/shift of the 

data distribution due to the domain change (e.g., acquisition setting) (Glocker et al., 2019; 

Castro et al., 2020). Another recent and intriguing use case is the research direction of 

federated learning, where the multi-institutional nature of the LiTS benchmark dataset could 

further contribute to federated learning simulations studies and benchmarks (Sheller et al., 

2018, 2020; Rieke et al., 2020; Pati et al., 2021). It will target potential solutions to the 

LiTS-related tasks without sharing patient data across institutions. We consider federated 

learning of particular importance, as scientific maturity in this field could lead to a paradigm 

shift for multi-institutional collaborations. Furthermore, it is overcoming technical, legal, 

and cultural data sharing concerns since the patient involved in such collaboration will 

always be retained within their acquiring institutions.
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Appendix

Appendix A. Segmentation performance w.r.t tumor size and number of 

tumors.

See Fig. A.10.

Fig. A.10. 
Performance w.r.t tumor size and number of tumors. The test dataset is clustered by the 

number of tumors (#T) and size of the largest tumor per volume. Overall, participating 

methods perform well on volumes with large tumors and worse for volumes with small 

tumors. Worst results are achieved in chase where single small tumors (<15 mm3) occur. 

Best results are achieved when volumes show less than 6 tumors with an overall tumor 

volume above 40 mm3.

Appendix B. Segmentation performance w.r.t. HU value differences.

See Fig. B.11.
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Appendix C. Correspondence algorithm

Components may not necessarily have a one-to-one correspondence between the two masks. 

For example, a single reference component can be predicted as multiple components (split 

error); similarly, multiple reference components can be covered by a single significant 

predicted component (merge error), as shown in Fig. C.12.

Fig. B.11. 
Performance w.r.t HU value difference between tumor and non-tumor liver tissue. Two 

robust metrics are calculated to cluster the results on the test set. First, the HU value 

difference between liver and tumor is calculated using both regions’ robust median absolute 

deviation per volume. Further, the clusters are split up by the tumor HU value difference 

calculated by the difference of the 90th percentile and 10th percentile. Participating methods 

perform best for volumes showing higher contrast between liver and tumor. Especially in the 

case of the liver, HU values are 40–60 points higher than the liver. Worst results are achieved 

in cases where the contrast is below 20 HU value, including tumors having a lower HU value 

than the liver.
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Once connected components are found and enumerated in the reference and prediction 

masks, the correspondence algorithm determines the mapping between reference and 

prediction. Consider NR connected components in the reference mask and NP in the 

prediction mask. First, the many-to-many mapping is turned into a many-to-one mapping 

by merging all reference components ri(i ∈ NR) that are connected by a single predicted 

component pj(j ∈ NP), as shown in Fig. C.13 (left). In the case where an ri overlaps multiple 

pj, the pj with the largest total intersected area is used. Thus, for every index i ∈ NR, a 

corresponding ji ∈ NP is determined as:

∀i ∈ NR, ji = arg maxjpj ∩ ri, pj ∩ ri > 0
none, else (C.1)

and the ri are merged to ρj according to:

ρj = ⋂
i: ji = j

ri, (C.2)

resulting in Nρ = ∣ {ρj} ∣ regions. Any ri without a corresponding pj is a false negative.

Fig. C.12. 
Split and merge errors where a prediction splits a reference lesion into more than one 

connected component or merges multiple reference components into one, respectively. 

Reference connected components are shown with a solid color and predicted as regions with 

a dashed boundary and hatched interior. One-to-one correspondence is shown in green. One-

to-two (a), two-to-one (b), and two-to-three (c) correspondence in orange. False negative in 

gray.
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Fig. C.13. 
Two examples (top and bottom) of the process to establish a correspondence between 

connected components in the reference and prediction masks. Reference: solid color; 

prediction: dashed boundary and hatched interior. Left: reference components merged if 

the same predicted component overlaps them. Right: predicted components are merged 

together if the same merged reference component overlaps them. Corresponding reference 

and predicted components share the same color (green, orange). An undetected reference 

component is shown in solid gray. During the merge of reference components (left), 

predicted components that do not have the most significant overlap with a reference 

component are left unmatched (gray, dashed, and hatched). Their mapping is completed 

during the merge of predicted components (right).

In the second step, the mapping is completed by associating each remaining pj with a single 

ρk (k ∈ Nρ) with which it shares the largest total intersected area and merging all the pj

that share the same ρk, as shown in Fig. C.13 (right). Thus, for every index j ∈ NP, a 

corresponding k ∈ Nρ is determined as:

∀j ∈ NP, kj =
arg maxkpj ∩ ρk, pj ∩ ρk > 0
none, else (C.3)

and the pj are merged to πk according to:

πk = ⋂
j:kj = k

pj, (C.4)

resulting in Nπ = ∣ {πk} ∣ regions. Any pj without a corresponding ri is a false positive.
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The result is a map with a correspondence between sets of predicted components and 

sets of reference components. In order to maintain the immutability of the reference, any 

metrics evaluated on a set of merged reference components are attributed to each constituent 

reference component. For example, if two connected components in the reference mask are 

merged, and a Dice score of 0.7 is computed on the mask combining both components, then 

each component is considered to have a Dice score of 0.7. If the reference components were 

not merged, the errors computed for each of the two components would be exaggerated (e.g., 

0.3 and 0.5 Dice).

Appendix D. Automated tumor burden analysis in MICCAI-LiTS 2017

Motivation.

The tumor burden, defined as the liver/tumor ratio, plays an essential role in surgical 

resection planning (Nordlinger et al., 1996; Jagannath et al., 1986). Instead of measuring 

diameters of target tumors, a fully volumetric segmentation of both the liver and its 

tumor and the subsequent tumor burden analysis offers valuable insights into the disease 

progression (Blachier et al., 2013). Further, tumor burden is also essential in assessing the 

effectiveness of different treatments and can potentially replace the RECIST protocol (Gobbi 

et al., 2004; Bornemann et al., 2007; Heussel et al., 2007; Kuhnigk et al., 2006; Puesken et 

al., 2010; Bauknecht et al., 2010). A fully automated liver and tumor segmentation allows 

more straightforward computation of tumor burden and simplifies surgical liver resection 

planning.

Table D.11

Tumor burden ranking in MICCAI-LiTS 2017.

Ranking Ref. name Institution RMSE Max error

1 C. Li et al. CUHK 0.015 (1) 0.062 (6)

2 J. Wu et al. NJU 0.016 (2) 0.048 (2)

3 C. Wang et al. KTH 0.016 (3) 0.058 (4)

4 Y. Yuan et al. MSSM 0.017 (4) 0.049 (3)

5 J. Zou et al. Lenovo 0.017 (5) 0.045 (1)

6 K. Kaluva et al. Predible Health 0.020 (6) 0.090 (12)

7 X. Han et al. Elekta Inc. 0.020 (7) 0.080 (10)

8 A. Ben-Cohen et al. Uni Tel Aviv 0.020 (8) 0.070 (7)

9 G. Chlebus et al. Fraunhofer 0.020 (9) 0.070 (8)

10 L. Zhang et al. CUHK 0.022 (10) 0.074 (11)

11 E. Vorontsov et al. MILA 0.023 (11) 0.112 (13)

12 J. Lipkova et al. TUM 0.030 (12) 0.140 (14)

13 K. Roth et al. Volume Graphics 0.030 (13) 0.180 (15)

14 M. Piraud et al. TUM 0.037 (14) 0.143 (16)

15 Jin Qi 0.0420 (12) 0.0330 (2)

16 L. Bi et al. Uni Sydney 0.170 (15) 0.074 (9)

17 J. Ma et al. NJUST 0.920 (16) 0.061 (5)
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Metrics.

The tumor burden of the liver is a measure of the fraction of the liver afflicted by cancer. As 

a metric, we measure the root mean square error (RMSE) in tumor burden estimates from 

lesion predictions.

RMSE = 1
n ∑

i = 1

n
Ai − Bi

2
(D.1)

Results.

The tumor burden was well predicted by many methods, with the best-performing method 

achieving the lowest RMSE of 0.015 and the lowest maximum error at 0.033 (Table D.11). 

There was a slight variation in RMSE values by the last. 15 th method still obtains the 

fifth rank due to the high number of duplicates in the low range of values. In overall, 

methods achieving high Dice per case scores also obtained lower RMSE values. Only small 

correlation exists between RMSE and the maximum error ranking.
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Fig. 1. 
Example from the LiTS dataset depicting a variety of shapes of on contrast-enhanced 

abdominal CT scans acquired. While most exams in the dataset contain only one lesion, a 

large group of patients with some (2–7) or many (10–12) lesions, as shown in the histogram 

calculated over the whole dataset.
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Fig. 2. 
Scatter plots of methods’ performances considering: (a) both segmentation and detection, 

(b) both distance- and overlap-based metrics for three challenge events. We observe that 

not all the top-performing methods in three LiTS challenges achieved good scores on tumor 

detection. The behavior of distance- and overlap-based metrics is similar.
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Fig. 3. 
Inter-rater agreement between the existing annotation and new annotation sets. R1 

represented the rater for the existing consensus annotation of the LiTS dataset. R2 re-

annotated 15 CT scans from scratch. R3 and R4 are board-certified radiologists who checked 

and corrected the annotations. Specifically, one board-certified radiologist (R3) reviewed 

and corrected existing annotations. R4 re-evaluated R3’s final annotations and corrected 

them. The inter-rater agreement was calculated by the Dice score per case between the pairs 

of two raters.
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Fig. 4. 
Dice and ASD scores of three top-performing teams over the three events.
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Fig. 5. 
Distribution of mean Dice and ASD scores of all submissions in the CodaLab platform from 

the year 2017 to the year 2022.
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Fig. 6. 
Tumor segmentation results of the ISBI–LiTS 2017 challenge. The reference annotation is 

marked with green contour, while the prediction is with blue contour. One could observe that 

the boundary of liver lesion is rather ambiguous.

Bilic et al. Page 40

Med Image Anal. Author manuscript; available in PMC 2023 November 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 7. 
Tumor segmentation results of the MICCAI–LiTS 2017 challenge. The reference annotation 

is marked with green contour, while the prediction is with blue contour. One could observe 

that it is highly challenging to segment the liver lesion with poor contrast.
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Fig. 8. 
Tumor segmentation results with selected cases of the tumor segmentation analysis 

regarding low (<20) and high (40–60) HU value difference. Compared are reference 

annotation (green), best-performing teams from ISBI 2017 (purple), MICCAI 2017 (orange), 

and MICCAI 2018 (blue). We can observe that a low HU value difference (<20) between 

tumor and liver tissue poses a challenge for tumor segmentation.
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Fig. 9. 
Samples of segmentation and detection results for small liver tumor. Compared are reference 

annotation (green), best-performing teams from ISBI 2017 (purple), MICCAI 2017 (orange), 

and MICCAI 2018 (blue).
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